
Scientific Visualization with VTK,
The Visualization Toolkit

Science and Technology Support Group
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212-1163

http://www.vtk.org/

2
Scientific Visualization with VTK

Table of Contents

• Day 1: Session 1
– Preparation on BALE Cluster
– What is VTK?
– Installing VTK!

• Cmake, C++
• Java, Tcl/Tk, Python

– First Look
• Using the four platforms
• C++, Python, Tcl, Java

– VTK Overview
• Graphics model
• Visualization model

– Programming and the
Visualization Pipeline

• Day 1: Session 2
– Basics

• Interacting with the Window
• Procedural Source Objects
• Read Source Objects
• Filtering Data
• Controlling Cameras
• Controlling Lights
• Controlling 3D Props
• Textures
• Picking
• Other Controls

– Annotation
– LOD-Level of Detail
– Assemblies
– Volume

– Special Plotting Classes
• Scalar Bars
• X-Y Plots
• Bounding Box Axes
• Labeling Data

– 3D Widgets

3
Scientific Visualization with VTK

Table of Contents

• Day 2: Session 1
– Visualization Techniques

• Color mapping
• Contouring
• Glyphing
• Streamlines
• Streamsurfaces
• Cutting
• Merge data
• Probing
• Isosurfaces

• Day 2: Session 2
– Case Study

• Material defects
• Computational Fluid Dynamics
• Finite Element Analysis
• Segmented Volume Data

4
Scientific Visualization with VTK

Preparation on BALE Cluster

• Limited disk space for workshop accounts in
${HOME}

• Change the shell environment
– >> tcsh

• Change to larger disk space
– >> cd /tmp

• Copy the resource directory to the local disk
– >> cp –r ~pete/VTKWorkshop .
– >> cd VTKWorkshop
– >> source Stuff/cshrc

• Creates needed environment variables
• Contents of directory

– Docs
• Supporting documentation

– Stuff
– Examples
– Graphics
– Textbook

5
Scientific Visualization with VTK

Preparation on BALE Cluster

• Looking for VTK expression
– Position shell script, search.csh, in Examples

• >> cd Examples
• cp ../Stuff/search.csh .

– >> search.csh dir vtkexpression
• dir is one of Cxx | Python | Tcl
• vtkexpression is any VTK class or function

name
• >> search.csh Python SetColor

• For the rest of this workshop this will be
your working directory

6
Scientific Visualization with VTK

What is VTK?

• Open source software for 3D computer graphics, image
processing and visualization

• Distributed by Kitware, Inc., http://www.vtk.org
• Consists of a C++ class library
• Several interpreted interface layers, including Python, Tcl/Tk,

and Java
• Supports a wide variety of visualization algorithms, including

scalar, vector, tensor, texture, and volumetric
• Advanced modeling techniques, such as implicit modeling,

polygon reduction, mesh smoothing, cutting, contouring and
Delaunay triangulation.

• Additionally, many imaging algorithms have been integrated,
mixing 2D imaging and 3D graphics algorithms and data

• Design and implementation influenced by object-oriented
principles

http://www.vtk.org/

7
Scientific Visualization with VTK

What is VTK?

• Source distribution comes with many
examples

• Not cool?
– Not super-fast graphics engine, uses

C++dynamic binding and device
independent graphics model

– Very large…need a decent system and
graphics card

– C++ source code (Tcl or Python
recommended)

• Documentation consists of online help,
HTML based,
[http://www.vtk.org/doc/release/4.2/html]

• Two manuals, The Visualization Toolkit
and The VTK User’s Guide,
[httlp//www.vtk.org/buy-books.php]

– Together about $160.00
– Very recommended

8
Scientific Visualization with VTK

Installing VTK!

• No Unix, No Linux, No Service
• OSC forums,

[http://www.osc.edu/forums]
– Look for a VTK/Paraview forum
– Issues of an open access vs. secure access

• Additional resources
– Sebastien Barre’s links

[http://www.barre.nom.fr/vtk/links.html]
– Vtkusers mailing list

[http://public.kitware.com/mailman/listinf
o/vtkusers]

• Compiling from source recommended
because of dependencies

• Useful Linux tools
– Looking for installed executables: “which

command”
– Locating specific files, libraries, include

files: “locate filename”
• Installation instructions very straight

forward
• Cmake installation required; url linked

off http://www.vtk.org
• Installing as root highly recommended

• Install any of the support programming
platforms first

– C++ should be already installed
• /usr/bin/c++
• /usr/bin/gcc

– Tcl/Tk [http://www.tcl.org]
– Python [http://www.python.org]

• Should install Tkinter.py
– Java [http://www.java.sun.com]

• Terminal based user interface, ccmake
– Cmake typically will find and set most

options
• Customizing build using interactive

wizard mode, “cmake –i”
– Most options will be set by cmake
– But check to be sure, especially with

settings for libraries/includes for support
platforms

• After cmake, three steps
– make (makes binaries/libraries)
– make test

• Will create a report of successes/failures
– make install (if root)

9
Scientific Visualization with VTK

First Look

• Running an example under the four
different platforms

• Change directory to
/tmp/dirname/Examples/Tutorial/Step1

• C++
– Change directory to Cxx/
– Do not need to compile any

additional support like Java, Python
or Tcl/Tk

– Cmake generates a makefile
• >> cmake .
• The dot, ‘.’, is required

– Use the make command to generate
the executable

– To execute type the command
‘./Cone’

• Tcl
– Change directory to Tcl/
– The VTK build includes a VTK tcl

command called ‘vtk’
– Execute the command

• >> vtk Cone.tcl

Image created by Cone.py

10
Scientific Visualization with VTK

First Look

• Python
– Change directory to Python
– VTK build includes a VTK python

command called ‘vtkpython’
– May want to alias this to something short

• >> alias vtkpython vp
• Make sure no other command called vp
• >> which vp
• For BALE this is done by sourcing Stuff/cshrc

• Java
– Change directory to Java/
– Make certain Java CLASSPATH

environment variable is set to the VKT-
java directory

• PathtoVTK/Wrapping/java/vtk

– Byte compile java code using ‘javac’
• Creates ‘Cone.class’

– Execute using java runtime
• >> java Cone

11
Scientific Visualization with VTK

• vtkProcessObjects
– Process objects (filters)
– Filters operate on data objects to

produce new data objects
• Process and data objects form the

visualization pipeline
• Pipeline topology based on filter I/O

• Visualization pipelines use lazy
evaluation

– Only executes when data is required for
computation

Graphics Model

• Graphics model
– Transform graphical data into images
– Actors, lighting, cameras, renderers,

mappers
– Creates a scene
– Mappers interface between the

visualization pipeline and the graphics
model

• Visualization Model
– Visualization pipeline transforms

information into graphical data
– Uses a data flow approach
– Two basic types of objects

• vtkDataObject
• vtkProcessObject

• vtkDataObject
– Datasets (vtkDataSet) have formal

structures
– Data objects have geometric and

topological structure (points and cells)
– Attribute data (scalars and vectors) are

associated with the data objects
– Cells are topological arrangements of

points

thisFilter->setInput(thatFilter->getOutput)

12
Scientific Visualization with VTK

Graphics Model

Conceptual view of pipeline execution

Data objects combined with process object
to create viz pipeline

13
Scientific Visualization with VTK

Graphics Model

Multiplicity of input and output

14
Scientific Visualization with VTK

Graphics Model

Data attributes associated with the points and cells of a dataset

15
Scientific Visualization with VTK

Graphics Model

Dataset types found in VTK.

16
Scientific Visualization with VTK

Programming and the Visualization Pipeline

• Look at the programming
implementation

• From Cone.py in
Examples/Tutorial/Step1/Python/

• Represents the basic setup for VTK
programs

• Data source [here vtkConeSource]
– Procedural data, cone, sphere, cylinder,

etc.
– Or data read from a file

• vtkMapper and vtkLookupTable
– Transform and render geometry
– Interface between the viz pipeline and

the graphics model
– vtkScalarToColors maps data values to

color
• vtkActors

– Combine object properties, geometries
and orientation in virtual coordinates

The basic setup of:
source -> mapper -> actor -> renderer -> renderwindow
is typical of most VTK programs.

cone = vtk.vtkConeSource()
cone.SetHeight(3.0)
cone.SetRadius(1.0)
cone.SetResolution(10)

coneMapper = vtk.vtkPolyDataMapper()
coneMapper.SetInput(cone.GetOutput())

coneActor = vtk.vtkActor()
coneActor.SetMapper(coneMapper)

ren1= vtk.vtkRenderer()
ren1.AddActor(coneActor)
ren1.SetBackground(0.1, 0.2, 0.4)

renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren1)
renWin.SetSize(300, 300)

• vtkRenderer
– Coordinates lights, cameras and actors

to create and image
• vtkRenderWindow

– Manages window(s) on display device

17
Scientific Visualization with VTK

Programming and the Visualization Pipeline

• Conversions between languages relatively
straightforward

– Class names and method names remain the same
– Implementation details change (syntax)
– GUI details change
– Example, in the Cone program

• Python: “ren1.GetActiveCamera().Azimuth(1)”

• C++: “ren1->GetActiveCamera()->Azimuth(1);”
• Tcl: “[ren1 GetActiveCamera] Azimuth 1”
• Java: “ren1.GetActiveCamera().Azimuth(1);”

18
Scientific Visualization with VTK

Basics - Interacting with the Window

• Interacting with the data once rendered
• Using the vtkRenderWindowInteractor

– Keypress j | t
• Toggle between joystick or trackball mode
• In joystick style the motion occurs

continuously as long as the mouse button is
pressed

• In trackball style the motion occurs when the
mouse button is pressed and the mouse cursor
moves

– Keypress c | a
• Toggle between camera and actor modes
• In camera mode, the mouse events affect the

camera position and focal point
• In actor mode, the mouse events affect the

object under the mouse pointer

– LMB
• Rotate camera or actor
• Camera rotated around its focal point
• Actor rotated around its origin

• vtkRenderWindowInteractor (cont’d)
– MMB

• Pan camera or translate actor
• In joystick mode direction of pan/translation

is from center of the viewport toward the
mouse position

• In trackball mode, direction of motion in the
direction of the mouse movement MMB

– RMB
• Zoom camera or scale actor
• Zoom in/increase scale in top half of the

viewport
• Zoom out/decrease scale in lower half of the

viewport
• In joystick mode amount is controlled by

distance of the pointer from the horizontal
center line

– Keypress 3
• Toggle in and out of stereo mode
• Default is red-blue stereo pairs

– Keypress e | q
• Exit/quit application

19
Scientific Visualization with VTK

Basics - Interacting with the Window

• vtkRenderWindowInteractor (cont’d)
– Keypress f

• Fly-to the point under the cursor
• Sets the focal point allowing rotations about

that point

– Keypress p
• Pick operation
• Render window has an internal instance of

vtkPropPicker for picking.

– Keypress r
• Reset the camera along the viewing direction
• Centers the actors
• All actors visible

– Keypress s
• All actors represented as surfaces

– Keypress u
• Invokes user-defined mode
• Typically, brings up an command interactor

window
• Rerender using “iren Render”

– Keypress w
• All actors represented in wire frame

wired cone

solid cone

stereo cone

20
Scientific Visualization with VTK

Basics – Creating Models

• Two basic ways to obtain data
– Read into a system from file, stream, etc.
– Procedurally created by math expression or

algorithm
• Creating a procedural object

– Load the vtk resources
• vtkinteraction permits typing commands at

run time, among other resources
• vtktesting defines a set of colors

– Create a cylinder defining the geometry
– Using the SetInput method the cylinder

mapper is created from the cylinder geometry
– Pipeline consists of two objects, source and

mapper
– As yet, no data processed, lazy evaluation
– Create graphics objects to render actor(s)

• ren1 coordinates rendering process for the
viewport

• renWin controls the mapping of the viewport
to the device

• iren is a 3D widget for manipulating the
camera

…/Examples/Rendering/Tcl/Cylinder.tcl:

package require vtk
package require vtkinteraction
package require vtktesting

vtkCylinderSource cylinder
cylinder SetResolution 8

vtkPolyDataMapper cylinderMapper
cylinderMapper SetInput [cylinder GetOutput]

vtkActor cylinderActor
cylinderActor SetMapper cylinderMapper
eval [cylinderActor GetProperty] SetColor $tomato
cylinderActor RotateX 30.0
cylinderActor RotateY -45.0

vtkRenderer ren1
vtkRenderWindow renWin

renWin AddRenderer ren1
vtkRenderWindowInteractor iren

iren SetRenderWindow renWin

21
Scientific Visualization with VTK

Basics – Creating Models

• Creating a procedural object (cont’d)
– Renderer is connected to the render window
– Must connect actor(s) to renderer
– Associate GUI interactor with render window

interactor’s user-defined method
– Initialize method begins the event loop
– Tcl/Tk command withdraw defines that the

interpreter widget, .vtkInteract, is not visible
at startup

– Pipeline executes because rendering process
will request data

– Force execution of pipeline with by invoking
renWin Render

• Creating reader object
– Similar to previous example
– Exception is that reading data from disk
– 42400-IDGH.stl is in binary STL data format
– STL is stereo-lithography file
– If changes made to file, pipeline not re-

executed
– Invoke Modified() method

…/Examples/Rendering/Tcl/Cylinder.tcl:

ren1 AddActor cylinderActor
ren1 SetBackground 0.1 0.2 0.4
renWin SetSize 200 200

iren AddObserver UserEvent {wm deiconify\
.vtkInteract}

iren Initialize

[ren1 GetActiveCamera] Zoom 1.5
renWin Render

suppress Tcl/Tk empty “.” window
with VTK “withdraw” command
wm withdraw .

…/Examples/Rendering/Tcl/CADPart.tcl:

This creates a polygonal cylinder model with
eight circumferential facets.
#
vtkSTLReader part

part SetFileName \
"$VTK_DATA_ROOT/Data/42400-IDGH.stl"

22
Scientific Visualization with VTK

Basics – Creating Models

• Creating reader object (cont’d)
– VTK has very limited modeling tools
– Supports wide range of formats for the

reader classes
• Movie BYU
• Wavefront .obj
• ASCII Gaussian cube
• Molecular (PDB)
• XML poly data
• VTK format

– VTK importer class reads/writes multiple
datasets

• Comprise a scene
• Importer will create instances of lights,

cameras, actors, etc.
• Create instances of vtkRenderer and

vtkRenderWindow

…/Examples/IO/Python/
flamingo.py

23
Scientific Visualization with VTK

Basics – Filtering Data

• Adding filters to the pipeline
– Filters connected to pipeline using VTK

methods
• SetInput()
• GetOutput()

– Example shows the vtkShrinkPolyData class
– Make sure input/output type is compatible

with its counterpart
– Viz pipelines can contain loops
– But, output of filters cannot be directly

connected to its input

…./Examples/Rendering/Tcl/
FilterCADPart.tcl

This creates a polygonal cylinder model with eight circumferential
facets.
#
vtkSTLReader part

part SetFileName "$VTK_DATA_ROOT/Data/42400-IDGH.stl"

A filter is a module that takes at least one input and produces at
least one output. The SetInput and GetOutput methods are used to do
the connection. What is returned by GetOutput is a particulat dataset
type. If the type is compatible with the SetInput method, then the
filters can be connected together.
#
Here we add a filter that computes surface normals from the geometry.
#
vtkShrinkPolyData shrink

shrink SetInput [part GetOutput]
shrink SetShrinkFactor 0.85

24
Scientific Visualization with VTK

Basics – Controlling Cameras

• VTK renderer automatically instances
cameras

• Camera settings
– Clipping range (hither/yon)
– Direction and position set by the focal point

and position
– Orientation set by the view up setting
– Normal to the current position and focal point

set by ComputeViewPlaneNormal() method
• Simple manipulation

– Move camera about the focal point
• Uses spherical coordinate system
• Azimuth moves in the longitude direction

– cam1 Azimuth 150
• Elevation moves in latitude direction

– cam1 Elevation 60
• Do not alter view up
• Singularities occur at north and south pole

• Perspective/Orthogonal projection
– Perspective may introduce distortion, view

angle Camera movements around
focal point

Camera settings

vtkCamera cam1
cam1 SetClippingRange 0.5 200.0
cam1 SetFocalPoint 0.45 -0.23 -5.1
cam1 SetPosition 0 0 5
cam1 ComputeViewPlaneNormal
cam1 SetViewUp -0.02 0.99995 0.045

ren1 SetActiveCamera cam1

Retrieving camera

set cam1 [ren1 GetActiveCamera]
$cam1 Zoom 1.4

Elevation

Roll

Azimuth

25
Scientific Visualization with VTK

Basics – Controlling Cameras

• Perspective/Orthogonal projection
– Perspective projection may introduce

distortion
• view angle creates clipping pyramid

– Orthogonal projection alternative method
• View rays are parallel
• Objects are rendered without distance effects
• Use the method

vtkCamera::ParallelProjectionOn()
• View angle cannot control zoom
• Use SetParallelScale() method to magnify the

actors

Yaw

Roll

Pitch

View Up

26
Scientific Visualization with VTK

Basics – Controlling Lights

• Lights easier to control
• Directional lighting

– Light assumed at infinity
– Light rays parallel to a direction
– Setting the lighting

• Position
• Direction
• Color

• Positional lighting (spot lights)
– Method PositionalOn()
– Method SetConeAngle()
– Cone angle of 180 degrees

• No spot light effects
• Only effects of the position

…./Examples/Rendering/
Python/FilterCADPart.py

vtkLight light
light SetColor 1 0 0
light SetFocalPoint
light SetPosition [cam1 GetPosition]

ren1 AddLight light

27
Scientific Visualization with VTK

Basics – Controlling 3D Props

• vtkProp3D superclass of types of props
existing in 3D space

– Has a 4x4 transformation matrix
– Supports scaling, translating, rotating and

geometric projection
• Class vtkActor is a type vtkProp3D

– Analytic primitives define geometry
• Polygons
• Lines

• Defining Position
– SetPosition(x, y, z) in world coordinates
– AddPosition(x, y, z), translates from the

current position
– RotateX(theta), RotateY(theta),

RotateZ(theta), rotate around the respective
axis by theta degrees

– SetOrientation(x, y, z), rotate, in degrees,
about the z axis, then x axis, and finally y
axis

– AddOrientation(t1, t2, t3), add to the current
orientation

• Defining Position (cont’d)
– RotateWXYZ(theta, x, y, z), rotate theta degrees

about the axis determined by the x-y-z vector
– Scale(sx, sy, sz), scale in the x, y, z axes

directions
– SetOrigin(x, y, z), specify origin, around which

rotations and scaling occur
• Actors are the most common type of vtkProp3D

– Group rendering attributes
• Surface properties
• Representation
• Texture maps
• Geometric definition

– Defining geometry
• Specified by the SetMapper() method

vtkPolyDataMapper mapper
mapper SetInput [aFilter GetOutput]

vtkActor anActor
anActor SetMapper mapper

28
Scientific Visualization with VTK

Basics – Controlling 3D Props

• Actors (cont’d)
– Properties

• control the appearance of the actor
• Features include controlling color, shading,

representation, opacity and lighting effects
• May dereference property using

GetProperty() method
• Alternate method is create a property then

assign it to the actor
• advantage is that one property may be used

for a number of actors

– Color
• Use the SetColor() method
• Sets red, green, blue in that order
• Values range from zero to one
• Alternatively, set ambient, specular and

diffuse colors separately

vtkActor anActor
anActor SetMapper mapper
[anActor getProperty] SetOpacity 0.25
[anActor getProperty] SetAmbient 0.25
[anActor getProperty] SetDiffuse 0.25
[anActor getProperty] SetSpecular 0.25
[anActor getProperty] SetSpecularPower 0.25

vtkProperty prop
prop SetOpacity 0.25
prop SetAmbient 0.25
prop SetDiffuse 0.25
prop SetSpecular 0.25
prop SetSpecularPower 0.25

vtkActor anActor
anActor SetMapper mapper
anActor SetProperty prop

anActor SetColor 0.8 0.5 0.01

vtkActor anActor
anActor SetMapper mapper
[anActor getProperty] SetAmbientColor .1 .1 .1
[anActor getProperty] SetDiffuseColor .1 .6. 78
[anActor getProperty] SetSpecularColor 1 1 1

29
Scientific Visualization with VTK

Basics – Controlling 3D Props

• Actors (cont’d)
– Transparency

• Useful when need to view surfaces hidden by
other surfaces

• An example would be to show the skeleton
within the skin of a patient by adjusting the
transparency of the skin

• Use the vtkProperty::SetOpacity() method
• Implemented using an α–blending process
• Requires polygons rendered in the correct

order
• Add transparent actors to the end of

renderer’s list; add them last
• Use the filter vtkDepthSortPolydata to sort

along the view vector

– Visibility
• VisibilityOn() method
• VisibilityOff() method

– Turn off the pickability of an actor
• PickableOff()

– Bounding Box of Actor
• GetBounds() method
• Axis-aligned bounding box

vtkActor anActor
anActor SetMapper mapper
[anActor getProperty] SetOpacity 0.3
[anActor getProperty] SetColor .1 .6 .1

…/Examples/VisualizationAlgorithms/Tcl/DepthSort.tcl

30
Scientific Visualization with VTK

Basics – Textures

• Texture mapping
– Pasting images onto geometry
– Require three pieces

• Surface/geometry
• 2D texture or image
• Texture coordinates

– 3D textures not widely supported on
most rendering hardware

– openGL only accepts texture images
whose dimensions are powers of 2!

– VTK will resample images for non-
powers of 2 dimensions

• Impacts performance
– Texture coordinates refer to pixel positions in

the image
– Normalized to the domain of [0.0, 1.0]

.../Examples/Rendering/Python/TPlane.py

Texture coordinates refer to
positions in the image

31
Scientific Visualization with VTK

Basics – Textures

Simple textures

Rotated and Scaled Textures

Replicated and Scaled Textures

32
Scientific Visualization with VTK

Basics – Picking

• Picking used to select data and actors, or
sample underlying data values

• The pick refers to a display position (pixel
coordinate) in a renderer

• Pick() method in the vtkAbstractPicker class
is referenced

– Requires a renderer
– selectionZ is typically 0.0

• Relates to the z-buffer

– Method is not invoked directly
– Assign an instance to the

vtkRenderWindowInteractor
• Two direct subclasses of vtkAbstractPicker

– Class vtkWorldPointPicker
• Fast, usually in hardware
• Uses z-buffer to return x-y-z global pick

position
• No other information returned

– Class vtkAbstractPropPicker
• Defines an API
• Pick up instance of vtkProp

Syntax of pick method :

Pick(selectionX, selectionY, selectionZ, Renderer)

.../Examples/Annotation/
Python/annotatePick.py

33
Scientific Visualization with VTK

Basics – Picking

– Class vtkAbstractPropPicker (cont’d)
• Defines an API
• Pick up instance of vtkProp

• Several convenience methods to determine return
type of pick

– GetProp()-pointer to instance of vtkProp, otherwise
NULL

– GetProp3D()-pointer to instance of vtkProp3D
– GetActor2D()- pointer to instance of vtkActor2D
– GetActor()- pointer to instance of vtkActor
– GetVolume()- pointer to instance of vtkVolumn
– GetAssembly()- pointer to instance of vtkAssembly
– GetPropAssembly()- pointer to instance of

vtkPropAssembly
• Two subclasses of vtkAbstractPropPicker

– Class vtkPropPicker
• Uses hardware picking
• Determines the instance of vtkProp
• Generally, faster than vtkPicker
• Can’t return information about the cell picked

34
Scientific Visualization with VTK

Basics – Picking

– Class vtkPicker (cont’d)
• Software based
• Selects vtpProp’s by bounding box
• Casts ray from camera through the selection point
• Returns closest prop3D
• Here, the picker binds the procedure annotatePick to

the EndPickEvent
• In annotatePick, note the methods GetSelectionPoint

and GetPickPosition

Create a Tcl procedure to create the text for the text
mapper used to display the results of picking.

proc annotatePick {} {
if { [picker GetCellId] < 0 } {

textActor VisibilityOff

} else {
set selPt [picker GetSelectionPoint]
set x [lindex $selPt 0]
set y [lindex $selPt 1]
set pickPos [picker GetPickPosition]
set xp [lindex $pickPos 0]
set yp [lindex $pickPos 1]
set zp [lindex $pickPos 2]

textMapper SetInput "($xp, $yp, $zp)"
textActor SetPosition $x $y
textActor VisibilityOn

}

renWin Render
}

Pick the cell at this location.
picker Pick 85 126 0 ren1

Create a cell picker.
vtkCellPicker picker

picker AddObserver EndPickEvent annotatePick

35
Scientific Visualization with VTK

Create a scaled text actor.
Set the text, font, justification, and properties (bold, italics,
etc.).
textActor = vtk.vtkTextActor()
textActor.ScaledTextOn()
textActor.SetDisplayPosition(90, 50)
textActor.SetInput("This is a sphere")

textActor.GetPosition2Coordinate().\
SetCoordinateSystemToNormalizedViewport()

textActor.GetPosition2Coordinate().SetValue(0.6, 0.1)

tprop = textActor.GetTextProperty()
tprop.SetFontSize(18)
tprop.SetFontFamilyToArial()
tprop.SetJustificationToCentered()
tprop.BoldOn()
tprop.ItalicOn()
tprop.ShadowOn()
tprop.SetColor(0, 0, 1)

Basics – Other Controls

• Controlling vtkActor2D
– Draws on overlay plane
– No 4x4 transformation matrix
– As with vtkActor, refers to a mapper

(vtkMapper2D)
– And property object (vtkProperty2D)

• 2D Annotation
– Uses 2D Actors and mappers
– Similar to 3D counterparts
– With the exception that they render in

the overlay plane
– vtkTextProperty controls

• Fonts
• Position and Color
• Bolding and Italics
• Shadowing
• Justification
• Multiline text, use \n character

– For multiline text look at
…/Examples/Annotation/Pyton/
multiLineText.py

…/Examples/Annotation/Python/TestText.py

36
Scientific Visualization with VTK

Basics – Other Controls

• 3D annotation
– Employs class vtkVectorText
– Creates polygonal text data
– Positioned as any other 3D actor
– vtkFollower useful class for

positioning 3D text

…/Examples/Annotation/Python/textOrigin.py

Create the 3D text and the associated mapper and follower (a type of
actor). Position the text so it is displayed over the origin of the
axes.
atext = vtk.vtkVectorText()
atext.SetText("Origin")
textMapper = vtk.vtkPolyDataMapper()
textMapper.SetInput(atext.GetOutput())
textActor = vtk.vtkFollower()
textActor.SetMapper(textMapper)
textActor.SetScale(0.2, 0.2, 0.2)
textActor.GetProperty().SetColor(1.0, .75, .32)
textActor.AddPosition(0, -0.1, 0)

…. (after rendering)

Reset the clipping range of the camera; set the camera of the
follower; render.
ren.ResetCameraClippingRange()
textActor.SetCamera(ren.GetActiveCamera())

37
Scientific Visualization with VTK

Basics – Other Controls

• LOD-Level of Detail
– Enhance performance of graphics

system
– Reduces resolution of viewable object
– Replaces instances of vtkActor with

vtkLODActor
– Control of the level of representation
– Default LOD has two additional

lower-resolution models
• Point cloud (default is 150 points)
• Bounding box

– Additional levels through use of
vtkAddLODMapper() method

• Do not need to add in order of
complexity

vtkLODActor dotActor
dotActor SetMapper dotMapper
dotActor SetNumberOfCloudPoints 1000

vtkRenderWindow ren1
renWin SetDesiredUpdateRate 5.0

– Set the desired frame rate
– Appropriate level-of-detail selected

automatically

• Assemblies
– Reference …/Examples/Rendering/

Python/assembly.py
– Hierarchical assembies (eg. Robot

limbs)
– Subclass of vtkProp3D
– Has no notion of properties or mappers
– Leaf nodes of vtkAssembly carry

information
• Material properties
• Geometry

– Actors used by multiple assemblies
– AddActor() method registers top actor

of assembly with renderer
– Actors at lower levels added

recursively
• Volumes

– vtkVolume used for volume rendering
– Inherits from vtkProp3D for position

and orientation
– vtkVolumeProperty method is

associated property object

38
Scientific Visualization with VTK

Special Plotting Classes

• Scalar Bar
– Creates color-coded key
– Relates color values to data values
– Three parts

• Colored segment
• Labels
• Title

– Must instance of vtkLookupTable
• Defines colors
• Defines range of data values

– Position and Orientation on the
overlay plane

– Specify attributes
• Color
• Number of labels
• Title text string
• vtkSetOrientationToHorizontal() and

vtkSetOrientationToVertical()
methods control orientation

Placeholder for scalar bar image

39
Scientific Visualization with VTK

Special Plotting Classes

• X-Y Plots
– Generates x-y plots from multiple

datasets
– vtkXYPlotActor2D

• Specify one or more data sets
• Axes
• Plot title
• Position on the overlay plane

– PositionCoordinate instance variable
defines lower-left corner

– Position2Coordinate defines upper-
right corner

– Together they define the rectangle to
display the plot

…/Examples/Annotation/Python/xyPlot.py

40
Scientific Visualization with VTK

Special Plotting Classes

• Bounding Box Axes
– Composite actor class is

vtkCubeAxesActor2D
– Indicates the position in space of the

camera view
– User controlled attributes

• Various font attributes
• Relative font size, selected

automatically
• Method SetFontFactor() used to affect

size of selected font

– Two methods to draw axes
• SetFlyModeToOuterEdges()
• SetFlyModeToClosestTriad()

…/Examples/Annotation/Tcl/cubeAxes.tcl

41
Scientific Visualization with VTK

Special Plotting Classes

• Labeling Data
– Label the points of a dataset using the

method vtkLabeledDataMapper
– Includes

• Scalars
• Vectors
• Tensors
• Normals
• Texture coordinates
• Field data
• Point Ids

– Text is placed in the overlay plane
– In our example, use three new classes

• vtkCellCenters()
– Generate points at parametric center

of cells

• vtkIdFilter()
– Generate ids as scalar of field data

from dataset ids

• vtkSelectVisiblePoints()
– Selects only visible points

…/Examples/Annotation/Tcl/LabeledMesh.tcl

42
Scientific Visualization with VTK

3D Widgets

• Subclasses of vtkInteractorObserver
• Watch for events invoked by

vtkRenderWindowInteractor
• 3D widgets represent themselves in the

scene
• List of most important widgets

– vtkScalarBarWidget
– vtkPointWidget
– vtkLineWidget
– vtkPlaneWidget
– vtkImplicitPlane
– vtkBoxWidget
– vtkImagePlaneWidget
– vtkSphereWidget
– vtkSplineWidget

• Widgets differ in function
• Offer different API

• Procedure much the same for all
widgets

– Instantiate the widget
– Specify the

vtkRenderWindowInteractor
• Invokes events the widget may process

– Create callbacks (functions)
– Widgets invoke events

• StartInteractionEvent
• InteractionEvent
• EndInteractionEvent

– Most widgets require placing
• Instancing of vtkProp3D
• A dataset
• Invoke PlaceWidget() method

– Enable the widget
• keypress I
• Widget will appear in the scene

43
Scientific Visualization with VTK

3D Widgets

• Example of Plane Widget
– vtkImplicitPlaneWidget is used to clip an object
– vtkProp3D to be clipped is an object (mace)

• Made from a sphere and cone glyphs
• Glyphs positioned at sphere points
• Oriented in the direction of sphere normal

– Plane clips mace into two pieces
– One is colored green
– Position and orientation controlled

• Mousing on widget normal
• Point defining the origin of the plane
• Translate the plane by grabbing the widget bounding

box

Examples/GUI/Tcl/ImplicitPlaneWidget.tcl
vtkSphereSource sphere
vtkConeSource cone
vtkGlyph3D glyph

glyph SetInput [sphere GetOutput]
glyph SetSource [cone GetOutput]
glyph SetVectorModeToUseNormal
glyph SetScaleModeToScaleByVector
glyph SetScaleFactor 0.25

The sphere and spikes are appended into a single polydata.
This just makes things simpler to manage.
vtkAppendPolyData apd

apd AddInput [glyph GetOutput]
apd AddInput [sphere GetOutput]

vtkPolyDataMapper maceMapper
maceMapper SetInput [apd GetOutput]

vtkLODActor maceActor
maceActor SetMapper maceMapper
maceActor VisibilityOn

This portion of the code clips the mace with the vtkPlanes
implicit function. The clipped region is colored green.
vtkPlane plane
vtkClipPolyData clipper

clipper SetInput [apd GetOutput]
clipper SetClipFunction plane
clipper InsideOutOn

vtkPolyDataMapper selectMapper
selectMapper SetInput [clipper GetOutput]

vtkLODActor selectActor
selectActor SetMapper selectMapper
[selectActor GetProperty] SetColor 0 1 0
selectActor VisibilityOff
selectActor SetScale 1.01 1.01 1.01

44
Scientific Visualization with VTK

3D Widgets
Create the RenderWindow, Renderer and both Actors
#
vtkRenderer ren1
vtkRenderWindow renWin

renWin AddRenderer ren1
vtkRenderWindowInteractor iren

iren SetRenderWindow renWin

Associate the line widget with the interactor
vtkImplicitPlaneWidget planeWidget

planeWidget SetInteractor iren
planeWidget SetPlaceFactor 1.25
planeWidget SetInput [glyph GetOutput]
planeWidget PlaceWidget
planeWidget AddObserver InteractionEvent myCallback

ren1 AddActor maceActor
ren1 AddActor selectActor

Add the actors to the renderer, set the background and size
#
ren1 SetBackground 1 1 1
renWin SetSize 300 300
ren1 SetBackground 0.1 0.2 0.4

render the image
#
iren AddObserver UserEvent {wm deiconify .vtkInteract}
renWin Render

Prevent the tk window from showing up then start the event loop.
wm withdraw .

proc myCallback {} {
planeWidget GetPlane plane
selectActor VisibilityOn

}

• Example of Plane Widget (cont’d)
– Placing widget is with respect to a dataset

• planeWidget SetInput [glyph GetOutput]

– PlaceFactor adjusts relative size of widget
• planeWidget SetPlaceFactor 1.25

– Key to behaviour is adding an observer
– Observer responds to the InteractionEvent

• StartInteraction and EndInteraction invoked on
mouse down and mouse up

• InteractionEvent on mouse move

– InteractionEvent tied to myCallback()
procedure

• Copies widget plane to an instance of vtkPlane
• An implicit function which does the clipping

45
Scientific Visualization with VTK

Visualization Techniques

…/Examples/Rendering/Python/rainbow.py

lut = vtk.vtkLookupTable()

This creates a black to white lut.
##lut.SetHueRange(0, 0)
##lut.SetSaturationRange(0, 0)
##lut.SetValueRange(0.2, 1.0)

This creates a red to blue lut.
##lut.SetHueRange(0.0, 0.667)

This creates a blue to red lut.
##lut.SetHueRange(0.667, 0.0)

This creates a wierd effect.
lut.SetNumberOfColors(256)
lut.Build()
for i in range(0, 16):

lut.SetTableValue(i*16, red[0], red[1], red[2], 1)
lut.SetTableValue(i*16+1, green[0], green[1], green[2], 1)
lut.SetTableValue(i*16+2, blue[0], blue[1], blue[2], 1)
lut.SetTableValue(i*16+3, black[0], black[1], black[2], 1)

…..

planeMapper = vtk.vtkPolyDataMapper()
planeMapper.SetLookupTable(lut)
planeMapper.SetInput(plane.GetOutput())
planeMapper.SetScalarRange(pl3d.GetOutput().GetScalarRange())
planeActor = vtk.vtkActor()
planeActor.SetMapper(planeMapper)

• Color mapping
– Coloring objects by scalar values
– Scalar values mapped through lookup table
– Color applied during rendering
– Modifies appearance of points or cells
– Scalars and the lookup table used by

instances of vtkMapper
– Use any data array

• Method ColorByArrayComponent()

– If not specified, a default lookup table is
created by the mapper

– Lookup table manipulated in two different
ways

• Specify a HSVA ramp
• Manually insert colors at specific locations

– Scalars mapped into lookup table by
mapper’s SetScalarRange() method

– SetColorModeToDefault() method invokes
default mapper behaviour

• Treats scalars of unsigned char as
colors, performs no mapping

• All other scalars mapped through lookup
table

46
Scientific Visualization with VTK

Visualization Techniques

• Color mapping (cont’d)
– SetColorModeToMapScalars() method

maps all scalars to lookup table
• Treats scalars of unsigned char as

colors, performs no mapping
• All other scalars mapped through lookup

table

– Controlling which arrtibute data is used
• Point attribute data interpolate across

rendering primitives
• Cell attribute data colors cells a constant

value

– SetScalarModetoDefault() invokes default
mapper behaviour

• Uses point scalars, if available
• Then cell scalars are used, if available

– SetScalarModeToUsePointData()
• If point data not available, object color not

affected

– SetScalarModeToUseCellData()
• If cell data not available, object color not

affected

…/Examples/Rendering/Tcl/VisQuad.tcl

47
Scientific Visualization with VTK

Visualization Techniques

• Color mapping (cont’d)
– SetScalarModeToUsePointFieldData()

• Neither the point or cell scalars are used
• Uses a data array in the point attribute data
• Used in conjunction with

ColorByArrayComponent()
• Specifies the data array and component to

use

– SetScalarModeToUseCellFieldData()
• Uses a data array in the cell field data
• As with point field data, used in conjuction

with ColorByArrayComponent()

• Contouring
– Also Iso-surfaces
– Filter vtkContourFilter performs the

function
– Using SetValue() method

• contours SetValue 0.0 0.5

– Using GenerateValues() method
• Contours GenerateValues 8 0.0 1.2
• Specify range and number of contours

…/Examples/VisualizationAlgorithms/
Tcl/VisQuad.tcl

48
Scientific Visualization with VTK

Visualization Techniques

• Contouring (cont’d)
– Many methods perform contouring

• vtkMarchingCubes
• vtkMarchingSquares

– Need not instantiate directly
– vtkContourFilter will best contouring

function
• Glyphing

– Represent data using symbols, or glyphs
– Simple glyphs

• Cone oriented to a vector

– Complex
• Multi-variate glyphs such as Chernoff faces
• Symbolic representation of the human face
• Expression controlled by the data values

– vtkGlyph3D class
• Scaled, colored
• Orientated along a direction
• Glyphs copied to each point of the dataset

– Glyphs defined by second input to the filter
– Glyphs of type vtkPolyData

…/Examples/VisualizationAlgorithms/Tcl/spikeF.tcl

49
Scientific Visualization with VTK

Visualization Techniques

• Glyphing (cont’d)
– vtkMaskPoints subsamples the face data

• Serves as input to vtkGlyph3D instance

– vtkConeSource object is used as the Source
for the glyph instance

• Cone translated so the base is at the origin

– The glyph is uses the point attribute
normals for orientation

– Use vector data using the
SetVectorMethodToUseVector()

– Scale glyphs by scalar data using
SetScaleModeToScaleByScalar()

– Turn data scaling off using
SetScaleModeToDataScalingOff()

– Many other options
• Streamlines

– Path of a massless particle in a vector field
– Requires starting point(s)
– Integration direction

• Along the flow
• Opposite the flow
• Both

…/Examples/VisualizationAlgorithms/
Tcl/officeTube.tcl

50
Scientific Visualization with VTK

Visualization Techniques

• Streamlines (cont’d)
– Example shows single streamline
– Wrapped in a tube
– Radius is proportional to inverse of velocity

magnitude
– Starting point specified by world

coordinates
• Could specify cellId, cell subId, or

parametric coordinates

– MaximumPropagationTime variable
controls the size of the output line segments

– Greater accuracy using
IntegrationStepLength variable

• Longer compute time
• Number between (0, 1)
• Step length fraction of current cell size

– Accuracy by choosing subclass of
vtkInitialValueProblemSolver

• RungaKutta4
• RungaKutta2 is default

…/Examples/VisualizationAlgorithms/Tcl/officeTubes.tcl

51
Scientific Visualization with VTK

Visualization Techniques

• Streamlines (cont’d)
– Directions specified by

SetIntegrationDirectionToIntegrateXXX()
• Forward
• Backward
• BothDirections

– Setting the radius of the tube
• SetVaryRadiusToVaryRadiusByVector()
• SetVaryRadiusToVaryRadiusByScalar()
• SetVaryRadiusToVaryRadiusaOff()

– Generate a number of Streamlines
simultaneously

– Use the SetSource() method
• Here vtkPointSource used to generate

starting points for streamlines

• Streamsurfaces
– Rake, of series of ordered points, used to

generate streamlines
– vtkRuledSurfaceFilter used to create a

surface
– Points must be ordered carefully

• Assumes points lie next to one another
• Within a specified distance of neighbors

(DistanceFactor variable)

…/Examples/VisualizationAlgorithms/Tcl/streamSurface.tcl

52
Scientific Visualization with VTK

Visualization Techniques

• Cutting
– Create cross-section of dataset
– Any implicit function
– Planes create planar cuts
– Cutting surface interpolates the data
– Result is always type vtkPolyData
– vtkCutter needs an implicit function to cut
– May use more cut values

• SetValue() method
• GenerateValues() method

– Values specify the value of the implicit
function

– Cutting values
• Zero precisely on the implicit function
• Less than zero, below
• Greater than zero, above
• Only strictly true for vtkPlane

• Merge data
– Pipelines could have loops
– Multiple streams of the pipeline
– vtkMergeFilter merges data from several

datasets to a new dataset …/Examples/VisualizationAlgorithms/
Tcl/imageWarp.tcl

…/Graphics/Testing/Tcl/probe.tcl

53
Scientific Visualization with VTK

Visualization Techniques
• Merge data

– Pipelines could have loops
– Multiple streams of the pipeline
– vtkMergeFilter merges data from several

datasets to a new dataset
– Example: combine

• Structure (geometry)
• Scalars
• Vectors

– vtkWarpScalar creates geometry
• Type vtkPolyData

– Scalar data from vtkBMPReader
– Pipeline combines separate processes

• Geometry (in warp object)
• Image (in reader object)

– Number of data array tuples (point
attribute) must equal number of points

• Probing
– vtkAppendFilter builds new dataset by

appending datasets
• Specialized filter vtkAppendPolyData

– Only data attributes common to all data
input are appended

Read in an image and compute a luminance value. The image is
extracted as a set of polygons (vtkImageDataGeometryFilter). We
then will warp the plane using the scalar (luminance) values.
#
vtkBMPReader reader

reader SetFileName $VTK_DATA_ROOT/Data/masonry.bmp
vtkImageLuminance luminance

luminance SetInput [reader GetOutput]
vtkImageDataGeometryFilter geometry

geometry SetInput [luminance GetOutput]
vtkWarpScalar warp

warp SetInput [geometry GetOutput]
warp SetScaleFactor -0.1

Use vtkMergeFilter to combine the original image with the
warped geometry.
#
vtkMergeFilter merge

merge SetGeometry [warp GetOutput]
merge SetScalars [reader GetOutput]

vtkDataSetMapper mapper
mapper SetInput [merge GetOutput]
mapper SetScalarRange 0 255
mapper ImmediateModeRenderingOff

vtkActor actor
actor SetMapper mapper

54
Scientific Visualization with VTK

Visualization Techniques

• Probing (cont’d)
– In this example, three probe geometries

(planes) sample the structured grid dataset
– vtkContourFilter generates contour lines
– Possible to use vtkProbeFilter to sample

unstructured grids with volumn
– Also, probe data with lines (or curves)

• Use output to create x-y plotting

– Cutting and probing
• Can give similar results
• Difference in resolution
• Cutting resolution creates surfaces
• Cutting dependent on resolution of data
• Probing surfaces (geometries) independent

of the input data

• Isosurfaces colored by other scalars
– Could be done with a probe
– More efficient way
– When dataset isosurfaced contains the data

to color the isosurface
– vtkContourFilter interpolates all data
– Interpolated data used during mapping

…/Examples/VisualizationAlgorithms/
Tcl/probeComb.tcl

…/Examples/VisualizationAlgorithms/
Tcl/ColorIsosurface.tcl

55
Scientific Visualization with VTK

Case Studies - Modeling

Stress on Materials
• Thanks to Dr. Ghosh and Chao Hu
• Simulation

– Creates points, no geometry
– Scalar values associated at each point

• Two regions in the data
– Ascii text file
– Number of points and point positions

change
– The matrix is the overall region of the

simulation
– Inclusion regions are sub-regions in the

matrix
• Inclusion region points match points in

holes of the matrix
• Inclusion regions may have holes

representing fracturing
• Number of inclusion regions change

• Delauney triangulation method
– Creates geometry dynamically
– Problem with connectivity changing

…/Examples/Modelling/Python/constrainedDel2D.py

vtkPoints points
points InsertPoint 0 1 4 0
points InsertPoint 1 3 4 0
points InsertPoint 2 7 4 0
points InsertPoint 3 11 4 0
points InsertPoint 4 13 4 0
points InsertPoint 5 13 8 0
points InsertPoint 6 13 12 0
points InsertPoint 7 10 12 0
points InsertPoint 8 7 12 0
points InsertPoint 9 4 12 0
points InsertPoint 10 1 12 0
points InsertPoint 11 1 8 0
points InsertPoint 12 3.5 5 0
points InsertPoint 13 4.5 5 0
points InsertPoint 14 5.5 8 0
points InsertPoint 15 6.5 8 0
points InsertPoint 16 6.5 5 0
points InsertPoint 17 7.5 5 0
points InsertPoint 18 7.5 8 0
points InsertPoint 19 9 8 0
points InsertPoint 20 9 5 0
points InsertPoint 21 10 5 0
points InsertPoint 22 10 7 0
points InsertPoint 23 11 5 0
points InsertPoint 24 12 5 0

• Simple VTK example
– Point data set created using InsertPoint

method
– Two cells defined

• Outer path, listed counter-clockwise
• Inner path, listed clockwise

56
Scientific Visualization with VTK

Case Studies - Modeling

points InsertPoint 25 10.5 8 0
points InsertPoint 26 12 11 0
points InsertPoint 27 11 11 0
points InsertPoint 28 10 9 0
points InsertPoint 29 10 11 0
points InsertPoint 30 9 11 0
points InsertPoint 31 9 9 0
points InsertPoint 32 7.5 9 0
points InsertPoint 33 7.5 11 0
points InsertPoint 34 6.5 11 0
points InsertPoint 35 6.5 9 0
points InsertPoint 36 5 9 0
points InsertPoint 37 4 6 0
points InsertPoint 38 3 9 0
points InsertPoint 39 2 9 0

vtkCellArray polys
polys InsertNextCell 12
polys InsertCellPoint 0
polys InsertCellPoint 1
polys InsertCellPoint 2
polys InsertCellPoint 3
polys InsertCellPoint 4
polys InsertCellPoint 5
polys InsertCellPoint 6
polys InsertCellPoint 7
polys InsertCellPoint 8
polys InsertCellPoint 9
polys InsertCellPoint 10
polys InsertCellPoint 11
polys InsertNextCell 28
polys InsertCellPoint 39
polys InsertCellPoint 38
polys InsertCellPoint 37
polys InsertCellPoint 36
polys InsertCellPoint 35
polys InsertCellPoint 34
polys InsertCellPoint 33
polys InsertCellPoint 32
polys InsertCellPoint 31
polys InsertCellPoint 30

polys InsertCellPoint 29
polys InsertCellPoint 28
polys InsertCellPoint 27
polys InsertCellPoint 26
polys InsertCellPoint 25
polys InsertCellPoint 24
polys InsertCellPoint 23
polys InsertCellPoint 22
polys InsertCellPoint 21
polys InsertCellPoint 20
polys InsertCellPoint 19
polys InsertCellPoint 18
polys InsertCellPoint 17
polys InsertCellPoint 16
polys InsertCellPoint 15
polys InsertCellPoint 14
polys InsertCellPoint 13
polys InsertCellPoint 12

Stress on Materials

Labels added to constrainedDelauney.py

57
Scientific Visualization with VTK

Case Studies - Modeling

Stress on Materials
• polyData is created using the

point array and the cell array
• Advantage of vtkDelauney2D

– Constrained edges (holes)
provided

• Second input to
vtkDelauney2D defined

– SetSource method
– Input defines two polygons
– Outer boundary, ccw order
– Hole, cw order

• The two cells provide the
defining outer boundary and
hole boundary

vtkPolyData polyData
polyData SetPoints points
polyData SetPolys polys

vtkDelaunay2D del
del SetInput polyData
del SetSource polyData

vtkPolyDataMapper mapMesh
mapMesh SetInput [del GetOutput]

vtkActor meshActor
meshActor SetMapper mapMesh

vtkExtractEdges extract
extract SetInput [del GetOutput]

vtkTubeFilter tubes
tubes SetInput [extract GetOutput]
tubes SetRadius 0.1
tubes SetNumberOfSides 6

vtkPolyDataMapper mapEdges
mapEdges SetInput [tubes GetOutput]

vtkActor edgeActor
edgeActor SetMapper mapEdges
eval [edgeActor GetProperty] SetColor \

$peacock
[edgeActor GetProperty] SetSpecularColor 1 1 1
[edgeActor GetProperty] SetSpecular 0.3
[edgeActor GetProperty] SetSpecularPower 20
[edgeActor GetProperty] SetAmbient 0.2
[edgeActor GetProperty] SetDiffuse 0.8

…

ren1 AddActor meshActor
ren1 AddActor edgeActor
ren1 SetBackground 0 0 0
renWin SetSize 450 300

iren AddObserver UserEvent \
{wm deiconify .vtkInteract}

[ren1 GetActiveCamera] Zoom 2
iren Initialize

prevent the tk window from
showing up then starting
the event loop
wm withdraw .

58
Scientific Visualization with VTK

Stress on Materials
• Back to the materials project
• Python programming language
• GhoshMatrix.py

– Main routine
– From the main uses functions in “readFile.py”

• “from readFile import *”

– Requires command line arguments
• "Usage: ./GhoshMatrix.py -f int -I -M [-polys|tubes]

[-inclvar varname] [-matvar varname]“

– Main routine in charge of
• Verifying starting syntax
• Number of holes
• Renderer and render window
• Keeps track of the actors returned from calling

routines
• Inclusion actors kept in python dictionary (key/value

pairs)
• Simple two line routine to add actors to renderer

• readFile.py functions
– newIncPolyFormat()
– newIncTubeFormat()
– newMatFormat()

Case Studies - Modeling

…/Ghosh/GhoshMatrix.py

Material simulation

59
Scientific Visualization with VTK

Stress on Materials
• All functions

– Passed the file pointer for reading, the scalar
variable name for color map

– Parsing the file
• Point arrays
• Polys arrays; just the constrained edges
• Execute the pipeline

• Return the actor to the main routine
• Cleans up all the data when de-instanced
• Using functions saves memory

– newIncTubeFormat()
• Creates tube geometry along the ‘hole’ edge

– newIncPolyFormat()
• Fills inclusion region with polys
• Currently, problems with holes
• Possibly the ‘hole’ edge comes too close to the

‘outer’ edge

– newMatFormat()
• The variable name is used from the matrix data to

create the color map

Case Studies - Modeling

…/Ghosh/GhoshMatrix.py

Material simulation

Points/polys -> polydata -> mapper -> actor

60
Scientific Visualization with VTK

Computational Fluid Dynamics
• Derive multiple scalar and vector data into the

flow field (grid)
• Challenge is combining multiple representations

into meaningful visualizations
• Employ finite difference grids
• Physical coordinates not necessarily uniformly

distributed
– In VTK called a structured grid dataset

• Outline strategy for visualizing cfd data
– Display the computational grid
– Display the scalar fields on the grid
– Explore the vector field

• Seeding streamlines with a confined point set
• Move seed points to areas of interest

– Use the grid as seeds for the streamlines
• Need to restrict extent of the grid
• Enable us to place more seeds in regions of interest

• Here the dataset is from NASA
– Called Lox Post

Case Studies - CFD

…/Textbook/Tcl/LOxGrid.tcl

61
Scientific Visualization with VTK

Computational Fluid Dynamics
• Here the dataset is from NASA (cont’d)

– Simulates flow of liquid oxygen across a flat plane
– Cylindrical post perpendicular to the flow
– Models the flow in a rocket engine
– Post promotes mixing of the liquid oxygen

• Start by calculating the magnitude of velocity
vectors

– Deriving a scalar field
– Area of interest around the post
– Seed the field with multiple starting points

(remember the rake discussed earlier)
– Try different methods for the streamlines
– Streampolygons are appropriate for showing flow

downstream from the post
– Explore the velocity field by moving the seeding

line

Case Studies - CFD

…/Textbook/Tcl/LOx.tcl

62
Scientific Visualization with VTK

Starting with the grid
• Start with analyzing the grid

– Uses PLOT3D format
• Method SetXYZFileName sets the PLOT3D

geometry filename
• Method SetQFileName sets the solutions

filename

– Interpreting the different components of the grid
• Typical cylindrical coordinate system
• i-th component is the measure out from the center

of cylinder
• j-th component is radial measure around the

center
• k-th component is the height from the base of the

cylinder

Case Studies - CFD

…/Textbook/Tcl/LOxGrid.tcl

read data
#
vtkPLOT3DReader pl3d

pl3d SetXYZFileName "$env(VTK_TEXTBOOK_DATA)/postxyz.bin"
pl3d SetQFileName "$env(VTK_TEXTBOOK_DATA)/postq.bin“

computational planes
vtkStructuredGridGeometryFilter floorComp

floorComp SetExtent 0 37 0 75 0 0
…
vtkStructuredGridGeometryFilter postComp

postComp SetExtent 10 10 0 75 0 37
…
vtkStructuredGridGeometryFilter fanComp

fanComp SetExtent 0 37 38 38 0 37

63
Scientific Visualization with VTK

Starting with the grid
• Turn to display scalar field with color mapping

– Change the actors’ representation from
wireframe to surface

– Turn on scalar visibility for each
vtkPolyDataMapper

– Set each mapper’s scalar range

Case Studies - CFD

…/Textbook/Tcl/LOx.tcl

#blue to red lut
#
vtkLookupTable lut

lut SetHueRange 0.667 0.0

postActor SetRepresentationToSurface
fanActor SetRepresentationToSurface
floorActor SetRepresentationToSurface

postMapper ScalarVisibilityOn
postMapper SetScalarRange [[pl3d GetOutput] GetScalarRange]
fanMapper ScalarVisibilityOn
fanMapper SetScalarRange [[pl3d GetOutput] GetScalarRange]
floorMapper ScalarVisibilityOn
floorMapper SetScalarRange [[pl3d GetOutput] GetScalarRange]

64
Scientific Visualization with VTK

Exploring the vector field
• Create vtkPointSource

– Generates a random cloud of points
– Given center point
– Use cloud of points to generate streamlines
– Position near the post
– Where velocity seems to changing rapidly

• Use the computational grid to seed streamlines
– Generate streamtubes
– setExtent method uses ijk reference to grid

elements
• In “LOx.tcl”, grid is used to seed

– In vtk window type the key ‘u’
– Instances the ‘user-defined’ interactor
– Switch from grid to random cloud of points

Case Studies - CFD

#blue to red lut
#
vtkLookupTable lut

lut SetHueRange 0.667 0.0

streamers
#
spherical seed points
vtkPointSource rake

rake SetCenter -0.74 0 0.3
rake SetNumberOfPoints 10

a line of seed points
vtkStructuredGridGeometryFilter seedsComp

seedsComp SetExtent 10 10 37 39 1 35
seedsComp SetInput [pl3d GetOutput]

vtkRungeKutta4 rk
vtkStreamTracer streamers

streamers SetInput [pl3d GetOutput]
streamers SetSource [seedsComp GetOutput]
streamers SetIntegrator rk
streamers SetMaximumPropagation 0 250
streamers SetMinimumIntegrationStep 1 0.1
streamers SetMaximumIntegrationStep 1 1.0

65
Scientific Visualization with VTK

Case Studies - CFD

66
Scientific Visualization with VTK

Blow Molding Process
• Material extruded through annular die

– Forms a hollow cylinder
– Cylinder called a parison

• Two mold halves closed on the parison
– Inflated with air
– Some material remains within the mold
– Some becomes waste

• Material typically heat softened polymer
plastic

– Blow molding has been used to form metal
parts

– Plastic bottles manufactured
• Improper design creates large variation of wall

thickness
• FE techniques developed to aid in designing

molds
• Example uses data from one analysis

– Polymer material molded using
• Isothermal
• Nonlinear-elastic
• Incompressible

Case Studies – Finite Element Analysis

…/Textbook/Tcl/blow.tcl

67
Scientific Visualization with VTK

Blow Molding Process
• Example uses data from one analysis (cont’d)

– Polymer material molded using
• Isothermal
• Nonlinear-elastic
• Incompressible

– Triangular membrane FE elements model
parison

– Combination of triangular and quadrilateral FE
elements model the mold

• Mold surface assumed rigid
• Parison assumed to attach to the mold upon

contact
– Thinning of parison

• Stretching during inflation
• Sequence in which it contacts the mold

• “blow.tcl” shows ten steps of one analysis
– Color of parison indicates thickness

• Red thinnest
• Blue thickest

• The input data is in VTK format
– Uses a vtkUnstructuredGridReader as a source

object
• Mesh displacement uses instance of

vtkWarpVector

Case Studies – Finite Element Analysis

…/Textbook/Tcl/blow.tcl

68
Scientific Visualization with VTK

Blow Molding Process
• Pipeline splits
• Treat mold an parison differently

– Different properties
• Wireframe
• Surface

– Data for both combined
• Separate using two instances of

vtkConnectivityFilter
• Each filter extracts either the parison or the

mold parts
• Smooth surface on parison achieved using

vtkPolyDataNormals filter
– Convert data type from vtkUnstructredGrid

• Output of vtkConnectivityFilter
• Type vtkPolyData
• vtkGeometryFilter works

• Different steps controlled by reader vector and
scalar names

Case Studies – Finite Element Analysis

vtkUnstructuredGridReader

vtkWarpVector

vtkConnectivityFilter

vtlDataSetMapper

vtkConnectivityFilter

vtkGeometryFilter

vtkPolyDataNormals

vtkPolyDataMapper

69
Scientific Visualization with VTK

Creating Models - Virtual Frog
• Generating models for bone and skin

straightforward
• Modeling other tissue more problematic

– MRI and computed tomography produce similar
grey-scale value for tissue

– In computed tomography, liver and kidney have
overlapping intensities

– Segmentation applied to identify different
tissues

• Laborious job
– Volume of data represented by a series of

images
– Each pixel of each slice labeled with tissue

identifier
– identifier is an integer
– Identifier arbitrary

• This example’s goal
– Take tissue labels and create grey scale slices
– Process these slices using well used techniques

• The virtual frog
– Data set derived from a frog
– Prepared by Lawrence Berkley National

Laboratories

Case Studies – Segmented Volume Data

…/Textbook/Tcl/frogSlice.tcl

70
Scientific Visualization with VTK

Creating Models - Virtual Frog
• The virtual frog

– Data in the form of data masks
– One file per tissue
– 136 slices per tissue
– 15 different tissues
– Each slice 470 by 500 pixels

• The figure represents the pipeline
– Segmented volume to triangle pipeline

Case Studies – Segmented Volume Data

vtkPNMReader

vtkImageIslandRemoval

vtkImageThreshold

vtkImageShrink3D

vtkImageGaussianSmooth

vtkMarchingCubes

vtkDecimate

vtkSmoothPolyData

vtkPolyDataNormals

vtkStripper

vtkPolyDataWriter

71
Scientific Visualization with VTK

Creating Models – Virtual Frog
• Models of all 15 tissues created
• Render using “ViewFrog.tcl”

– Macro to create filename
– Procedure to automate creation of

actors from model files
– A single statement creates the actor

and added to the renderer

Case Studies – Segmented Volume Data

…/Textbook/Tcl/ViewFrog.tcl

proc mkname {a b} {return ab}

….

proc to make actors
create pipeline
proc MakeActor { name r g b} {

global env

set filename $env(VTK_TEXTBOOK_DATA)/frog/[mkname $name .vtk]
set reader [eval mkname $name PolyDataReader]
vtkPolyDataReader $reader

$reader SetFileName $filename
set mapper [eval mkname $name PolyDataMapper]
vtkPolyDataMapper $mapper

$mapper SetInput [$reader GetOutput]
$mapper ScalarVisibilityOff

set actor [eval mkname $name Actor]
vtkActor $actor

$actor SetMapper $mapper
eval [$actor GetProperty] SetDiffuseColor $r $g $b
eval [$actor GetProperty] SetSpecularPower 50
eval [$actor GetProperty] SetSpecular .5
eval [$actor GetProperty] SetDiffuse .8

return $actor
}

…

ren1 AddActor [eval MakeActor lung $powder_blue]

72
Scientific Visualization with VTK

Creating Models – Virtual Frog
• Code to render outer skin commented out
• Results strange when rendering the skin

– Looks like a Z rotation might align the skin
with the other organs

– Remember the transformation commands?
– But other inconsistencies are introduced
– Try it?
– Any ideas about what happened to the

creation of the skin?
• Frog related information

– Lawrence Berkeley National Laboratory
• Web site describes how frog data was obtained
• User can create mpeg movies
• Other data sets available
• http://www-itg.lbl.gov/Frog

– Virtual Creatures at Stanford University
• SUMMIT
• http://summit.stanford.edu/creatures

Case Studies – Segmented Volume Data

…/Textbook/Tcl/ViewFrog.tcl

#ren1 AddActor [eval MakeActor skin $lime_green]
#[skinActor GetProperty] SetOpacity .2

http://www-itg.lbl.gov/Frog

	Scientific Visualization with VTK,�The Visualization Toolkit
	Table of Contents
	Table of Contents
	Preparation on BALE Cluster
	Preparation on BALE Cluster
	What is VTK?
	What is VTK?
	Installing VTK!
	First Look
	First Look
	Graphics Model
	Graphics Model
	Graphics Model
	Graphics Model
	Graphics Model
	Programming and the Visualization Pipeline
	Programming and the Visualization Pipeline
	Basics - Interacting with the Window
	Basics - Interacting with the Window
	Basics – Creating Models
	Basics – Creating Models
	Basics – Creating Models
	Basics – Filtering Data
	Basics – Controlling Cameras
	Basics – Controlling Cameras
	Basics – Controlling Lights
	Basics – Controlling 3D Props
	Basics – Controlling 3D Props
	Basics – Controlling 3D Props
	Basics – Textures
	Basics – Textures
	Basics – Picking
	Basics – Picking
	Basics – Picking
	Basics – Other Controls
	Basics – Other Controls
	Basics – Other Controls
	Special Plotting Classes
	Special Plotting Classes
	Special Plotting Classes
	Special Plotting Classes
	3D Widgets
	3D Widgets
	3D Widgets
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Visualization Techniques
	Case Studies - Modeling
	Case Studies - Modeling
	Case Studies - Modeling
	Case Studies - Modeling
	Case Studies - Modeling
	Case Studies - CFD
	Case Studies - CFD
	Case Studies - CFD
	Case Studies - CFD
	Case Studies - CFD
	Case Studies - CFD
	Case Studies – Finite Element Analysis
	Case Studies – Finite Element Analysis
	Case Studies – Finite Element Analysis
	Case Studies – Segmented Volume Data
	Case Studies – Segmented Volume Data
	Case Studies – Segmented Volume Data
	Case Studies – Segmented Volume Data

