
TclRAL: A Relational Algebra for Tcl

Andrew Mangogna

13th Annual Tcl/Tk Conference
October 11-13, 2006

Copyright

Copyright 2006, by G. Andrew Mangogna. Permission to copy and distribute
this article by any means is hereby granted by the copyright holder provided the
work is distributed in its entirety and this notice appears on all copies.

Abstract

TclRAL is a "C" language extension to Tcl that provides commands to imple-
ment a formal relational algebra. This paper introduces TclRAL and describes the
goals and background of the extension. Each command is described in detail and
examples of a relational style of programming are given to help explain the op-
erations that the extension provides. A comparison with other approaches is also
provided.

Contents
1 Introduction 3

1.1 Goals of TclRAL . 3
1.2 Availability of TclRAL . 3

2 Relational Algebra 3
2.1 Tuple . 4
2.2 Relation . 5
2.3 Relvar . 6
2.4 Table Representation . 6

3 Operations 7
3.1 Running Example . 7
3.2 Tuple Operations . 11

3.2.1 Structural Operations . 11
3.2.2 Attribute Access . 12
3.2.3 Comparison . 12
3.2.4 Introspection . 13
3.2.5 Composition . 13

1

3.3 Relation Operations . 13
3.3.1 Fundamental Set Operations 14
3.3.2 Restriction and Projection 15
3.3.3 Multiplication and Division 17
3.3.4 Computational Operations 20
3.3.5 Introspection . 22
3.3.6 Interface to Other Tcl Data Types 22
3.3.7 Miscellaneous Operations 24

3.4 Relvar Operations . 28
3.4.1 Assignment . 29
3.4.2 Insertion . 29
3.4.3 Deletion . 30
3.4.4 Update . 30
3.4.5 Introspection . 31

3.5 Relvar Constraints . 31
3.5.1 Association Constraints . 32
3.5.2 Partition Constraints . 33
3.5.3 Correlation Constraints . 34
3.5.4 Constraint Evaluation . 36
3.5.5 Constraint Introspection . 36

3.6 Poor Man’s Persistence . 37

4 Other Approaches 38

5 Future Work 39

List of Figures
1 Graphical Representation of the Running Example 8
2 Dog Relvar . 9
3 Owner Relvar . 9
4 Ownership Relvar . 9
5 Contact Relvar . 10
6 PhoneNumber Relvar . 10
7 EmailAddress Relvar . 10

2

1 Introduction
Throughout its evolution, Tcl has gained increasingly sophisticated data structures.
Initially, only simple scalar variables, arrays and lists were supported in the language.
Over time as ever larger applications were implemented in Tcl, more sophisticated
data structures were added. Most recently, DICTIONARIES were added to the core.
Additionally, TCLLIB now supports a wide array of data structures ranging from trees
and graphs to matrices. These developments improve the productivity of writing larger
applications in Tcl. It is in this context that TclRAL was developed.

1.1 Goals of TclRAL
TclRAL was designed to achieve the following goals:

1. To provide relation values as native Tcl objects.

2. To provide a rigorous and complete set of relational operators over the relation
values.

3. To provide variables to hold relation values and a useful set of integrity con-
straints on the values those variables may hold.

4. To serve as a framework for exploring the use of relational concepts in Tcl pro-
gramming.

1.2 Availability of TclRAL
TclRAL is an open source project housed at sourceforge.net and available under the
same license as Tcl itself. See TclRAL http://sourceforge.net/projects/
tclral for complete a complete description of the project. As of this writing, Version
0.8 is available.

2 Relational Algebra
The Relational Model of Data is the application of logic and set theory to the man-
agement of data. It is most often discussed in terms of DATABASE MANAGEMENT
SYSTEMS (DBMS). Database management systems are a major application of com-
puting technology and have tremendous commercial importance. However, relations
are logical entities divorced from any particular implementation and they may be re-
alized in many different ways. Although TclRAL shares many concepts with DBMS,
it is important to distinguish carefully between the logical view of relations and the
particulars of a given implementation. In this section we define the basic concepts of
relations and how those concepts are represented in TclRAL. There are many good and
detailed expositions of relational theory and the interested reader my wish to explore
them further. Here, space limits us to just enough explanation to provide the context
for discussing TclRAL.

3

TclRAL follows very closely the relational algebra as formulated by Date[1] and
Darwen[2]. The parts of TclRAL that deal with referential integrity were patterned af-
ter the relational ideas of the Shlaer-Mellor Method, now known as Executable UML[3,
4, 5]. There are three primary entities in this formulation:

• Tuples provide the basic unit of data aggregation.

• Relations embody sets of tuples.

• Relvars are variables that specifically store relation values.

In the next sections we give an overview of these concepts as they are realized in
TclRAL.

2.1 Tuple
A TUPLE consists of a heading and a set of corresponding values. The heading consists
of a set of attribute names and corresponding data types. Attribute names must be
distinct and every attribute is associated with a data type. The data type may be any
valid Tcl data type, such as string, int, double, list, etc. Attribute data types may also
be Tuple or Relation types, supporting a form of nesting or grouping. In a tuple value,
each attribute has exactly one value associated with it. That value must be coercible
into the type that is defined for the attribute.

As a well behaved Tcl value, Tuple values have a string representation. A Tuple
value is represented as a three element list where the elements are:

1. The keyword, Tuple.

2. A list of attribute name / attribute type pairs.

3. A list of attribute name / attribute value pairs.

For example:

set d {
Tuple
{DogName string Weight double}
{DogName Ralph Weight 4.7}

}

sets the variable d to a Tuple value that has two attributes, DogName and Weight1.
In a sense the Tuple type is similar to the dict type and is useful in some of

the same contexts. Like dictionaries, a tuple type consists of key-value pairs and each
key must be a unique name. However, the primary use of tuples is as the components
of relations as discussed below. At first consideration it may seem unusual to have to
specify data type information when defining a Tuple. This could be considered not

1More precisely, d is set to a string value that if used later in a ::ral::tuple operation will be
converted into a Tuple value.

4

in keeping with the “Tcl way”. The type of an attribute is a very important integrity
constraint on the values. When an attribute of a tuple is assigned a value, that value
must be coercible to the type given for the attribute. Since string is the universal type in
Tcl, any value supplied for a string typed attribute is acceptable. The type binding will
become more important later when we discuss computational operations on relations.

2.2 Relation
A RELATION consists of a heading and a body. The Relation heading is much like that
of a Tuple heading, i.e. a set of attribute names and attribute data types. The body of
a relation is a set of tuple values. Each attribute of each tuple in the body of a relation
has a value and that value must correspond to the data type defined for the attribute.
In addition each relation must have at least one IDENTIFIER2. An identifier is a set of
attributes for which the values must be unique for all tuples in a relation. Fundamen-
tally, relations are sets and sets do not have duplicated members. An identifier defines
the set of attributes across which uniqueness is to be considered. A relation may have
many identifiers, however, no identifier may have a set of attributes that is a subset of
another identifier, i.e. the identifiers must be minimal.

Like Tuple values, Relation values also have a string representation. The string
representation of a Relation value is a list of four elements:

1. The keyword, Relation.

2. A list of attribute name / attribute type pairs.

3. A list of identifiers, each one of which may be a list of attribute names.

4. A list of tuple values forming the body of the relation.

For example:

set r {
Relation
{DogName string Breed string Weight double}
DogName
{

{DogName Fred Breed Poodle Weight 17.0}
{DogName ChiChi Breed Dalmation Weight 22.0}

}
}

defines a relation consisting of three attributes (DogName, Breed and Weight), a single
identifier consisting of a single attribute (DogName) and with a body containing two
tuples.

2Also known as a candidate key or a primary key. I prefer the term identifier to avoid some of the
confusion surrounding the use of the term key in the DBMS arena.

5

2.3 Relvar
TclRAL defines a separate variable space for storing significant relation values. This
is a bit unusual since relation values may be stored in ordinary Tcl variables also. The
RELVAR variable space serves two distinct purposes:

1. Relvars provide storage locations for relation values and operators to modify in
place the value contained in a relvar.

2. Relvars may have integrity constraints defined between them and TclRAL will
insure that the values contained in the relvar storage satisfy the integrity con-
straints.

In a traditional DBMS, relvars represent the persistent storage of the database. While
TclRAL does not provide for any transparent persistence, the relvars fulfill a similar
role as in a DBMS. As we will see below, integrity constraints are defined on relvars
and the only operators that modify a relation value in place are those operators that
deal with relvars. Integrity constraints help insure that the state of the relation values
held in the relvars transitions from one valid state to another valid state as the program
executes. It is often the case that the relation values contained in relvars serve as the leaf
terms in the algebraic expressions that compute the values of interest to the program.

The operators that deal with relation values typically exhibit CLOSURE, i.e. the
operators take relation values as arguments and return a new relation value as the result.
In that context, ordinary Tcl variables serve to hold temporary results that may be
reused in other calculations or for the sake of program clarity. However, Tcl variables
are very convenient and so a relvar also has an associated Tcl variable so that the
familiar dollar variable reference still works ($Dog yields the relation value stored in
the Dog relvar). Further, the relvar variable space uses the same NAMESPACE based
naming conventions as ordinary Tcl variables. This avoids introducing new notation
and makes managing a complex set of relvars easier.

2.4 Table Representation
It is convenient to represent relation values in a tabular format and TclRAL provides
several commands to present relation values in a more visually intuitive table arrange-
ment. However, we must not get too accustomed to the implied ordering of rows or
columns in a table. Clearly some order must be imposed for display purposes, but that
order is not part of the relation value itself. There are no operations in TclRAL that
access tuples based on some notion of row index. Tuples in a relation may only be
referenced by the values of their attributes. Also there are no operations that access
attributes based on some notion of column index. Attributes are referenced only by
their names. Clearly, the implementation stores attributes in some order within a tuple
and stores tuples in some order within a relation, however, the implementation is free
to rearrange that ordering in any way that it chooses. In practice, the TclRAL imple-
mentation takes some care not to arbitrarily rearrange the order of tuples and attributes
based on the principle of least surprise. But logically there is no prescribed order to
the tuples in a relation or to the attributes in a tuple. One very practical consequence

6

of this is that you should not use list or string operators on the string representations of
relation values. All the required operators are supplied by TclRAL and those operators
will maintain the integrity and invariants of the relation values.

3 Operations
In this section we will describe the operations that are provided by TclRAL. The man-
ual pages supplied with TclRAL give the formal and detailed syntax and semantics
of each command in the package. Here we will try to focus on why particular opera-
tions are useful and how they apply to our running example. First we consider Tuple
operations, then Relation operations and finally Relvar operations.

3.1 Running Example
For the purposes of this paper, we will use a small running example to illustrate the
concepts of TclRAL. In this example we will consider managing a dog adoption sce-
nario. Necessarily, the example is oversimplified to fit the constraints of this space and
does not represent any real situation. We will keep track of dogs and people who own
them. We are interested in knowing who owns what dogs, when they became the owner
and how we might contact those owners if the need arises. We will only keep track of
people who actually own dogs that they have obtained from us. So we can have the
situation where a dog is not owned by anyone. We also insist that we be able to contact
owners. We will contact owners by phone or email or both if the owner happens to be
particularly communications enabled.

To formalize this scenario, we will use six relvars. Figure 1 shows a graphical rep-
resentation of these relvars. In this notation, rectangles represent relvars. The names
of the relvar’s attributes are listed inside the rectangles. Those attribute names pre-
ceded by an asterisk (*) are part of an identifier and those preceded by a hyphen (-)
are non-identifying attributes. The lines in the graphic represent referential integrity
constraints (discussed in Section 3.5 below). Each constraint has a name (e.g. R1) that
is written along the line representing the constraint. Where the line connects to a rel-
var, a single character represents the multiplicity and conditionality of the constraint.
Relvar attributes that have a parenthetical reference to a constraint name (e.g. (R2))
are referring attributes in the named constraint. The schema of our example could be
represented graphically in many ways, such as an entity-relationship diagram or even
in UML. The notation shown is similar to, and borrowed from, that of Shlaer and
Mellor[3]. To make our example complete we will need to populate the relvars with
relation values. So we use the values as shown in Figures 2 to 7 as our example pop-
ulation. The representation shown is that returned from the ::ral::relformat
command. This command gives a printable string representing the relvar in tabular
form. Those attributes in the heading that are part of any identifier are marked with an
equal sign (=).

In the examples given below we will often refer to these relvars. TclRAL is con-
tained in the RAL package which creates commands in the ::ral namespace. As a

7

D
og

* D
ogN

am
e

−
 B

reed
−

 A
ge

O
w

ner
* O

w
nerN

am
e

−
 A

ge

O
w

nership

−
 A

cquired

* O
w

nerN
am

e (R
1)

* D
ogN

am
e (R

1)

−
 A

reaC
ode

−
 N

um
ber

P
honeN

um
ber

* C
ontactO

rder (R
3)

* O
w

nerN
am

e (R
3)

* O
w

nerN
am

e (R
3)

* C
ontactO

rder (R
3)

−
 D

om
ainN

am
e

−
 U

serN
am

e

E
m

ailA
ddress

C
ontact

* O
w

nerN
am

e (R
2)

* C
ontactO

rder

R
3

R
2

1
+

R
1

*
+

Figure 1: Graphical Representation of the Running Example

8

+=======+---------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+---------+---+
Fido	Poodle	2
Sam	Collie	4
Spot	Terrier	1
Rover	Retriever	5
Fred	Spaniel	7
Jumper	Mutt	3
+=======+---------+---+

Figure 2: Dog Relvar

+=========+---+
|OwnerName|Age|
|string |int|
+=========+---+
Sue	24
George	35
Alice	30
Mike	50
Jim	42
+=========+---+

Figure 3: Owner Relvar

+=========+=======+--------+
|OwnerName|DogName|Acquired|
|string |string |string |
+=========+=======+--------+
Sue	Fido	2001
Sue	Sam	2000
George	Fido	2001
George	Sam	2000
Alice	Spot	2001
Mike	Rover	2002
Jim	Fred	2003
+=========+=======+--------+

Figure 4: Ownership Relvar

9

+=========+============+
|OwnerName|ContactOrder|
|string |int |
+=========+============+
Sue	1
Sue	2
George	1
Alice	1
Mike	1
Mike	2
Mike	3
Jim	1
+=========+============+

Figure 5: Contact Relvar

+=========+============+--------+--------+
|OwnerName|ContactOrder|AreaCode|Number |
|string |int |string |string |
+=========+============+--------+--------+
Sue	1	111	555-1212
George	1	408	555-2020
Alice	1	555	867-4309
Mike	1	800	555-3890
Mike	2	866	555-8821
+=========+============+--------+--------+

Figure 6: PhoneNumber Relvar

+=========+============+--------+------------+
|OwnerName|ContactOrder|UserName|DomainName |
|string |int |string |string |
+=========+============+--------+------------+
Sue	2	sue	mymail.com
Mike	3	mikey	yourmail.com
Jim	1	jimbo	domail.com
+=========+============+--------+------------+

Figure 7: EmailAddress Relvar

10

convenience for the examples, we will assume that the ::ral commands have been
imported in the namespace of the example.

3.2 Tuple Operations
Relations are composed of sets of tuples, so a Tuple data type is necessary to complete
the ability to work with relation values. There are 15 options for the ::ral::tuple
ensemble command. It is worth grouping them into several categories. All the com-
mands that implement tuple operations, except one, exhibit closure, i.e. they take Tuple
valued arguments and return a new Tuple result. The exception is tuple update
which modifies in place the tuple value contained in a Tcl variable. This command is
used as part of the method in which relvars are updated as we will see below.

3.2.1 Structural Operations

The commands in this category are used to create tuples or extract subsets of the at-
tributes or otherwise affect the attribute structure of a Tuple value.

create The create command creates a new tuple. This is a procedural way to create
a tuple as an alternative to composing its string representation.

extend The extend command creates a new tuple from an existing tuple by adding
attributes.

project The project command creates a new tuple from an existing tuple by select-
ing a subset of the attributes.

eliminate The eliminate command is complementary to project. It creates a
new tuple by discarding attributes. Sometimes it is easier to think about which
attributes are to be discarded rather than which ones are to be included.

rename The rename command creates a new tuple that has new names for its at-
tributes. Multiple attribute names can be changed, but the attribute types and
values remain unchanged.

% set t [tuple create {DogName string Breed string Age int}\
{DogName Fido Breed Poodle Age 2}]

Tuple {DogName string Breed string Age int}
{DogName Fido Breed Poodle Age 2}
% puts [tuple eliminate $t Age]
Tuple {DogName string Breed string}
{DogName Fido Breed Poodle}
% puts [tuple rename $t DogName Name]
Tuple {Name string Breed string Age int}
{Name Fido Breed Poodle Age 2}

11

3.2.2 Attribute Access

The commands in this group are used to access the attribute values of a tuple, moving
them between tuples and regular Tcl variables.

assign The assign command creates Tcl variables and places attribute values into
them. This makes it possible to decompose a tuple into Tcl variables so that val-
ues can be used in other procedures or expressions. The interface for tuple assign
is intended to be mnemonic of the core lassign command.

extract The extract command obtains one or more attribute values from a tuple.
No variable assignments are made and the values are returned from the com-
mand.

get The get command returns a list of attribute name / attribute value pairs. The list
is suitable to use as an argument to array set or can be operated on by any
of the dict command options.

update The update command modifies in place a tuple value contained in a Tcl
variable. This is the only tuple command that behaves in this way and it is useful
in conjunction with the relation update command described below.

set t {
Tuple
{DogName string Breed string Age int}
{DogName Fido Breed Poodle Age 2}

}
% tuple assign $t
3
% puts $Breed
Poodle
% puts [tuple extract $t DogName]
Fido
% array set dogtuple [tuple get $t]
% parray dogtuple
dogtuple(Age) = 2
dogtuple(Breed) = Poodle
dogtuple(DogName) = Fido
% tuple update t Age [expr {[tuple extract $t Age] + 1}]
Tuple {DogName string Breed string Age int}
{DogName Fido Breed Poodle Age 3}

3.2.3 Comparison

Only one comparison operation is defined and that is tuple equality. Because relative
ordering of attributes in a tuple is not defined, tuple equality cannot be determined by
simple string comparison.

12

equal The tuple equal command determines if two tuples are equal. Two tuples
are equal if and only if they have the same attribute names, attribute types and
attribute values. Since attribute order does not matter, equal tuples may have
different string representations. Another way of putting it is that there are, in
general, many string representations of any given tuple.

3.2.4 Introspection

In keeping with the usual conventions of Tcl, introspection into the structure of a tuple
is supported.

degree The degree command returns the number of attributes in a tuple.

heading The heading command returns the heading of tuple.

attributes The attributes command returns as a list the attribute names of a tuple.

3.2.5 Composition

It is possible to have Tuple values that have attributes that are themselves Tuple valued.
This possiblity makes it necessary to have operators that will construct tuple valued
attributes from scalar attributes and to perform the inverse.

wrap The wrap command creates a new tuple that has a new tuple valued attribute
composed from other attributes in the tuple.

unwrap The unwrap command is complementary to wrap and “flattens” out a tuple
valued attribute.

% set t2 [tuple wrap $t Props {Breed Age}]
Tuple {DogName string Props {Tuple {Breed string Age int}}}
{DogName Fido Props {Breed Poodle Age 2}}
% tuple unwrap $t2 Props
Tuple {DogName string Breed string Age int}
{DogName Fido Breed Poodle Age 2}

3.3 Relation Operations
There are 38 options for the ::ral::relation ensemble command. We will group
the operations in order to get a handle on the large number of operators. One very im-
portant property of the relation ensemble commands is closure. Most of the com-
mands take relation values as argument and return a relation value as the result (those
that do not usually return simple integer or boolean values). None of the relation
subcommands modify a relation value in place. This allows arbitrary nesting of oper-
ations in the form that we are all very familiar with in Tcl. There are commands in
the ral package that modify values in place and they are all grouped in the relvar
ensemble.

13

3.3.1 Fundamental Set Operations

TclRAL provides the usual set operations across relation values. For all these operators
the relation value arguments must be of the same type. This means that they must have
the same attributes and those attributes must have the same data types. These operations
are:

union The command, union, computes the set union between two or more relation
values. The tuples that are in the result are those that appear in at least one of the
arguments, remembering that relation values never have any duplicates.

intersection The command, intersect, computes the set intersection between two
or more relation values. The result contains those tuples that appear in all of the
arguments.

difference The command, minus, computes the set difference between two relation
values. The result contains those tuples in the first relation that do not appear in
the second one. Note that for this operation, argument order is important.

insertion The command, include, returns a new relation with additional tuples in-
serted. This is much like union, except that an error is raised if any attempt is
made to insert a duplicate tuple.

comparison The full complement of comparison between two relation values is also
provided by the is command. Comparisons may only be made between relation
values of the same type, i.e. those relation values that have the same attribute
names and corresponding attribute data types.

• equality (==)

• inequality (!=)

• subset (<=)

• proper subset (<)

• superset (>=)

• proper superset (>)

For example, consider:

set newDog {
Relation
{DogName string Breed string Age int}
DogName
{

{DogName Puffy Breed Poodle Age 1}
}

}
% relformat [relation union $Dog $newDog]
+=======+---------+---+

14

|DogName|Breed |Age|
|string |string |int|
+=======+---------+---+
Fido	Poodle	2
Sam	Collie	4
Spot	Terrier	1
Rover	Retriever	5
Fred	Spaniel	7
Jumper	Mutt	3
Puffy	Poodle	1
+=======+---------+---+
% relation is $Dog < [relation include $Dog\

{DogName Puffy Breed Poodle Age 1}]
1
% relation is $newDog == $Dog
0

3.3.2 Restriction and Projection

A very common operation is to select some subset of tuples from a relation or some
subset of attributes from a relation. Casually speaking, we are often interested in some
set of rows or some set of columns. As discussed before, there are no operators in
TclRAL that correspond to array indexing operations. Tuples and attributes may only
be referred to by values and names, respectively. TclRAL provides the following oper-
ations for obtaining parts of a relation value:

restrict The command, restrict, returns a relation by selecting tuples where an
arbitrary Tcl expression evaluates to true. Each tuple in the argument relation
value is successively assigned to a variable and an expression is evaluated. If the
expression returns true, then the tuple is included in the result. The expression is
an arbitrary Tcl expression evaluated by expr.

restrictwith The restrictwith command is a variation on restrictwhere val-
ues of the attributes are split out into separate Tcl variables. This is particularly
convenient in simpler cases.

choose The command, choose, returns a relation that contains at most one tuple
whose identifying attribute values are given. In some cases the values of the at-
tributes of an identifier are known and just that one tuple in a relation is required.

emptyof The command, emptyof, returns a relation that has the same heading as
its argument, but whose body is the empty set. This is useful combined with,
relation include, for building up a relation from data gathered from other
sources in a program.

project The command, project, returns a relation that contains only the attributes
given as arguments.

15

eliminate The command, eliminate, is complementary to project in that it returns
a relation containing all the attributes except the ones given as arguments. Some-
times it is easier to think in terms of what needs to be discarded rather than what
needs to be retained.

Consider the following examples:

% relformat [relation restrict $Dog d\
{[tuple extract $d Age] < 3}]

+=======+-------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+-------+---+
|Fido |Poodle |2 |
|Spot |Terrier|1 |
+=======+-------+---+
% relformat [relation restrictwith $Dog {$Age <= 3}]
+=======+-------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+-------+---+
Fido	Poodle	2
Spot	Terrier	1
Jumper	Mutt	3
+=======+-------+---+		
% relformat [relation choose $Owner OwnerName Mike]		
+=========+---+		
OwnerName	Age	
string	int	
+=========+---+		
Mike	50	
+=========+---+		
% relformat [relation project $Ownership OwnerName Acquired]		
+=========+========+		
OwnerName	Acquired	
string	string	
+=========+========+		
Sue	2001	
Sue	2000	
George	2001	
George	2000	
Alice	2001	
Mike	2002	
Jim	2003	
+=========+========+
% relformat [relation eliminate $Dog Age]

16

+=======+---------+
|DogName|Breed |
|string |string |
+=======+---------+
Fido	Poodle
Sam	Collie
Spot	Terrier
Rover	Retriever
Fred	Spaniel
Jumper	Mutt
+=======+---------+

3.3.3 Multiplication and Division

The operators in this section are concerned with combining two or more relation values.
The archetypical operation in the category is join, where two relation values are
merged together in a very specific manner. TclRAL provides several useful variations
on this theme.

product The times command computes the Cartesian product over two or more re-
lations.

join TclRAL has the natural join command. There are many flavors and variations
on the basic join operator, but only natural join is supported here.

semijoin The semijoin command yields a join where only the attributes of one of
the relations is retained. Roughly it gives the set of related tuples in another
relation. In many cases, semijoin is a more appropriate operation than join.

semiminus The semiminus command is complementary to semijoin. It returns
a relation containing tuples not related to another relation.

% relformat [relation join $Owner $Contact]
+=========+---+============+
|OwnerName|Age|ContactOrder|
|string |int|int |
+=========+---+============+
Sue	24	1
Sue	24	2
George	35	1
Alice	30	1
Mike	50	1
Mike	50	2
Mike	50	3
Jim	42	1
+=========+---+============+
% relformat [relation semijoin $PhoneNumber $Contact]

17

+=========+============+
|OwnerName|ContactOrder|
|string |int |
+=========+============+
Sue	1
George	1
Alice	1
Mike	1
Mike	2
+=========+============+	
% relformat [relation semiminus $PhoneNumber $Contact]	
+=========+============+	
OwnerName	ContactOrder
string	int
+=========+============+	
Sue	2
Mike	3
Jim	1
+=========+============+

division The divide command implements the relational divide operation. This op-
eration is useful in contexts where you are performing “find all of” type op-
erations. The operation is a bit complicated and involves three relations, the
dividend, the divisor and the mediator. The headings of the dividend and divisor
must be disjoint and the heading of the mediator must be the union of the head-
ings of the dividend and divisor. The result (the quotient) is a new relation that
has the same heading as the dividend and contains all the tuples from the divi-
dend whose corresponding tuples in the mediator include all the tuples in divisor.
An example will help clarify the situation. In this example we seek to find all the
Dogs owned by both Sue and George.

% relformat [set dividend [relation project $Dog DogName]]\
Dividend:

+=======+
|DogName|
|string |
+=======+
|Fido |
|Sam |
|Spot |
|Rover |
|Fred |
|Jumper |
+=======+
Dividend:

18

% relformat [set divisor [relation project\

[relation restrict $Owner t\
{[tuple extract $t OwnerName] eq "Sue" ||\

[tuple extract $t OwnerName] eq "George"}] OwnerName]]\
Divisor:

+=========+
|OwnerName|
|string |
+=========+
|Sue |
|George |
+=========+
Divisor:

% relformat [set mediator [relation eliminate $Ownership Acquired]]\

Mediator:
+=========+=======+
|OwnerName|DogName|
|string |string |
+=========+=======+
Sue	Fido
Sue	Sam
George	Fido
George	Sam
Alice	Spot
Mike	Rover
Jim	Fred
+=========+=======+
Mediator:

% relformat [relation divide $dividend $divisor $mediator]\

"All dogs owned by both Sue and George"
+=======+
|DogName|
|string |
+=======+
|Fido |
|Sam |
+=======+
All dogs owned by both Sue and George

Notice in this example that the quotient multiplied by the divisor yields a subset of the
mediator. The key here is that the result includes only those tuples from the dividend
where all of the corresponding values from the divisor are found in the mediator.

19

3.3.4 Computational Operations

The operators discussed so far do not do any computation. They have only provided a
means to obtain subsets of relation values or build new relation values by combining or
partitioning relations. In all cases the attribute values have not changed. In this section
the operations evaluate expressions and place the results into relation values as new
attributes.

extend The extend command adds new attributes to a relation and sets the values
of those attributes to be the result of an expression. The expression values are
computed using the core expr command so any computation that can be done
in Tcl can be placed in the result. Extending a relation value is a tuple-wise
operation. Simple units conversions are an example. If we are interested in the
age of a dog in months we can obtain that by extending Dog, as in:

% relformat [relation eliminate\
[relation extend $Dog d\

AgeInMonths int {[tuple extract $d Age] * 12}]\
Age]

+=======+---------+-----------+
|DogName|Breed |AgeInMonths|
|string |string |int |
+=======+---------+-----------+
Fido	Poodle	24
Sam	Collie	48
Spot	Terrier	12
Rover	Retriever	60
Fred	Spaniel	84
Jumper	Mutt	36
+=======+---------+-----------+

summarize The summarize command allows for computations that range across
multiple tuples. The concept is to select a subset of the tuples in a relation and
generate the value of a new attribute as a function of the subset. Another relation
is used to control how the subsets are selected and this is called the per relation.
If the per relation is a projection of non-identifying attributes from the original
relation value, then there will be, in general, multiple tuples in the original rela-
tion that have values that correspond to the values of the per relation. The net
effect is that the per relation controls the selection of the subsets. Consider the
question of finding the number of dogs acquired in each year. To accomplish
this we would like to consider the Ownership relation in such a way that those
tuples that have the same value of Acquired are together. Then it is a simple
matter of taking the cardinality of that subset of Ownership. This is what the
summarize command accomplishes.

% relformat [relation summarize $Ownership\
[relation project $Ownership Acquired] o\

20

YearlyTotal int {[relation cardinality $o]}]
+========+-----------+
|Acquired|YearlyTotal|
|string |int |
+========+-----------+
2001	3
2000	2
2002	1
2003	1
+========+-----------+

We can see that the projection of Ownership.Acquired was extended by an attribute
whose value was calculated by taking the cardinality of another relation held in the
“o” variable. The “o” relation is constructed by finding those tuples in Ownership that
match the value for each distinct value in the projection of the Acquired attribute.

This same operation works even when the projection of the original relation value
has no attributes at all (the nullary projection). By summarizing over the “DEE” rela-
tion, we can obtain a relation with a single attribute and a single tuple to yield a single
value that is a function of the entire relation.

proc ravg {rel attr} {
set sum 0
foreach val [relation list $rel $attr] {

incr sum $val
}
return [expr {$sum / [relation cardinality $rel]}]

}
% set DEE {Relation {} {{}} {{}}}
Relation {} {{}} {{}}
% relformat [relation summarize $Dog $DEE o\

OverallAvgAge int {[ravg $o Age]}]
+=============+
|OverallAvgAge|
|int |
+=============+
|3 |
+=============+

The “DEE” relation is that relation value whose attributes are the empty set and whose
body is the single tuple that is also the empty set3. The other relation in this pair,
“DUM”, has an empty body. These two relations play important roles as operator
identities and operator annihilators. Clearly, computations other than just taking the
cardinality are possible, such as taking an average. Indeed if you are using Tcl 8.5, the
::tcl::mathfunc mechanism allows creating aggregate relation operations that
map to the expr command syntax.

3Indeed the only tuple that such a relation could have.

21

3.3.5 Introspection

It is very much in keeping with the “Tcl way” to provide introspection commands.
For relation values, these commands report the sizes and structure of the relation. The
commonly useful commands are isempty and isnotempty.

cardinality The cardinality of a relation is the number of tuples in its body.

isempty The isempty command is shorthand for expr {[relation cardinalty
$r] == 0}.

isnotempty The isnotempty command is shorthand for expr {[relation cardinalty
$r] != 0}.

degree The degree of a relation is the number of attributes in its heading.

heading The heading command returns a three element list that is the first three
parts of the string representation of a relation.

attributes The attributes command returns a list of attributes for the argument
relation.

identifiers The identifiers command returns the list of identifiers for the given
relation. Each identifier, in turn, is a list of attributes.

% relation cardinality $Dog
6
% relation isempty [relation emptyof $Dog]
1
% relation isnotempty $Dog
1
% relation degree $Dog
3
% relation heading $Dog
Relation {DogName string Breed string Age int} DogName
% relation attributes $Dog
DogName Breed Age
% relation identifiers $Dog
DogName

3.3.6 Interface to Other Tcl Data Types

There are a number of cases where the particular structure of a relation value matches
that of an existing Tcl data type. In these cases, TclRAL provides commands to con-
veniently move data from relation values into other Tcl data types. The goal here is to
make it easier to interface relation data with other, presumably pre-existing Tcl com-
mands.

First we recognize that a Tuple value can represent a Relation value of cardinality
one without any loss of attribute values. So we provide a means to extract the tuple

22

from a relation that is of cardinality one. The relation tuple command will con-
vert a relation value that contains a single tuple into a tuple value. It is an error to
invoke relation tuple with a relation value of cardinality that is not one. With
the tuple value, all the tuple commands discussed above are available. Most useful are
tuple assign to assign attributes into Tcl variables and tuple extract to ob-
tain one or more attribute values from a tuple. Indeed the need to move attribute values
into Tcl variables or values is common enough to warrant the relation assign
and relation extract. These commands are short hand commands for invok-
ing the corresponding tuple commands on the return value of relation tuple.
Consider:

set mike [relation choose $Owner OwnerName Mike]
% relation cardinality $mike
1
% relation assign $mike
2
% puts $OwnerName
Mike
% puts $Age
50
% puts [relation extract $mike OwnerName]
Mike
% puts [relation extract $mike OwnerName Age]
Mike 50

Both arrays and dictionaries4 provide a simple one-to-one mapping of a key to a value.
In relation terms, this implies that, for relation values that have a single identifier and
that identifier consists of a single attribute and where there is only one other attribute
in the relation, the tuples in the body of the relation can be stored in a Tcl array or
dictionary without any loss of attribute values. Although this is a very specialized
condition for a relation value, it is not an uncommon one and having commands to
move data to other types of Tcl values is particularly convenient.

In our example, the Owner relvar is a simple mapping of the owner’s name to the
owner’s age and therefore matches the form to be transformed into a dictionary or an
array.

% dict get [relation dict $Owner] Mike
50
% relation array $Owner ownerarray
% parray ownerarray
ownerarray(Alice) = 30
ownerarray(George) = 35
ownerarray(Jim) = 42
ownerarray(Mike) = 50
ownerarray(Sue) = 24

4TclRAL must be build against Tcl 8.5 in order to obtain support for dictionary types.

23

The projection of a relation value can also be used to create such simple mappings, as
in:

% relation array [relation project $Dog DogName Breed] dogbreed
% parray dogbreed
dogbreed(Fido) = Poodle
dogbreed(Fred) = Spaniel
dogbreed(Jumper) = Mutt
dogbreed(Rover) = Retriever
dogbreed(Sam) = Collie
dogbreed(Spot) = Terrier

Lists are a very important and useful data type in Tcl. The relation list com-
mand extracts the value of an attribute from all the tuples in a relation. If that relation
happens to be of degree one or if the attribute forms an identifier, then the resulting list
is also a set and that set may be used with the set package from TCLLIB.

% relation list $Dog DogName
Fido Sam Spot Rover Fred Jumper

TclRAL also provides commands to interface to the matrix package in TCLLIB. A
matrix can hold any relation value without loss of any attribute values. The relformat
command that we have already encountered, is actually implemented by converting a
relation value into a matrix and then using the report package to generate text.
This approach gives considerable flexibility for controlling the form of the output.

3.3.7 Miscellaneous Operations

There are always a few items in any categorization that seem to defy the pattern. In this
section we discuss some of the more unusual operations in TclRAL. The commands
in this section represent operations that are either clumsy to compute using the other
relation operators or for which there is a significant implementation advantage when
doing the computation internally.

tclose The tclose command computes the transitive closure of its relation value
argument. The transitive closure operation is useful when dealing with hierar-
chically structured data. One familiar example is that of dealing with include
file dependencies in “C” language source code. If some “C” source file includes
a file which in turn includes other files, the original source needs to be rebuilt
when any of the included files are modified. This implies that there is a graph
of dependencies and we need to know if there is any path from a “C” source file
to some included file regardless of how many intervening files there might be.
The tclose command can compute this information. It operates on binary re-
lation values and has a tuple in the result if there exists a path between any nodes
of the implied graph. Consider the following relation value that defines which
files immediately include other files in a set of “C” source files. This data can

24

be gleaned from the files by examining each “C” source file in isolation. If we
are then interested in finding the list of files whose modification dates must be
examined to determine if a.c needs to be rebuilt we could proceed as follows.

set includes {
Relation
{Src string Inc string}
{{Src Inc}}
{

{Src a.c Inc a.h}
{Src a.c Inc b.h}
{Src a.h Inc aa.h}
{Src aa.h Inc stdio.h}
{Src b.h Inc stdio.h}

}
}
% relformat [set tclosure [relation tclose $includes]]
+======+=======+
|Src |Inc |
|string|string |
+======+=======+
a.c	a.h
a.c	b.h
a.c	aa.h
a.c	stdio.h
a.h	aa.h
a.h	stdio.h
b.h	stdio.h
aa.h	stdio.h
+======+=======+
% relation list [relation project\

[relation restrictwith $tclosure {$Src eq "a.c"}]\
Inc]

a.h b.h aa.h stdio.h

rank The rank command adds a new integer attribute that is the relative ranking of
another attribute. The ranking is determined conceptually by sorting the relation
value on an given attribute and determining, for each tuple, how many of the
tuples in the relation have a value of the attribute that is less than or equal to
that of the given tuple. This command is particularly convenient when trying
to determine some ordinal relationship among the values of an attribute. For
example, suppose we wish to know the two youngest dogs. We could proceed as
in:

% relformat [set rankedDogs [relation rank $Dog Age AgeRank]]
+=======+---------+---+-------+

25

|DogName|Breed |Age|AgeRank|
|string |string |int|int |
+=======+---------+---+-------+
Fido	Poodle	2	2
Sam	Collie	4	4
Spot	Terrier	1	1
Rover	Retriever	5	5
Fred	Spaniel	7	6
Jumper	Mutt	3	3
+=======+---------+---+-------+
% relformat [relation project\

[relation restrictwith $rankedDogs {$AgeRank <= 2}]\
DogName]

+=======+
|DogName|
|string |
+=======+
|Fido |
|Spot |
+=======+

tag The tag command creates a new identifier that is an incrementing integer value
based on the ordering of an attribute. It is often useful to tag a relation when
you wish to project away an identifying attribute and avoid losing any potential
duplicates. It is also possible to create new identifiers from an existing identifier
by adding an ordering attribute. For example, the following expression creates
a new identifier {OwnerName AcqTag} which shows the order that a dog was
acquired by a particular Owner.

% relformat [relation tag $Ownership -ascending Acquired\
-within OwnerName AcqTag]

+=========+=======+--------+======+
|OwnerName|DogName|Acquired|AcqTag|
|string |string |string |int |
+=========+=======+--------+======+
Sue	Sam	2000	0
George	Sam	2000	0
George	Fido	2001	1
Alice	Spot	2001	0
Sue	Fido	2001	1
Mike	Rover	2002	0
Jim	Fred	2003	0
+=========+=======+--------+======+

group The group command produces a new relation by combining several attributes
into a relation valued attribute. This gives a form of nesting.

26

% relformat [relation group $Ownership\
DogAcquisition DogName Acquired]

+=========+------------------+
|OwnerName|DogAcquisition |
|string |Relation |
+=========+------------------+
Sue	+=======+--------+			
		DogName	Acquired	
		string	string	
	+=======+--------+			
		Fido	2001	
		Sam	2000	
	+=======+--------+			
George	+=======+--------+			
		DogName	Acquired	
		string	string	
	+=======+--------+			
		Fido	2001	
		Sam	2000	
	+=======+--------+			
Alice	+=======+--------+			
		DogName	Acquired	
		string	string	
	+=======+--------+			
		Spot	2001	
	+=======+--------+			
Mike	+=======+--------+			
		DogName	Acquired	
		string	string	
	+=======+--------+			
		Rover	2002	
	+=======+--------+			
Jim	+=======+--------+			
		DogName	Acquired	
		string	string	
	+=======+--------+			
		Fred	2003	
	+=======+--------+			
+=========+------------------+

ungroup The ungroup command inverts the operation of the group command, i.e. a
relation valued attribute is “flattened” into a set of scalar attributes.

tuple For relations that contain a single tuple, the tuple command converts the Re-
lation type value to a Tuple type value.

iteration There are times when it is convenient to iterate across the tuples of a relation.

27

Iteration is not needed as often as one might first expect since most relation
operators function across the entire set. Indeed one of the more powerful aspects
of the relational approach is the ability to do set-wise operations obviating the
need to write iteration loops repeatedly. However, when generating output and
under some other circumstances, examining a relation on a tuple by tuple basis
and in some particular tuple order is necessary. For this, TclRAL provides the
foreach command. By analogy with the foreach command in the Tcl core,
relation foreach makes each tuple of a relation available as a relation of
cardinality one. It also allows for visiting the tuples in the relation in a particular
order.

% relation foreach d $Dog -descending DogName {
tuple assign [relation tuple $d]
puts $DogName

}
Spot
Sam
Rover
Jumper
Fred
Fido

rename For operations that create relation values of a different type from their argu-
ments, the possibility exists that the result would have duplicated attribute names
if the arguments had at least on common attribute name. The rename command
allows attributes names to be changed and provides a means to avoid the errors
that would otherwise arise form duplicated attribute names.

3.4 Relvar Operations
TclRAL defines a separate variable space specifically to store relation values. This
may seem unusual since as we have already seen, ordinary Tcl variables readily hold
relation values. In a database situation, relvars hold those relation values that per-
sist in the database. Although TclRAL does not provide any transparent persistence,
relvars do serve to strictly partition those operations that modify relation values in
place from those that return new relation values (i.e. ::ral::relvar commands vs.
::ral::relation commands). Also, relvars do serve as the basis of the load/store
persistence that is provided by TclRAL. Another important use of relvars is for defining
integrity constraints. Integrity constraints are discussed in more detail below.

The relvar variable names follow the familiar namespace resolved names like ordi-
nary Tcl variables. Indeed each time a relvar is created, a corresponding Tcl variable of
the same name is also created. Thus a relvar named ::myspace::Dog would have a
Tcl variable also named ::myspace::Dog. There are a few implications of this. In
order to create the relvar, ::myspace::Dog, the namespace, ::myspace, must
already exist, as would be the case for creating an ordinary Tcl variable. TclRAL places
a trace on the Tcl variable to prevent it from being written. All writes to relvars should

28

come via TclRAL and preventing writes is meant to help accidental coding errors since
determined scripts can overcome the trace placed by TclRAL. However, the existence
of the Tcl variable that holds the same relation value as the relvar is very convenient for
programming since the values held in relvars are often the starting terms for a relational
expression. The relvar variable space is resolved in the same way as for Tcl variable
name resolution. Relvars created without fully resolved names (i.e. without a leading
“::”) are placed in the current namespace. Relative relvar references (i.e. without a
leading “::”) are resolved first in the current namespace and then in the global names-
pace. These rules also apply to the names given to integrity constraints. This gives us
a means of holding a set of relvars and their constraints together in a namespace-like
arrangement where naming conflicts can be more easily avoided.

The operations provided for relvars are given in the next sections. Again we have
grouped the operations into logically convenient sections.

3.4.1 Assignment

A fundamental relvar operation is to assign the relvar a value. It is important to remem-
ber that you may not change the type of a relvar by assignment. Only relation values
that are of the same type as the relvar may be assigned to the relvar.

creation A relvar is created using the relvar create command. This establishes
the type of relation value that may be assigned to the relvar. The created relvar
has an empty body.

set By analogy to the Tcl core command, set, relvar set assigns a new value to
a relvar if one is supplied and returns the current value in any case.

unset Relvars may be deleted by unsetting them. Again, this command follows
the pattern of the core Tcl unset command. Note however, that you may not
unset relvars that have constraints defined upon them. Those constraints must be
deleted first.

3.4.2 Insertion

A relvar may be populated by inserting tuple values. The relvar insert command
will insert zero or more tuple values into a relvar. Insertion semantics are such that an
error is raised by any attempt to insert a duplicate tuple.

% relformat [relvar create MyDog [relation heading $Dog]]
+=======+------+---+
|DogName|Breed |Age|
|string |string|int|
+=======+------+---+
+=======+------+---+
% relformat [relvar insert MyDog\

{Age 10 DogName Joan Breed {Afghan Hound}}\

29

{Breed Dachshund Age 1 DogName Alfred}]
+=======+------------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+------------+---+
|Joan |Afghan Hound|10 |
|Alfred |Dachshund |1 |
+=======+------------+---+

3.4.3 Deletion

Two forms of deletion are provided. One form is very general and the other is useful
when a set of identifying attributes is known. In all cases the number of tuples deleted
is returned.

delete In its first form, the delete command will delete those tuples from a relvar
where an expression evaluates to true. The value of each tuple in the relvar is
made available in a Tcl variable.

deleteone In many cases you know the value of a set of identifying attributes and
examining all the tuples in a relation to find the one the delete is not necessary.
For this case the deleteone command is useful.

% relvar delete MyDog d {[tuple extract $d Age] > 2}
1
% relformat $MyDog
+=======+---------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+---------+---+
|Alfred |Dachshund|1 |
+=======+---------+---+
% relvar deleteone MyDog DogName Alfred
1
% relformat $MyDog
+=======+------+---+
|DogName|Breed |Age|
|string |string|int|
+=======+------+---+
+=======+------+---+

3.4.4 Update

Like delete, update also comes in two forms for the same reason. For update,
an expression determines which tuples are to be updated. For updateone, the tuple
to update is determined by supplying the attribute values for an identifier. In both cases

30

a script is executed for each tuple to update. The script can modify the tuple to be
updated and whatever the value is at the end of the script is updated into the relvar.

% relvar update MyDog d {[tuple extract $d Age] > 2} {
tuple update d Age [expr {[tuple extract $d Age] + 1}]

}
1
% relvar updateone MyDog d {DogName Alfred} {

tuple update d Age [expr {[tuple extract $d Age] + 1}]
}

1
% relformat $MyDog
+=======+------------+---+
|DogName|Breed |Age|
|string |string |int|
+=======+------------+---+
|Joan |Afghan Hound|11 |
|Alfred |Dachshund |2 |
+=======+------------+---+

3.4.5 Introspection

The only introspection command provided by relvars is to obtain a list of the names of
all the relvars. The relvar names command returns a list of all the relvar names
in fully resolved form. Less than all the names can be obtain by supplying an optional
matching pattern argument.

3.5 Relvar Constraints
Up to this point we have been mainly concerned with the structure and operations that
can be performed on relations. Another important aspect of managing data is integrity.
We have seen some integrity constraints already. In this section we will discuss how
TclRAL constrains the values of relations helping to insure correct program operation.

First, since each attribute has a declared data type, TclRAL insures that the value
of each attribute can be interpreted as that data type. Indeed each tuple and relation
attribute is converted to the declared type when the value is of the attribute is set and
any attempt to set an attribute to a value that cannot be interpreted as the declared data
type will cause an error. One important reason for this is to insure that calculation
type operations on values (e.g. SUMMARIZE) will not result in errors because the data
values are not of the proper arithmetic type. Of course, any attribute can be set to be the
string type and all values are allowed. In this way, one can then choose to interpret
the string in a variety of ways as is commonly done in Tcl.

Another important constraint is that all relations must have at least one identifier
and duplicated tuples with respect to the identifiers of a relation are not allowed. Since
relations are fundamentally sets and sets do not have duplicate members, constraining

31

the body of a relation to have tuples that are unique with respect to the identifiers in-
sures all the amazing properties that sets have. Most of the work to insure the set aspect
of relations happens automatically in the various operators. For example, PROJECTing
a set of non-identifying attributes will result in a relation value that potentially can have
tuples elided since they would otherwise be duplicates. This is sometimes disconcert-
ing to programmers when they first begin working with relations but is essential to
maintain the fundamental set notion of relations.

Usually, the set of relvars that represent the semantics of a particular problem have
natural relationships that arise from the semantics of the problem domain. In our run-
ning example, a natural relationship exists between Dogs and Owners. In the relational
view, these relationships are implemented by having attributes in one relvar refer to
attributes in the related relvar. Reference in this case implies that the values of at-
tributes in the referring relvar have the same values as corresponding attributes in the
referred to relvar. The is the classic “foreign key” reference that is common in database
management systems.

Constraints in general are a means of insuring that the values of the relvars in a
program move from one valid state to another valid state. There are many ways that
constraints can be expressed but broadly we are interested in either procedural con-
straints or declarative constraints. Procedural constraints are those that are determined
by evaluating a relational expression. The system knows little if anything about the
contents of the expression associated with a procedural constraint. It only knows to
evaluate the expression and the constraint is satisfied if the expression evaluates to
true. Declarative constraints are those that are determined by the system based on a set
of assertions about the relationships between the relvars. TclRAL is concerned with
declarative constraints. This is not to say that procedural constraints are unimportant
and indeed TclRAL may support them in the future.

The declarative constraints supported by TclRAL are concerned with defining the
referential integrity among a set of relvars. Some relvars contain attributes whose val-
ues match those of attributes in another relvar. It is convenient to talk about a referring
relvar and a referred to relvar. In addition to the existence of some reference we are
also concerned with the multiplicity and conditionality of the reference. The notion of
multiplicity determines whether or not a given tuple in a relvar may be referred to more
than one time. The notion of conditionality determines whether or not a given tuple is
referred to at all. With the ideas of reference, multiplicity and conditionality, we can
build a very powerful set of declarations that can be used to insure the integrity of the
data in the relvars without having to explicitly program the checks.

3.5.1 Association Constraints

Association constraints declare that a set of attributes in a referring relvar have the
same values as the attributes which constitute an identifier in a referred to relvar. In our
running example, R2 is an association constraint. It is declared as:

relvar association R2\
Contact OwnerName + Owner OwnerName 1

32

This command declares an association type constraint named, R2, that exists between
the Contact relvar and the Owner relvar. Contact is the referring relvar and
Owner is the referred to relvar. One or more tuples of Contact (as indicated by the
+ argument) have values of Contact.OwnerName that are the same as some value
of Owner.OwnerName. Also every tuple of Owner (as indicated by the 1 argument)
has a value of Owner.OwnerName that is equal to the value of Contact.OwnerName
in exactly one tuple of Contact. Association constraints read left to right from re-
ferring relvar to referred to relvar. In general, the referring attributes can be a list of
attributes, with the number of referring attributes being equal to the number of referred
to attributes with the reference being between the corresponding attributes in the two
lists. However the referred to attributes must constitute an identifier of the referred to
relvar (Owner in this case). The multiplicity and conditionality are represented given
by the characters below, which are intended to be reminiscent of their usage in regular
expression syntax5:

+ ==> one or more (at least one)

* ==> zero or more (no constraint at all)

1 ==> exactly one

? ==> zero or one (at most one)

For referring relvars (e.g. Contact), the multiplicity and conditionality can be any of
the above four cases as dictated by the problem particulars. For the referred to relvars
(e.g. Owner), the multiplicity and conditionality must be one of either “1” or “?”.

The association type of constraint is very similar to the classic foreign key reference
constraint from database systems. In TclRAL it is a bit more expressive in terms of
being able to declare both the referring relvar and referred to relvar multiplicity and
conditionality.

3.5.2 Partition Constraints

Partition constraints declare a complete, disjoint set partitioning among a set of relvars.
In our running example R3 is a partition constraint. It is declared as:

relvar partition R3\
Contact {OwnerName ContactOrder}\
PhoneNumber {OwnerName ContactOrder}\
EmailAddress {OwnerName ContactOrder}

This constraint declares that Contact is a super-set of PhoneNumber and EmailAddress.
Conversely, PhoneNumber and EmailAddress are sub-sets of Contact. Every
tuple of a subset relvar refers to exactly one tuple of its super-set relvar and every tuple
in the super-set is referred to by exactly one tuple from exactly one of the subset rel-
vars. The referred to attributes in the super-set must constitute an identifier (as is the

5My thanks to my colleague, Paul Higham, for letting me blatantly steal this idea from him.

33

case for all sets of referred to attributes). The singularity of the partition means that
the referring attributes in the subset relvars may also be used as identifiers, however
TclRAL does not require that the subset referring attributes be declared as an identifier
(although they are in the example). Although it is possible to have only one subset
relvar in the constraint, in practice there is little utility in partitioning a set into a single
and therefore necessarily improper subset and such a partitioning is equivalent to a one
to one association constraint.

The partition constraint may appear on first glance to be the same as a set of “1
-> ?” type association constraints between the sub-type relvars and the super-type
relvar. However, such an arrangement would allow for the possibility of a tuple in the
super-type relvar to be unreferenced by any tuples from the sub-type relvars. It is this
situation that the partition constraint specifically covers.

It is convenient to consider a partition constraint as enforcing the “is a” concept in
the sense of:

Contact is a PhoneNumber or an EmailAddress

One consequence of the partition constraint is that the semijoins of all the sub-type
relvars to the super-type relvar have no intersection. However, it is important not con-
fuse the fundamental set partition idea behind a partition constraint with any concept of
inheritance, particularly inheritance based on inclusion polymorphism that is found in
many object oriented programming languages. This confusion is easily compounded
by the fact that it is common design practice to place attributes that are common among
the sub-type relvars as attributes of the super-type relvar since the singularity and un-
conditionality of the references make keeping track of common attributes in the super-
type relvar much more convenient. In TclRAL, there is no concept of inheritance at
all6. What is true is that every tuple in Contact is referred to by exactly one tuple in
either PhoneNumber or EmailAddress.

3.5.3 Correlation Constraints

Association constraints can describe the integrity constraints when relvars are related
in a one-to-one fashion or a one-to-many fashion. However, two other situations com-
monly arise. Some relvars are associated in a many-to-many fashion and sometimes
it is necessary to store information about the association itself. In these cases, simply
adding referring attributes to one relvar is not sufficient and a third relvar is required to
hold the required number of referring attributes or the information about the association
itself. Correlation constraints cover these situations. In our example, the Ownership
relvar is a correlation relvar that exhibits both of the properties described above. It
correlates the many-to-many association between Dog and Owner and the attribute
Ownership.Acquired is the year that an Owner became the owner of a Dog. It is
descriptive of the ownership relationship itself and not of either the Owner or the Dog.

Correlation constraints declare referential associations between two relvars that are
mediated by a third relvar, the correlating relvar. The correlating relvar contains refer-

6That is not to say inheritance is a bad thing or that TclRAL doesn’t need some concept of inheritance. It
is just not there currently.

34

ential attributes that refer to the two relvars that participate in the relationship. In our
running example, R1 is a correlation constraint. It is declared as:

relvar constraint R1 Ownership\
OwnerName + Owner OwnerName\
DogName * Dog DogName

This constraint declares that R1 is a correlation constraint between Owner and Dog

with the Ownership relvar mediating the correlation. For every tuple in Ownership,
Ownership.OwnerName refers to some tuple in Owner and Ownership.DogName
refers to some tuple in Dog. Further, every tuple in Owner is referred to one or more
times by the tuples in Ownership. For Dog, every tuple is referred to zero or more
times by some tuple in Ownership. Thus, the references by Ownership are uncondi-
tional and for this example, the multiplicity and conditionality of the constraint insures
that every Owner owns one or more Dogs, but that Dogs may exist that are not owned
by any Owner.

It is required that the attributes referred to by the correlation relvar constitute an
identifier for the participating relvar. This implies that the union of the attribute sets
that form the two references in the correlation relvar will also server to identify an tuple
in the correlation relvar. However, TclRAL does not insist that the correlation relvar
have an identifier that is the union of the two sets of referring attributes (although the
example does so).

Sometimes a correlation constraint needs to be even more confining in the sense that
every tuple of each of the participating relvars must be correlated. A matrix, for exam-
ple, is a correlation of every row and every column such that the correlation represents
the Cartesian product of the rows and columns. For this case, an optional -complete
argument may be given and this will insure that the number of tuples in the correlation
relvar equals the product of the number of tuples in the two related relvars.

Correlation constraints appear as if they can be decomposed into two association
constraints, as in:

relvar association R1-Owner\
Ownership OwnerName + Owner OwnerName 1

relvar association R1-Dog
Ownership DogName * Dog DogName 1

Indeed, replacing R1 by R1-Owner and R1-Dog will result in data values of the rel-
vars being constrained in the same way. However, TclRAL distinguishes association
constraints from correlation constraints because:

• Semantically there is only one relationship and that is between Owner and Dog.

• There is redundant information in the two ASSOCIATION definitions in that the
multiplicity of the referred to relvar is always 1.

• Two distinct association constraints cannot be used to declare a complete corre-
lation.

35

3.5.4 Constraint Evaluation

It is important, during the execution of a program, that modifications to the values of
the relvars transition from one consistent state to another consistent state. However,
frequently it requires more than one operation to make the constraints between relvars
consistent. For example, if two relvars that are associated on a one-to-one uncondi-
tional basis (e.g. relvar association X1 A B_ID 1 B B_ID 1), then any
insertion or deletion from one relvar must have a corresponding insertion or deletion
in the other. So we must have some concept of when it is appropriate to evaluate the
relvar constraints.

TclRAL evaluates constraints at the end of a relvar eval command or, if exe-
cution is outside of a relvar eval command, then at the end of any relvar command
that modifies a relvar. For example:

% relvar eval {
relvar insert Owner {OwnerName Tom Age 22}
relvar insert Ownership {OwnerName Tom DogName Jumper Acquired 2006}
relvar insert Contact {OwnerName Tom ContactOrder 1}
relvar insert PhoneNumber {OwnerName Tom ContactOrder 1 AreaCode 808\

Number 555-2357}
}

executes as a transaction that leaves the relvars consistent and:

% relvar insert Owner {OwnerName Tom Age 22}
for correlation ::R1(::Owner <== [+] ::Ownership [*] ==> ::Dog), in relvar ::Owner
tuple {OwnerName Tom Age 22} is not referenced by any tuple
for association ::R2(::Contact [+] ==> [1] ::Owner), in relvar ::Owner
tuple {OwnerName Tom Age 22} is not referenced by any tuple

is executed outside of a transaction and leaves the Ownership and Contact relvars
in an inconsistent state. Anytime a constraint evaluation fails, the values of the relvars
are rolled back to their previous state. The relvar eval command may be nested
to an arbitrary depth.

3.5.5 Constraint Introspection

In the previous sections we saw the commands needed to create constraints on relvars.
Here we examine the other constraint commands. All other constraint manipulation
is provided by the ::ral::relvar constraint option and the additional sub-
options.

Constraints may be deleted using relvar constraint delete. It is im-
portant to remember that all constraints that refer to a relvar must be deleted be-
fore the relvar itself may be deleted (i.e., only unconstrained relvars may be deleted).
The constraints that a particular relvar participates in is available from constraint
member. Introspection into the constraints is provided by constraint name and
constraint info. These commands give the names of the constraints and details
of their definitions.

% lsort [relvar constraint names]

36

::R1 ::R2 ::R3
% relvar constraint info R1
correlation ::R1 ::Ownership OwnerName + ::Owner OwnerName
DogName * ::Dog DogName
% relvar constraint info R3
partition ::R3 ::Contact {OwnerName ContactOrder}
::PhoneNumber {OwnerName ContactOrder} ::EmailAddress
{OwnerName ContactOrder}

3.6 Poor Man’s Persistence
TclRAL treats relation structured information in the same way that Tcl treats any data
stored in variables. There is no transparent persistence supported by the language.
Many different ways have grown up over time to provide data persistence to programs
that need to have information preserved between invocations. For some of the more
complex data structures in TCLLIB the packages provide the ability to serialize and de-
serialize the data structure so it can be stored and retrieved easily. TclRAL provides
three mechanisms to help saving relvar data between program invocations. Note here
that we are concerned with saving the state of the relvars and their constraints as the
significant program data that must persist. Since relation values have a string represen-
tation, they are easily stored and retrieved by conventional means.

• The serialize and deserialize commands produce a string that contains
all the information to save and restore the state of a set of relvars. Clearly, the
serialized string may be very large.

• The storeToMk and loadFromMk commands will save and load the relvars
in a Metakit database. Metakit is well suited to this storage not only because
of its efficiency but also because a Metakit view may be nested, easily handling
relation valued attributes.

• The dump command produces a Tcl script that when evaluated will reproduce
the relvar state. Storing data as the Tcl script that will reconstruct the data is an
old trick. It has some distinct disadvantages, but is very convenient when small
changes need to be made with your favorite text editor or when the dump is made
part of a Tcl package that, for example, initializes an empty schema to be used
by the package.

All of these mechanisms are unsatisfactory in the sense that they require a program to
explicitly manage the loading and storing of the relvar data and in that all the relvar
data must be able to be resident in memory at the same time. This ultimately limits the
scale of program to which TclRAL may be applied, but for a large class of applications
these limitations are not onerous and several million bytes of program data are easily
handled.

37

4 Other Approaches
There are many approaches to dealing with relation structured data. These have been
well summarized elsewhere[6]. We are going to choose only a couple of examples
to consider. There are also many other approaches to dealing with program data that
are quite fashionable (e.g. XML) that we will not consider here since they are not
relationally oriented. One way of comparing the TclRAL approach to others is simply
to divide the world into the SQL and non-SQL categories. For SQL based approaches
there is a vast industry that supports the language and its implementations. Tcl is
blessed with bindings to all the popular DBMS and so we will restrict our attentions
here to SQLite http://www.sqlite.org, which is of more particular interest
to Tcl’ers. In the non-SQL category, Ratcl http://www.vlerq.org/vlerq/
ratcl is very close in spirit to TclRAL.

I will not devote much space here to SQL based approaches as these have been
discussed at length in so very many places. SQLite is a phenomenal program that is so
useful in so many contexts as is evidenced by is enormous popularity. However, SQLite
is fundamentally about programming in SQL, despite the significant help that the Tcl
bindings to SQLite give to Tcl programmers. SQL has many pros and cons, but the
essential difficulty for a Tcl programmer (and most other programmers for that matter)
is that one has to know two different languages and divide the program requirements
between two distinct syntactic environments. When I program SQL from Tcl, which I
do on many occasions, I am inevitably frustrated by the syntax considerations of SQL.
I like to program in Tcl and I don’t want to have to know two languages when I am
already programming in my favorite one. This need to move between two different
programming environments is sometimes called an impedance mismatch. TclRAL has
as one of its primary goals the minimization of the mismatch between Tcl language
constructs and relational data model concepts.

Ratcl is part of a larger project known as Vlerq. Vlerq is a very interesting and
ambitious project that clearly intends to provide transparent, persistent, relationally
structured data to programs (among many other things). Ratcl provides many relational
operators, however there are some distinct design differences, namely:

• Ratcl is not purely relational. It does allow duplicate rows in a view. It also sup-
ports the notion of a row index and column index where values can be accessed
based on positional knowledge.

• Ratcl views do not have an external string representation. This makes it difficult
to hand views across interpreter boundaries. There are some special rules used
to manage the views when the Tcl variable holding the view goes out of scope.
This leads to some difficulties in situations where shimmering occurs.

• Expression evaluation within Ratcl operations has minor differences from the
Tcl core expr command and requires special definitions to supply additional
functions.

• Ratcl is truly a Tcl binding to the relational data structuring of Vlerq and that
binding ultimately limits the degree to which it may be tightly integrated into the
internal Tcl type system.

38

Those design differences in aside, Ratcl does provide virtually transparent persistence
with a very efficient back-end storage mechanism making it one of the more remarkable
approaches to non-SQL based relationally structured data, especially for Tcl program-
mers.

At this time it appears that Tcl is blessed with several different approaches to rela-
tionally structured data. This is analogous to the many different approaches to object
oriented programming that Tcl has. I see this as positive in the same way that sev-
eral different object oriented extensions have given the Tcl community the opportunity
to determine what works best under the conditions of actual practice. It is my hope
that the same distillation would take place with the various approaches to relationally
structured data.

5 Future Work
As of this writing, TclRAL is available as version 0.8. This version is a complete re-
write and refactoring of the previous version. It is hoped that this has yielded a more
easily maintained code base. This version also introduces a more consistent command
interface. However, much remains to be done.

Relvar tracing Variable tracing is an important mechanism in Tcl. Being able to place
traces on relvars is equally important.

Cascading update and delete Changing the values of referential attributes implies
making many changes to keep referential integrity. Since the that information
is known via the constraint definitions, TclRAL should be able to help make that
task less tedious.

Default values Relvar definitions are an appropriate place to specify default values
for attributes that may be used if an attribute value is otherwise missing. This
would save programs from having to keep track of default values on their own.
A related issue is that of system assigned identifiers.

Virtual relvars Version 0.7 of TclRAL had primitive support for virtual relvars (a.k.a
views). This support was removed from version 0.8. It should return in a future
version when a more complete implementation can be written to incorporate
updating and constraint evaluation properly.

Procedural constraints Currently only the declarative type of constraints may be de-
fined and enforced. It may be desirable to have some form of procedural con-
straint evaluation. Exactly how this would interact with relvar tracing is not
clear.

Transparent persistence Transparent persistence would greatly increase the scale of
problem to which TclRAL could be applied and is a desirable feature if unfortu-
nately rather complicated to implement well.

Code improvements There is always a need for more code refactoring, testing and
documentation.

39

Index
::ral, 7
::ral::relation, 13
::ral::relvar, 28
::ral::tuple, 11
::tcl::mathfunc, 21

assign, 12, 23
association constraints, 32
attribute, 4
attributes, 13, 22

cardinality, 22
choose, 15
closure, 6
conditionality, 32
constraint delete, 36
constraint member, 36
constraint name, 36
correlation constraints, 34
create, 11, 29

data type, 4
DBMS, 3
DEE, 21
degree, 13, 22
delete, 30
deleteone, 30
deserialize, 37
divide, 18
DUM, 21
dump, 37

eliminate, 11, 16
emptyof, 15
equal, 13
eval, 36
extend, 11, 20
extract, 12, 23

foreach, 28

get, 12
group, 26

heading, 13, 22

identifier, 5
identifiers, 22
impedence mismatch, 38
include, 14
insert, 29
intersect, 14
is, 14
isempty, 22
isnotempty, 22

join, 17

loadFromMk, 37

matrix, 24
minus, 14
multiplicity, 32

names, 31

partition constraints, 33
persistence, 37
project, 11, 15

rank, 25
Ratcl, 38
referred to relvar, 32
referring relvar, 32
relation, 5
relformat, 7, 24
relvar, 6
rename, 11, 28
report, 24
restrict, 15
restrictwith, 15

semijoin, 17
semiminus, 17
serialize, 37
set, 29
SQL, 38
SQLite, 38

40

storeToMk, 37
summarize, 20

tabular format, 6
tag, 26
tclose, 24
times, 17
transitive closure, 24
tuple, 4, 23, 27

ungroup, 27
union, 14
unset, 29
unwrap, 13
update, 12, 30
updateone, 30

Vlerq, 38

wrap, 13

41

References
[1] Date, C.J., An Introduction to Database Systems, 8th ed., ISBN 0-321-19784-4.

[2] Date, C.J. and Hugh Darwen, Databases, Types, and the Relational Model: The
Third Manifesto, ISBN 0-321-39942-0.

[3] Shlaer, Sally and Stephen J. Mellor, Object Oriented Analysis: Modeling the World
in Data, ISBN 0-13-629023-X

[4] Shlaer, Sally and Stephen J. Mellor, Object Oriented Analysis: Modeling the World
in States, ISBN 0-13-629940-7

[5] Mellor, Stephen J. and Marc J. Balcer, Executable UML: A Foundation for Model-
Driven Architecture, ISBN 0-201-74804-5

[6] Wippler, Jean-Claude, Relational algebra for Tcl: introducing Ratcl and Rasql,
http://www.equi4.com/docs/tcl2005e/ratcl.pdf

42

