
Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 1 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

TTccll33DD::  DDooiinngg  33DD  wwiitthh  TTccll  
 

 
 

1 INTRODUCTION................................................................................................................. 2 
1.1 Architecture overview.................................................................................................. 2 
1.2 Modules overview ....................................................................................................... 3 
1.3 Supported platforms.................................................................................................... 6 
1.4 Getting started ............................................................................................................ 6 

2 INSTALLATION.................................................................................................................. 9 
2.1 Installation of a binary distribution ............................................................................... 9 
2.2 Installation of a source distribution ............................................................................ 10 
2.3 Extending Tcl3D........................................................................................................ 14 

3 WRAPPING IN DETAIL .................................................................................................... 15 
3.1 Wrapping description ................................................................................................ 15 
3.2 Wrapping reference card........................................................................................... 19 

4 MODULES IN DETAIL...................................................................................................... 20 
4.1 tcl3dTogl: Enhanced Togl widget .............................................................................. 20 
4.2 tcl3dUtil: Tcl3D utility library ...................................................................................... 22 
4.3 tcl3dOgl: Wrapper for basic OpenGL functionality..................................................... 33 
4.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality ........................................ 34 
4.5 tcl3dCg: Wrapper for NVidia’s Cg shading language................................................. 35 
4.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library ............................................. 35 
4.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library ................................... 36 
4.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library....................................... 36 
4.9 tcl3dOde: Wrapper for the Open Dynamics Engine................................................... 37 
4.10 tcl3dGauges: Tcl3D package for displaying gauges.................................................. 37 
4.11 tcl3dDemoUtil: C/C++ based utilities for demo applications ...................................... 38 

5 MISCELLANEOUS TCL3D INFORMATION..................................................................... 39 
5.1 License information................................................................................................... 39 
5.2 Programming hints.................................................................................................... 39 
5.3 Open issues.............................................................................................................. 40 
5.4 Known bugs .............................................................................................................. 40 
5.5 Starpack internals ..................................................................................................... 40 

6 DEMO APPLICATIONS.................................................................................................... 42 

7 RELEASE NOTES............................................................................................................ 43 

8 REFERENCES.................................................................................................................. 46 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 2 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

1 Introduction 
 
Tcl3D enables the 3D functionality of OpenGL and various other portable 3D libraries at the Tcl 
scripting level.  
It’s main design requirement is to wrap existing 3D libraries without modification of their header 
files and with minimal manual code writing. The Tcl API should be a direct mapping of the 
C/C++ based library API’s, with a “natural” mapping of C types to according Tcl types. 
 
This is accomplished with SWIG [12], the Simplified Wrapper and Interface Generator. 
 
Tcl3D is based on ideas of Roger E. Critchlow, who formerly created an OpenGL Tcl binding 
called Frustum [2]. 

1.1 Architecture overview 
 
The Tcl3D package currently consists of the following building blocks, also called modules 
throughout the manual: 
  
Tcl3D core modules 
tcl3dTogl Enhanced Togl widget, a Tk widget for displaying OpenGL content. 
  
tcl3dUtil Tcl3D utility library (math functions, shapes, stop watch, et al). 
tcl3dOgl Wrapper for basic OpenGL functionality (GL Version 1.1, GLU Version 1.2). 
Tcl3D optional modules 
tcl3dOglExt Wrapper for enhanced OpenGL functionality (GL Version 1.2 through 2.0) and 

OpenGL extensions. 
  
tcl3dCg Wrapper for NVidia’s Cg shading language. 
tcl3dSDL Wrapper for the Simple DirectMedia Library. 
tcl3dFTGL Wrapper for the OpenGL Font Rendering library. 
tcl3dGl2ps Wrapper for the OpenGL To Postscript library. 
tcl3dOde Wrapper for the Open Dynamics Engine. 
  
tcl3dGauges Tcl3D package for displaying gauges. 
tcl3dDemoUtil C/C++ based utility functions for some of the demo applications. 

 
Each module is implemented as a separate Tcl package, similar to the Tcl standard library 
Tcllib. All Tcl3D subpackages can be loaded with a single package require tcl3d. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 3 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

The next figure shows the currently available modules of Tcl3D.  
 

The Tcl3D Modules

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Nvidia‘s Cg

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

tcl3dDemoUtil
C utilities for demos

 

1.2 Modules overview 
 
This chapter gives you a short overview of the modules available in Tcl3D. 
 
1.2.1 tcl3dTogl: Enhanced Togl widget 
 
This module is an enhanced version of the Togl [3] widget, a Tk widget for displaying OpenGL 
graphics. 
The following enhancements are currently implemented: 

• Callback functions in Tcl. 
• Better bitmap font support. 
• Multisampling support. 
• Swap Interval support. 

 
A detailled description of this module can be found in chapter 4.1. 
 
1.2.2 tcl3dUtil: Tcl3D utility library 
 
This module implements C/C++ and Tcl utilities offering functionality needed for 3D programs. It 
currently contains the following submodules: 

• 3D vector and transformation matrix module 
• Information module 
• Color names module 
• Large data module (tcl3dVector) 
• Image utility module 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 4 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

• Screen capture module 
• Timing module 
• 3D-model and shapes module 
• Virtual trackball module 

 
A detailled description of this module can be found in chapter 4.2. 
 
1.2.3 tcl3dOgl: Wrapper for basic OpenGL functionality 
 
This module wraps OpenGL functionality based on OpenGL Version 1.1, as well as the GLU 
library functions based on Version 1.2. This is due to the fact, that Windows still does not 
support newer versions of OpenGL. OpenGL features defined in newer versions have to be 
accessed via the OpenGL extension mechanism on Windows. 
Standard shapes (box, sphere, cylinder, teapot, …) with a GLUT compatible syntax are supplied 
here, too. 
 
A detailled description of this module can be found in chapter 4.3. 
 
1.2.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality 
 
This module wraps OpenGL functionality based on versions 1.2 till 2.0, lots of OpenGL 
extensions not contained in the OpenGL core, as well as Windows specific extensions. It is 
implemented with the help of the OglExt [24] library. 
The files of this module are contained in the same directory as the basic OpenGL wrapper files 
for practial compilation reasons. 
 
This is an optional module. 
 
A detailled description of this module can be found in chapter 4.4. 
 
1.2.5 tcl3dCg: Wrapper for NVidia’s Cg shading language 
 
This module wraps NVidia’s Cg [18] shader library based on version 1.5.0015 and adds some 
Cg related utility procedures.  
 
This is an optional module. 
 
A detailled description of this module can be found in chapter 4.5. 
 
1.2.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library 
 
This module wraps the SDL [19] library based on version 1.2.9 and adds some SDL related 
utility procedures. 
Currently only the functions related to joystick and CD-ROM handling have been wrapped and 
tested. 
 
This is an optional module. 
 
A detailled description of this module can be found in chapter 4.6. 
 
1.2.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library 
 
This module wraps the FTGL [20] library based on version 2.1.2 and adds some FTGL related 
utility procedures. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 5 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

The following font types are available: 
• Bitmap font (2D) 
• Pixmap font (2D) 
• Outline font 
• Polygon font 
• Texture font 
• Extruded font 

 
This is an optional module. 
 
A detailled description of this module can be found in chapter 4.7. 
 
1.2.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library 
 
This module wraps the GL2PS [22] library based on version 1.3.2 and adds some GL2PS 
related utility procedures. 
 
GL2PS is a C library providing high quality vector output (PostScript, PDF, SVG) for any 
OpenGL application.  
 
This is an optional module. 
 
A detailled description of this module can be found in chapter 4.8. 
 
1.2.9 tcl3dOde: Wrapper for the Open Dynamics Engine 
 
This module wraps the OpenSource physics engine ODE [23] based on version 0.7 and adds 
some ODE related utility procedures. 
 
This is an optional module. 
 
Note This module is still work in progress. It’s interface may change in the future. 
 
A detailled description of this module can be found in chapter 4.9. 
 
1.2.10 tcl3dGauges: Tcl3D package for displaying gauges 
 
This package implements the following gauges as a pure Tcl package: airspeed, altimeter, 
compass, tiltmeter. 
 
This is an optional module. 
   
A detailled description of this module can be found in chapter 4.10. 
 
1.2.11 tcl3dDemoUtil: C/C++ based utilities for demo applications 
 
This package implements several C/C++ based utility functions for some of the demo 
applications. 
 
This is an optional module. 
   
A detailled description of this module can be found in chapter 4.11. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 6 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

1.3 Supported platforms 
 
The following table gives an overview, which modules are available on the supported operating 
systems. It also tries to give an indication on the quality of the module. 
 
 Windows (32-bit) Linux (32-bit) Mac OS X (Intel) IRIX 6.5 (n32) 
Module Wrap Test Wrap Test Wrap Test Wrap Test 
tcl3dTogl ++ ++ ++ ++ ++ + ++ + 
tcl3dUtil ++ ++ ++ ++ ++ ++ ++ + 
tcl3dOgl ++ ++ ++ ++ ++ + ++ + 
tcl3dOglExt ++ ++ ++ ++ ++ + ++ + 
tcl3dCg ++ ++ ++ ++ ++ + - - 
tcl3dSDL + ++ + ++ + 0 + + 
tcl3dFTGL ++ + ++ + ++ 0 ++ + 
tcl3dGl2ps ++ + ++ + ++ + ++ + 
tcl3dOde + 0 + 0 + 0 + 0 
tcl3dGauges ++ + ++ + ++ + ++ + 
tcl3dDemoUtil ++ ++ ++ ++ ++ ++ ++ + 

 
Legend: 
 
Column Wrap 
++ Interface of module fully wrapped. 
+ Interface of module partially wrapped. 
0 Module not yet wrapped. 
- Module not available for the platform. 

 
Column Test 
++ Module extensively tested. No errors known. 
+ Module tested. Minor errors known. 
0 Module in work. 
- Module not available for the platform. 

 
Short summary:  
The Windows and Linux ports are supported best and are regularly tested on different hardware 
combinations.  
On IRIX every module (except Cg, which is not available for SGI) has been wrapped and seems 
to be running fine, but no extensive tests are made.  
The OS X port is in it's first stage, and needs another iteration of extensive testing.  

1.4 Getting started 
 
The easiest way to get started, is using a Tcl3D starpack. Starpacks for Windows, Linux, IRIX 
and Mac OS X (Intel based) can be downloaded from http://www.tcl3d.org/. See chapter 2 for a 
detailled information about all available Tcl3D packages. 
 
The only prerequisite needed for using the Tcl3D starpack distribution is an installed OpenGL 
driver. Everything else - even the Tcl interpreter - is contained in the starpack. 
 
The starpacks are distributed as a ZIP-compressed file. Unzipping this file creates a directory 
containing the starpack tcl3dsh-OS-VERSION. Distributions for Unix systems contain an 
additional shell script tcl3dsh-OS-VERSION.sh, which should be used for starting the Tcl3D 
starpack.  

http://www.tcl3d.org/


Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 7 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

After starting the starpack, a toplevel Tk window labeled Tcl3D as well as a console window 
labeled Tcl3D Console should appear, similar to starting a wish shell.  
The console window should contain the following two message lines as well as a tcl3d prompt: 
Type "pres" to start Tcl3D presentation. 
Type "inst" to write the Tcl3D installation packages to disk. 
tcl3d> 

 
Typing pres in the console window, starts the Tcl3D presentation showing an introductionary 
animation as shown in the screenshot below. The available key and mouse bindings are shown 
in the console window. 
 

 
 
Binding Action 
Key-Escape  Exit the program 
Key-Left Move text to the left 
Key-Right Move text to the right 
Key-i Increase distance from viewer 
Key-d Decrease distance from viewer 
Key-Up Increase speed 
Key-Down Decrease speed 
Key-plus Rotate text 
Key-minus Rotate text (other direction) 
Key-space Set speed of text to zero 
Key-r Reset speed and position of text 
  
Mouse-1 Start animation 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 8 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Mouse-2 Stop animation 
 
The presentation can be started alternatively by using -pres as a command line parameter to 
the Tcl3D starpack. 
 
Description of the Tcl3D starpack 
 
The Starpack tcl3dsh can be used as 

• a standalone executable like wish with builtin Tcl3D 
• a test and presentation program for Tcl3D 
• an installer for the Tcl3D specific libraries, the external libraries and demo programs 

 
The Tcl3D presentation is divided into 3 sections: 

• Information and installation 
• Help and documentation 
• Demos and tutorials 

 
The information menu gives you access to different types of information (OpenGL, Tcl3D, ...), 
which are shown as animated OpenGL text. More detailed information can be obtained by using 
the tcl3dInfo.tcl script located in the demos directory in category Tcl3DSpecific. 
 
The demo and tutorials menu has lots of sample programs, divided into 3 categories: 

• Library specific demos contains scripts showing features specific to the wrapped library. 
• Tutorials and books contains scripts, which have been converted from C to Tcl3D, 

coming from the following sources: 
OpenGL Red Book 
NeHe tutorials 
Kevin Harris CodeSampler web site 
Vahid Kazemi’s GameProgrammer page 

• Tcl3D specific demos contains scripts demonstrating and testing Tcl3D specific features. 
 
Some notes about the demos contained in the Starpack: 
 
Depending on your operating system, graphics card and driver, some of the programs may 
raise an error message or will not work properly. 
As the demos contained within the Starpack were written to be standalone programs, no error 
recovery was implemented. The programs typically just quit. This is, why you may get a 
confirmation window from time to time, asking you, if you want to quit the show. 
In most cases, you may proceed with other demos, but be warned, that strange effects may 
occur. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 9 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

2 Installation 
 
Precompiled packages for Windows, Linux, Intel based Mac OS X and IRIX, the source code of 
the Tcl3D package as well as test and demonstration programs can be retrieved from the 
download section of the Tcl3D home page [14].  
 
Please report problems or errors to info@tcl3d.org. 
 
The following distribution packages are currently available. Which packages are needed, 
depends on the proposed usage. See the next chapters for detailed information. 
 
Documents 
Tcl3D-Manual-VERSION.pdf Tcl3D user manual (this document). 
Tcl3D-DemoRef-VERSION.pdf Tcl3D demo programs reference. 
Demos 
tcl3d-demos-VERSION.zip Tcl3D demo sources. 
tcl3d-demoimgs-VERSION.zip Screenshots of all Tcl3D demo programs. 
Starpacks 
tcl3dsh-win32-VERSION.zip Tcl3D Starpack for Windows. 
tcl3dsh-Linux-VERSION.zip Tcl3D Starpack for Linux. 
tcl3dsh-Darwin-VERSION.zip Tcl3D Starpack for Mac OS X. 
tcl3dsh-IRIX64-VERSION.zip Tcl3D Starpack for SGI IRIX. 
Binary packages 
tcl3d-win32-VERSION.zip DLL's of external libraries and Tcl3D package for Windows. 
tcl3d-Linux-VERSION.zip DSO's of external libraries and Tcl3D package for Linux. 
tcl3d-Darwin-VERSION.zip DSO's of external libraries and Tcl3D package for Mac OS X.
tcl3d-IRIX64-VERSION.zip DSO's of external libraries and Tcl3D package for SGI IRIX. 
Sources 
tcl3d-src-VERSION.zip Tcl3D source distribution. 
tcl3d-starpack-VERSION.zip Tcl3D sources for creating Starpacks. 

 
The term VERSION is a template for the Tcl3D version number, i.e. for the currently available 
version it must be replaced with 0.3.2. 

2.1 Installation of a binary distribution 
 
There are two possibilities to install a Tcl3D binary distribution onto your computer. 
 
2.1.1 Installation from a Tcl3D starpack 
 
The following prerequisites are needed when installing from a Tcl3D starpack: 

• An OpenGL driver suitable for your graphic card. I recommend to download and install an 
actual OpenGL driver from the manufacturer of your graphic card, especially if intending to 
write shader programs in GLSL or Cg. 

 
Download, unzip and start a Tcl3D starpack presentation as described in chapter 1.4. 
 
In the right menu pane, you will see 3 buttons in the Installation and Information menu. 
These allow you to extract the Tcl3D packages, the external libraries and the demo programs 
onto the file system, so you can use Tcl3D from tclsh or wish. 

mailto:info@tcl3d.org


Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 10 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
• The Tcl3D package folder (tcl3d0.3.2) should be copied into the library section of your Tcl  

installation (ex. C:\Tcl\lib). If write access to this Tcl directory is not permitted, you can 
copy the tcl3d0.3.2 directory somewhere else, eg. C:\mytcl3d or /home/user/mytcl3d. To 
have Tcl look for packages in this location, you must set the TCLLIBPATH environment 
variable with the above specified directory name as value. Note, that on Windows the path 
must be written with slashes (not backslashes): set TCLLIBPATH = C:/mytcl3d 

• The files contained in the external libraries folder (extlibs) should be copied into a 
directory, which is listed in your PATH environment variable (Windows) or your 
LD_LIBRARY_PATH environment variable (Unix). 

• The demonstration programs folder (demos) can be copied to any convenient place of 
your file system. 

 
Now you are ready for using Tcl3D from standard Tcl by starting a tclsh or wish program and 
issuing the following command: package require tcl3d. 
 
Alternatively you can extract the 3 installation folders with one of the following methods: 

• Start the Tcl3D starpack and issue the command inst in the console. 
• Start the Tcl3D starpack with command line parameter -inst. 

Both steps will copy the 3 above described package folders into the directory containing the 
starpack. 
  
2.1.2 Installation from a binary package 
 
The following prerequisites are needed when using a Tcl3D binary package: 

• An OpenGL driver suitable for your graphic card. I recommend to download and install an 
actual OpenGL driver from the manufacturer of your graphic card, especially if intending to 
write shader programs in GLSL or Cg. 

• A Tcl/Tk version greater or equal to 8.4. 
• The Img extension is needed to have access to various image formats, which are used as 

OpenGL textures.  
• For some demos the snack extension is used. 
• To generate screenshots from the Tcl3D presentation, the Twapi extension is needed on 

Windows.  
I therefore recommend to use an actual ActiveTcl distribution [17], which contains all of the 
above listed Tcl extensions. 
 
Download and unzip the following distribution packages suitable for your operating system: 

• tcl3d-OS-0.3.2.zip 

• tcl3d-demos-0.3.2.zip 
 
Then copy the resulting folders into the appropriate directories as described in the previous 
chapter. 

2.2 Installation of a source distribution 
 
This chapter outlines the general process of compiling, customizing and installing the Tcl3D 
package. See the file Readme.txt in the source code distribution for additional up-to-date 
information. 
 
2.2.1 Step 1: Prerequisites 
 
The following prerequisites are needed when using a Tcl3D source package: 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 11 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

• An OpenGL driver suitable for your graphic card. I recommend to download and install an 
actual OpenGL driver from the manufacturer of your graphic card, especially if intending to 
write shader programs in GLSL or Cg. 

• A Tcl/Tk version greater or equal to 8.4. 
• The Img extension is needed to have access to various image formats, which are used as 

OpenGL textures.  
• For some demos the snack extension is used. 
• To generate screenshots from the Tcl3D presentation, the Twapi extension is needed on 

Windows.  
I therefore recommend to use an actual ActiveTcl distribution [17], which contains all of the 
above listed Tcl extensions. 
 
To build the Tcl3D from source, you also need the following tools installed and accessable from 
the command line: 
 
Tool Version URL 
GNU make >= 3.79 http://www.gnu.org/ 
SWIG >= 1.3.19 http://www.swig.org/ 

 
Note 

• A binary version of SWIG version 1.3.24 for IRIX is available from my private home page 
http://www.posoft.de/. 

• Tcl3D is currently generated and tested with versions 1.3.24 and 1.3.29. These versions 
are recommended. 

• See chapter 5.4 for known bugs with other SWIG versions. 
 
Download and unzip the following distribution packages suitable for your operating system: 

• tcl3d-src-0.3.2.zip 
• tcl3d-OS-0.3.2.zip 
• tcl3d-demos-0.3.2.zip 
• tcl3d-starpack-0.3.2.zip 

 
Example installation procedures 
 
Version 1: Tcl3D-Basic: OpenGL support, no external libraries 
Needed: tcl3d-src-0.3.2.zip 

Recommended: tcl3d-demos.0.3.2.zip 
 
Unzip tcl3d-src-0.3.2.zip in a folder of your choice. This creates a new folder tcl3d 
containing the sources. Unzip tcl3d-demos.0.3.2.zip into the new folder tcl3d. 
If only basic OGL support is needed, comment all WRAP_* macros in file make.wrap. 
For extended OpenGL support, leave the macro WRAP_OGLEXT uncommented. See the 
chapter 2.2.3 Customization for details. 
The presentation framework presentation.tcl works, but the texts are displayed as 2D bitmaps 
only. Most OpenGL only demos should work. 
 
Version 2: Tcl3D-Complete: OpenGL support plus optional external libraries 
Needed: tcl3d-src-0.3.2.zip 

Needed: tcl3d-OS-0.3.2.zip 

Recommended: tcl3d-demos.0.3.2.zip 
 
Unzip tcl3d-src-0.3.2.zip in a folder of your choice. This creates a new folder tcl3d 
containing the sources. Unzip tcl3d-demos.0.3.2.zip into the new folder tcl3d. Unzip tcl3d-
OS-0.3.2.zip into a temporary folder. Then copy the dynamic libraries contained in subfolder 
extlibs/OS into a directory, which is listed in your PATH environment variable (Windows) or 
your LD_LIBRARY_PATH environment variable (Unix). 

http://www.gnu.org/
http://www.swig.org/
http://www.posoft.de/


Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 12 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

If you want to build the tcl3dCg module, you have to download the Cg toolkit version 1.5.0015 
from [18]. After installation, copy all the Cg header files into the tcl3dCg/Cg directory. These 
files are not included because of license issues. The dynamic libraries of Cg are included in the 
Tcl3D distribution package tcl3d-OS-0.3.2.zip. 
If you want to wrap only a sub-set of the supported optional modules, edit the make.wrap file 
appropriately. See the chapter 2.2.3 Customization for details. 
 
Version 3: Tcl3D-Star: Tcl3D-Basic or Tcl3D-Complete with Starpack support 
Needed: Installation of Version 1 or 2 

Needed: tcl3d-starpack-0.3.2.zip 

 
Perform the steps as described for Version 1 or 2. Additionally copy the folder extlibs contained 
in distribution package tcl3d-OS-0.3.2.zip into the source code folder tcl3d. Then unzip 
tcl3d-starpack-0.3.2.zip into the source code folder tcl3d. 
Note 
The starpack distribution package contains Tclkits for all supported operating systems, as well 
as supporting Tcl packages needed for the Tcl3D demonstration programs. 
 
2.2.2 Step 2: Configuration 
 
Before compiling, edit the appropriate config_* file to fit your platform/compiler combination: 
 
Operating system Compiler Configuration file 
Windows Visual C++ 6.0, 7.1, 8.0 config_win32 
Windows CygWin (gcc) config_cygwin 
Windows MinGW (gcc) config_msys 
Linux gcc config_Linux 
Mac OS X gcc config_Darwin 
SGI IRIX 6.5 gcc, MIPS Pro 7.3 config_IRIX64 

 
Note For Unix systems, the name after the underscore is the name derived from the Unix 
command uname. 
 
The following lines in the config_* files may be edited: 
 
WITH_DEBUG If you don't want debug information, remove ALL characters after the 

equal sign. 
INSTDIR Set to your prefered installation directory. 
TCLDIR Set to where your Tcl installation is. 
TCLMINOR Set to your installed Tcl version. 

 
Examples: 
 
Compile with debugging information. The Tcl installation is located in /usr/local. We install the 
Tcl3D package into the same location as the Tcl distribution. The installed Tcl version is 8.4. 
WITH_DEBUG = 1 
INSTDIR  = /usr/local 
TCLDIR   = /usr/local 
TCLMINOR = 4 

 
Compile without debugging information. The Tcl installation is located in C:\Programme\Tcl. 
We install the Tcl3D package into a separate directory. The installed Tcl version is 8.4. 
WITH_DEBUG = 
INSTDIR  = C:\Programme\Tcl 
TCLDIR   = C:\Programme\poSoft 
TCLMINOR = 4 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 13 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
Instead of editing the configuration file, you may alternatively create a file called make.private 
in the top level directory of Tcl3D and add lines according to your needs. 
ifeq ($(MACHINE),win32) 
INSTDIR = F:\Programme\poSoft 
TCLDIR  = F:\Programme\Tcl 
endif 
ifeq ($(CONFIG),mingw) 
INSTDIR = F:/Programme/poSoft 
TCLDIR  = F:/Programme/Tcl 
endif 

 
2.2.3 Step 3: Customization 
 
The optional modules can be included or excluded from the comilation step by setting the 
following macros in file make.wrap in the top level directory of the Tcl3D source tree. 
 
Macro name Description Additional check file 
WRAP_OGLEXT Customize support for tcl3dOglExt OglExt/glext.h 
WRAP_CG Customize support for tcl3dCg Cg/cg.h 
WRAP_SDL Customize support for tcl3dSDL include/SDL.h 
WRAP_FTGL Customize support for tcl3dFTGL include/FTGL.h 
WRAP_GL2PS Customize support for tcl3dGl2ps gl2ps.h 
WRAP_ODE Customize support for tcl3dOde ode/ode.h 

 
Note 
Do not set a macro to 0, but comment the corresponding line (i.e. undefine), as shown in the 
following example: 
WRAP_FEATURE = 1  enables the feature 
# WRAP_FEATURE = 1 disables the feature 
 
Each Makefile of an optional module additionally checks for the existence of an important 
include file (as listed in column "Additional check file") to enable extension support for Tcl3D. 
 
2.2.4 Step 4: Compilation and installation 
 
The following commands should compile and install the Tcl3D package: 
> gmake 
> gmake install 

 
The make process prints out lines about the success of wrapping optional modules: 
Tcl3D built with Cg support 
Tcl3D built without ODE support 
... 
 
The starpack is not generated by default. If you installed the starpack distribution package, you 
have to go into the directory starpack and call make there. 
Note 
To test the generated starpack, copy it into a temporary directory and start it from there. 
 
First installation tests 
 
Start a tclsh or wish shell and type package require tcl3d. 
Use the procedures tcl3dShowPackageInfo for a graphical package information or 
tcl3dGetPackageInfo for textual package information. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 14 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

If these procedures fails, you may try the low level information supplied in the Tcl array 
__tcl3dPkgInfo: 
 
> parray __tcl3dPkgInfo 
__tcl3dPkgInfo(tcl3dcg,avail)         = 0 
__tcl3dPkgInfo(tcl3dcg,version)       = Cg library not wrapped 
__tcl3dPkgInfo(tcl3ddemoutil,avail)   = 1 
__tcl3dPkgInfo(tcl3ddemoutil,version) = 0.3.2 

 
Version Tcl3D-Basic should print out the following lines, when calling tcl3dGetPackageInfo: 
{tcl3dcg 0 {Cg library not wrapped} {}} 
{tcl3ddemoutil 1 0.3.2 {}} 
{tcl3dftgl 0 {FTGL library not wrapped} {}}  
{tcl3dgauges 1 0.3.2 {}}  
{tcl3dgl2ps 0 {gl2ps library not wrapped} {}}  
{tcl3dode 0 {ODE library not wrapped} {}}  
{tcl3dogl 1 0.3.2 {}}  
{tcl3dsdl 0 {SDL library not wrapped} {}}  
{tcl3dtogl 1 0.3.2 {}} {tcl3dutil 1 0.3.2 {}} 

 
Version Tcl3D-Complete should print out the following lines, when calling tcl3dGetPackageInfo: 
{tcl3dcg 1 0.3.2 1.5.0015}  
{tcl3ddemoutil 1 0.3.2 {}}  
{tcl3dftgl 1 0.3.2 2.1.2}  
{tcl3dgauges 1 0.3.2 {}}  
{tcl3dgl2ps 1 0.3.2 1.3.2}  
{tcl3dode 1 0.3.2 0.7.0}  
{tcl3dogl 1 0.3.2 {}}  
{tcl3dsdl 1 0.3.2 1.2.9}  
{tcl3dtogl 1 0.3.2 {}}  
{tcl3dutil 1 0.3.2 {}} 

2.3 Extending Tcl3D 
 

TODO 
 
2.3.1 Extending with a Tcl utility 
 
2.3.2 Extending with a C/C++ utility 
 
2.3.3 Extending with a newer version of an external library 
 
2.3.4 Extending with a new external library 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 15 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

3 Wrapping in detail 
 
This chapter explains, how parameters and return values of the C and C++-based library 
functions are mapped to Tcl command parameters and return values. The intention of the 
wrapping mechanism was to be as close to the C interface and use Tcl standard types 
wherever possible:  

• C functions are mapped to Tcl commands. 
• C constants are mapped to Tcl global variables. 
• Some C enumerations are mapped to Tcl global variables and are inserted into a Tcl hash 

table for lookup by name. 

3.1 Wrapping description 
 
Conventions used in this chapter: 
 

• Every type of parameter is explained with a typical example from the OpenGL wrapping. 
• The notation TYPE stands for any scalar value (char, int, float, enum etc. as well as 

inherited scalar types like GLboolean, GLint, GLfloat, etc.). It is not used for type void or 
GLvoid. 

• The notation STRUCT stands for any C struct. 
• The decision how to map C to Tcl types was mainly inspired to fit the needs of the OpenGL 

library best. The same conventions are used for the optional modules, too.  
 
3.1.1 Scalar input parameters 
 
The mapping of most scalar types is handled by SWIG standard typemaps. 
 
Scalar types as function input parameter must be supplied as numerical value. 
 
Input parameter TYPE 
C declaration void glTranslatef (GLfloat x, GLfloat y, GLfloat z); 

C example glTranslatef (1.0, 2.0, 3.0); 
glTranslatef (x, y, z); 

Tcl example glTranslatef 1.0 2.0 3.0 
glTranslatef $x $y $z 

 
 
The mapping of the following enumerations is handled differently (see file tcl3dConstHash.i). 
They can be specified either as numerical value like the other scalar types, or additionally as a 
name identical to the enumeration name.  

• GLboolean 
• GLenum 
• GLbitfield 
• CGenum 
• CGGLenum 
• CGprofile 
• CGtype 
• CGresource 

• CGerror 
 
The mapping is explained using the 3 OpenGL types. The Cg types are handled accordingly. 
 
GLenum as function input parameter can be supplied as numerical value or as name. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 16 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Input parameter GLenum 
C declaration void glEnable (GLenum cap); 

C example glEnable (GL_BLEND); 

Tcl example glEnable GL_BLEND 
glEnable $::GL_BLEND 

 
GLbitfield as function input parameter can be supplied as numerical value or as name. 
 
Note 
A combination of bit masks has to be specified as a numerical value like this: 
glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT] 
 
Input parameter GLbitfield 
C declaration void glClear (GLbitfield mask); 

C example glClear (GL_COLOR_BUFFER_BIT); 

Tcl example glClear GL_COLOR_BUFFER_BIT 
glClear $::GL_COLOR_BUFFER_BIT 

 
GLboolean as function input parameter can be supplied as numerical value or as name. 
 
Input parameter GLboolean 
C declaration void glEdgeFlag (GLboolean flag); 

C example glEdgeFlag (GL_TRUE); 

Tcl example glEdgeFlag GL_TRUE 
glEdgeFlag $::GL_TRUE 

 
3.1.2 Pointer input parameters 
 
The mapping of const TYPE pointers is handled in file tcl3dPointer.i. 
 
Constant pointers as function input parameter must be supplied as a Tcl list. 
 
Input parameter const TYPE[SIZE], const TYPE * 
C declaration void glMaterialfv (GLenum face, GLenum pname,  

                   const GLfloat *params); 

C example GLfloat mat_diffuse = { 0.7, 0.7, 0.7, 1.0 }; 
glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse) ; 

Tcl example set mat_diffuse { 0.7 0.7 0.7 1.0 } 
glMaterialfv GL_FRONT GL_DIFFUSE $mat_diffuse 

 
Note  
• This type of parameter is typically used to specify small vectors (2D, 3D and 4D) as well as 

control points for NURBS. 
• Unlike in the C version, specifying data with the scalar version of a function (ex. 

glVertex3f) is faster than the vector version (ex. glVertex3fv) in Tcl. 
• Tcl lists given as parameters to a Tcl3D function have to be flat, i.e. they are not allowed to 

contain sublists. When working with lists of lists, you have to flatten the list, before 
supplying it as an input parameter to a Tcl3D function. One way to do this is shown in the 
example below. 

 
 set ctrlpoints { 
      {-4.0 -4.0 0.0} {-2.0 4.0 0.0}  
      { 2.0 -4.0 0.0} { 4.0 4.0 0.0} 
 } 
 glMap1f GL_MAP1_VERTEX_3 0.0 1.0 3 4 [join $ctrlpoints] 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 17 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
 
The mapping of const void pointers is handled by SWIG standard typemaps. 
 
Constant void pointers as function input parameter must be given as a pointer to a contiguous 
piece of memory of appropriate size. 
 
Input parameter const void[SIZE], const void * 
C declaration void glVertexPointer (GLint size, GLenum type, 

                      GLsizei stride, const GLvoid *ptr); 

C example 
static GLint vertices[] =  
       { 25,  25, 100, 325, 175, 25, 
        175, 325, 250,  25, 325, 325}; 
glVertexPointer (2, GL_INT, 0, vertices); 

Tcl example 
set vertices [tcl3dVectorFromArgs GLint \ 
        25  25  100 325  175  25 \ 
       175 325  250  25  325 325] 
glVertexPointer 2 GL_INT 0 $::vertices 

 
Note 
• The allocation of usable memory can be accomplished with the use of the tcl3dVector 

command, which is described in chapter 4.2. 
• This type of parameter is typically used to supply image data or vertex arrays. See also the 

description of the image utility module in chapter 4.2. 
 
3.1.3 Output parameters 
 
The mapping of non-constant pointers is handled by the SWIG standard typemaps. 
 
Non-constant pointers as function output parameter must be given as a pointer to a contiguous 
piece of memory of appropriate size (tcl3dVector). See note above. 
 
Output parameter TYPE[SIZE], void[SIZE], TYPE *, void * 

C declaration 

void glGetFloatv (GLenum pname, GLfloat *params); 
 
void glReadPixels (GLint x, GLint y, GLsizei width,    
                   GLsizei height, GLenum format,  
                   GLenum type, GLvoid *pixels); 

C example 

GLfloat values[2]; 
glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values); 
 
GLubyte *vec = malloc (w * h * 3); 
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, vec); 

Tcl example 

set values [tcl3dVector GLfloat 2] 
glGetFloatv GL_LINE_WIDTH_GRANULARITY $values 
 
set vec [tcl3dVector GLubyte [expr $w * $h * 3]] 
glReadPixels 0 0 $w $h GL_RGB GL_UNSIGNED_BYTE $vec 

 
3.1.4 Function return values 
 
The mapping of return values is handled by the SWIG standard typemaps. 
 
Scalar return values are returned as the numerical value. 
Pointer to structs are returned with the standard SWIG mechanism of encoding the pointer in an 
ASCII string. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 18 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Function return TYPE, STRUCT * 

C declaration 
GLuint glGenLists (GLsizei range); 
 
GLUnurbs* gluNewNurbsRenderer (void); 

C example 
GLuint sphereList = glGenLists(1); 
 
GLUnurbsObj *theNurb = gluNewNurbsRenderer(); 
gluNurbsProperty (theNurb, GLU_SAMPLING_TOLERANCE, 25.0); 

Tcl example 
set sphereList [glGenLists 1] 
 
set theNurb [gluNewNurbsRenderer] 
gluNurbsProperty $theNurb GLU_SAMPLING_TOLERANCE 25.0 

 
The next lines show an example of SWIG’s pointer encoding: 
 
% set theNurb [gluNewNurbsRenderer] 
% puts $theNurb 
_10fa1500_p_GLUnurbs 

 
The returned name can only be used in functions expecting a pointer to the appropriate struct. 

 
3.1.5 Exceptions from the standard rules 
 
The GLU library as specified in header file glu.h does not provide an API, that is using the 
const specifier as consistent as the GL core library. So one class of function parameters 
(TYPE*) is handled differently with GLU functions. Arguments of type TYPE* are used both as 
input and output parameters in the C version. In GLU 1.2 most functions use this type as input 
parameter. Only two functions use this type as an output parameter.  
So for GLU functions there is the exception, that TYPE* is considered an input parameter and 
therefore is wrapped as a Tcl list. 
 
Input parameter TYPE *   (GLU only) 

C declaration 
void gluNurbsCurve (GLUnurbs *nobj, GLint nknots,  
                    GLfloat *knot, GLint stride,  
                    GLfloat *ctlarray, GLint order, 
                    GLenum type); 

C example 

GLfloat curvePt[4][2] = {{0.25, 0.5}, {0.25, 0.75}, 
                         {0.75, 0.75}, {0.75, 0.5}}; 
GLfloat curveKnots[8] = {0.0, 0.0, 0.0, 0.0, 
                         1.0, 1.0, 1.0, 1.0}; 
gluNurbsCurve (theNurb, 8, curveKnots, 2,  
               &curvePt[0][0], 4, GLU_MAP1_TRIM_2); 

Tcl example 
set curvePt {0.25 0.5  0.25 0.75  0.75 0.75  0.75 0.5} 
set curveKnots {0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0} 
gluNurbsCurve $theNurb 8 $curveKnots 2 $curvePt 4 
              GLU_MAP1_TRIM_2 

 
The two aforementioned functions, which provide output parameters with TYPE* are  
gluProject and gluUnProject. These are handled as a special case in the SWIG interface file 
glu.i. The 3 output parameters are given the keyword OUTPUT, so SWIG handles them in a 
special way: SWIG builds a list consisting of the normal function return value, and all 
parameters marked with that keyword. This list will be the return value of the corresponding Tcl 
command.  
 
Definition in glu.h Redefinition in SWIG interface file glu.i 
extern GLint gluUnProject ( 
GLdouble winX, GLdouble winY,  
GLdouble winZ,  

GLint gluUnProject ( 
GLdouble winX, GLdouble winY,  
GLdouble winZ, 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 19 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

const GLdouble *model,  
const GLdouble *proj,  
const GLint *view, 
GLdouble* objX,  
GLdouble* objY,  
GLdouble* objZ); 

const GLdouble *model,  
const GLdouble *proj,  
const GLint *view, 
GLdouble* OUTPUT,  
GLdouble* OUTPUT,  
GLdouble* OUTPUT); 

 
Example usage (see Redbook example unproject.tcl for complete code): 
 
glGetIntegerv GL_VIEWPORT $viewport 
glGetDoublev  GL_MODELVIEW_MATRIX  $mvmatrix 
glGetDoublev  GL_PROJECTION_MATRIX $projmatrix 
set viewList [tcl3dVectorToList $viewport 4] 
set mvList   [tcl3dVectorToList $mvmatrix 16] 
set projList [tcl3dVectorToList $projmatrix 16] 
 
set realy [expr [$viewport get 3] - $y - 1] 
set winList [gluUnProject $x $realy 0.0 $mvList $projList $viewList] 
puts "gluUnProject return value: [lindex $winList 0]"    
puts [format "World coords at z=0.0 are (%f, %f, %f)" \ 
     [lindex $winList 1] [lindex $winList 2] [lindex $winList 3]] 

 
Note The above listed exceptions are only valid for the GLU library. The optional modules have 
not been analysed in-depth regarding the constness of parameters. 

3.2 Wrapping reference card 
 

• The notation TYPE stands for any scalar value (char, int, float, etc. as well as inherited 
scalar types like GLboolean, GLint, GLfloat, etc.). It is not used for type void or 
GLvoid. 

• The notation STRUCT stands for any C struct. 
 
C parameter type Tcl parameter type 

Input parameter 
TYPE Numerical value. 
GLboolean Numerical value or name of constant. 
GLenum Numerical value or name of constant. 
GLbitfield Numerical value or name of constant. 
CGenum Numerical value or name of constant. 
CGGLenum Numerical value or name of constant. 
CGprofile Numerical value or name of constant. 
CGtype Numerical value or name of constant. 
CGresource Numerical value or name of constant. 
CGerror Numerical value or name of constant. 
const TYPE[SIZE]  Tcl list. 
const TYPE * Tcl list. 
const void * tcl3dVector 
Output parameter 
TYPE * tcl3dVector 
void * tcl3dVector 
Return value 
TYPE Numerical value. 
STRUCT * SWIG encoded pointer to struct. 

 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 20 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

4 Modules in detail 
 
This chapter explains in detail the different modules, Tcl3D is currently built upon: 

• tcl3dTogl: Enhanced Togl widget 
• tcl3dUtil: Tcl3D utility library 
• tcl3dOgl: Wrapper for basic OpenGL functionality 
• tcl3dOglExt: Wrapper for enhanced OpenGL functionality 
• tcl3dCg: Wrapper for NVidia’s Cg shading language 
• tcl3dSDL: Wrapper for the Simple DirectMedia Library 
• tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library 
• tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library 
• tcl3dOde: Wrapper for the Open Dynamics Engine 
• tcl3dGauges: Tcl3D package for displaying gauges 
• tcl3dDemoUtil: C/C++ based utilities for demo applications 

4.1 tcl3dTogl: Enhanced Togl widget 
 
Togl [3] is a Tk widget with support to display OpenGL graphics. The original version only 
supported issuing drawing commands in C. To be usable from the Tcl level, it has been 
extended with configuration options for specifying Tcl callback commands: tcl3dTogl. 
 
Requirements for this module: None, all files are contained in the Tcl3D distribution. 
 
4.1.1 Togl commands 
 
The following is a list of currently available Togl commands. The commands changed or new in 
Tcl3D are marked bold and explained in detail below. For a description of the other commands 
see the original Togl documentation. 
 
configure 
render 
swapbuffers 
makecurrent 
postredisplay 
loadbitmapfont 
unloadbitmapfont 
 
Bitmap fonts 
 
Specifying bitmap fonts can be accomplished with the loadbitmapfont command. 
The font can either be specified in XLFD format or Tk-like with the following options: 
 
–family courier|times|... 
-weight medium|bold 
-slant  regular|italic 
–size   PixelSize 
 
Examples: 
$toglwin loadbitmapfont -*-courier-bold-r-*-*-10-*-*-*-*-*-*-* 
$toglwin loadbitmapfont -family fixed -size 12 -weight medium -slant regular 

 
See the tcl3dToglFonts.tcl and tcl3dFont.tcl demos for more examples, on how to use fonts 
with Togl. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 21 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

4.1.2 Togl options 
 
The following is a list of currently available Togl options. The options changed or new in Tcl3D 
are marked bold and explained in detail below. For a description of the other options see the 
original Togl documentation. 
 
-height  -width     -setgrid 
-rgba   -redsize     -greensize  -bluesize 
-double  -depth     -depthsize  -accum 
-accumredsize -accumgreensize    -accumbluesize  -accumalphasize 
-alpha  -alphasize     -stencil   -stencilsize 
-auxbuffers  -privatecmap    -overlay   -stereo 
-cursor  -time      -sharelist  -sharecontext 
-ident  -indirect     -pixelformat 
-swapinterval -multisamplebuffers  -multisamplesamples 
-createproc  -displayproc    -reshapeproc 
 
These configuration options behave like standard Tcl options and can be queried as such: 
 
% package require tcl3d ; # or just package require tcl3dtogl 
0.3.2 
% togl .t 
% .t configure 
{-height height Height 400 400} … 
{-displayproc displayproc Displayproc {} {}} … 
% .t configure -displayproc tclDisplayFunc 
% .t configure -displayproc  
-displayproc displayproc Displayproc {} tclDisplayFunc 
 

Callback procedures 
 
To be usable from the Tcl level, it has been extended to support 3 new configuration options for 
specifying Tcl callback procedures:  
 
-createproc  TclCommandName Called when a new widget is created. 
-reshapeproc TclCommandName Called when the widget's size is changed. 
-displayproc TclCommandName Called when the widget's content needs to be redrawn. 
 
Default settings are: 
{-createproc  createproc  Createproc  {} {}}  
{-displayproc displayproc Displayproc {} {}}  
{-reshapeproc reshapeproc Reshapeproc {} {}} 

 
Display options 
 
-swapinterval  Enable/disable synchronization to vertical blank signal 
-multisamplebuffers   Enable/disable the multisample buffer 
-multisamplesamples Set the number of multisamples 
 
Default settings are: 
{-swapinterval swapInterval SwapInterval 1 1}  
{-multisamplebuffers multisampleBuffers MultisampleBuffers 0 0}  
{-multisamplesamples multisampleSamples MultisampleSamples 2 2} 

 
Note 
Multisampling was not supported by the Togl widget till version 0.3.2. If working with older 
version of Tcl3D, you may enabling multisampling outside of Tcl3D as follows: 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 22 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

With NVidia cards, you can enable multisampling under Windows via the NVidia driver GUI. 
Under Linux you can set the environment variable __GL_FSAA_MODE to 1. 
 
4.1.3 A simple Tcl3D template 
  
A template for a Tcl3D application looks like follows: 
 
package require tcl3d 
 
proc tclDisplayFunc { toglwin } { 
    # Clear color and depth buffer 
    glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT]  
 
    glLoadIdentity                 ; # Reset the current modelview matrix 
     
    glTranslatef 0.0 0.0 -5.0      ; # Transformations 
    glRotatef $::xrot 1.0 0.0 0.0 
    glRotatef $::yrot 0.0 1.0 0.0 
    glRotatef $::zrot 0.0 0.0 1.0 
 
    drawGeometry                   ; # Draw the actual geometry 
 
    $toglwin swapbuffers           ; # Swap front and back buffer   
} 
 
proc tclCreateFunc { toglwin } { 
    glShadeModel GL_SMOOTH         ; # Enable smooth shading 
    glClearColor 0.0 0.0 0.0 0.5   ; # Black background 
    glClearDepth 1.0               ; # Depth buffer setup 
    glEnable GL_DEPTH_TEST         ; # Enable depth testing 
} 
 
proc tclReshapeFunc { toglwin w h } { 
    glViewport 0 0 $w $h          ; # Reset the current viewport 
    glMatrixMode GL_PROJECTION    ; # Select the projection matrix 
    glLoadIdentity                ; # Reset the projection matrix 
 
    # Calculate the aspect ratio of the window 
    gluPerspective 45.0 [expr double($w)/double($h)] 0.1 100.0 
 
    glMatrixMode GL_MODELVIEW     ; # Select the modelview matrix 
    glLoadIdentity                ; # Reset the modelview matrix 
} 
 
frame .fr 
pack .fr -expand 1 -fill both 
# Create a Togl widget with a depth buffer and doublebuffering enabled. 
togl .fr.toglwin -width 250 -height 250 \ 
                 -double true -depth true \ 
                 -createproc  tclCreateFunc \ 
                 -displayproc tclDisplayFunc \ 
                 -reshapeproc tclReshapeFunc 
grid .fr.toglwin -row 0 -column 0 -sticky news 

 

Note  
Option –createproc is not effective, when specified in the configure subcommand. It has to 
be specified at widget creation time. 

4.2 tcl3dUtil: Tcl3D utility library 
 
This module implements several utilities in C and Tcl offering functionality needed for 3D 
programs. It currently contains the following submodules: 

• 3D vector and transformation matrix module 
• Information module 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 23 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

• Color names module 
• Large data module (tcl3dVector) 
• Image utility module 
• Screen capture module 
• Timing module 
• 3D-model and shapes module 
• Virtual trackball module 

 
Requirements for this module: None, all files are contained in the Tcl3D distribution. 
 
The master SWIG file for wrapping the utility library is tcl3dUtil.i. 
 
4.2.1 3D vector and transformation matrix module 
 
This module provides miscellaneous 3D vector and 4x4 transformation matrix functions. 
 
Implementation files: tcl3dVecMath.c, tcl3dVecMath.tcl 
Header files: tcl3dVecMath.h 
Wrapper files: util.i 

 
Tcl command Description 
tcl3dVec3fPrint Print the contents of a 3D vector onto standard output. 
tcl3dVec3fIdentity Fill a 3D vector with (0.0, 0.0, 0.0). 
tcl3dVec3fCopy Copy a 3D vector. 
tcl3dVec3fLength Calculate the length of a 3D vector. 
tcl3dVec3fNormalize Normalize a 3D vector. 
tcl3dVec3fDistance Calculate the distance between two 3D vectors. 
tcl3dVec3fDotProduct Calculate the dot product of two 3D vectors. 
tcl3dVec3fCrossProduct Calculate the cross product of two 3D vectors. 
tcl3dVec3fAdd Add two 3D vectors. 
tcl3dVec3fSubtract Subtract two 3D vectors. 
tcl3dVec3fScale Scale a 3D vector by a scalar value. 
 
 

Tcl command Description 
tcl3dMatfPrint Print the contents of a matrix onto standard output. 
tcl3dMatfIdentity Build the identity transformation matrix. 
tcl3dMatfCopy Copy a transformation matrix. 
tcl3dMatfTranslatev Build a translation matrix based on a 3D vector. 
tcl3dMatfTranslate Build a translation matrix based on 3 scalar values. 
tcl3dMatfRotate Build a rotation matrix based on angle (°) and axis. 
tcl3dMatfRotateX Build a rotation matrix based on angle (°) around x axis. 
tcl3dMatfRotateY Build a rotation matrix based on angle (°) around y axis. 
tcl3dMatfRotateZ Build a rotation matrix based on angle (°) around z axis. 
tcl3dMatfScalev Build a scale matrix based on a 3D vector. 
tcl3dMatfScale Build a scale matrix based on 3 scalar values. 
tcl3dMatfTransformPoint Transform a point by a given matrix. 
tcl3dMatfTransformVector Transform a 3D vector by a given matrix. 
tcl3dMatfMult Multiply two transformation matrices. 
tcl3dMatfInvert Invert a transformation matrix. 
tcl3dMatfTranspose Transpose a transformation matrix. 

 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 24 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

See the test programs matmathtest.tcl and vecmathtest.tcl for examples, on how to use 
these procedures. Also take a look at the demo program ogl_fps_controls.tcl for a real-world 
example. 
 
4.2.2 Information module 
 
This module provides miscellaneous functions for querying OpenGL related information. 
 
Implementation files: tcl3dInfo.tcl 
Header files: None 
Wrapper files: None 

 
Tcl command Description 
tcl3dHavePackage Check, if a Tcl package is available in a given version. 
tcl3dGetLibraryInfo Return the library version corresponding to supplied Tcl3D 

package name. 
tcl3dGetPackageInfo Return a list of sub-lists containing Tcl3D package information. 

Each sub-list contains the name of the Tcl3D sub-package, the 
availability flag (0 or 1), the sub-package version as well as the 
version of the wrapped library. 

tcl3dShowPackageInfo Display the version info returned by tcl3dGetPackageInfo in 
a toplevel window. 

tcl3dHaveExtension Check, if a given OpenGL extension is provided by the OpenGL 
implementation. 

tcl3dHaveCg Check, if the Cg library has been loaded successfully. 
tcl3dHaveSDL Check, if the SDL library has been loaded successfully. 
tcl3dHaveFTGL Check, if the FTGL library has been loaded successfully. 
tcl3dHaveGl2ps Check, if the GL2PS library has been loaded successfully. 
tcl3dHaveOde Check, if the ODE library has been loaded successfully. 
tcl3dHaveVersion Check, if a specific OpenGL version is available. 
tcl3dGetVersions Query the OpenGL library with the keys GL_VENDOR, 

GL_RENDERER, GL_VERSION, GLU_VERSION and return the 
results as a list of key-value pairs. 

tcl3dGetExtensions Query the OpenGL library with the keys GL_EXTENSIONS and  
GLU_EXTENSIONS and return the results as a list of key-value 
pairs. 

tcl3dGetStates Query all state variables of the OpenGL library and return the 
results as a list of sub-lists. Each sublist contains a flag 
indicating the sucess of the query, the querying command used, 
the key and the value(s). 

 
Note 
The functions glGetString and gluGetString as well as the corresponding high-level 
functions tcl3dGetVersions and tcl3dGetExtensions only return correct values, if a 
tcl3dTogl window has been created, i.e. a rendering context has been established. 
 
Examples: 
 
The following code snippet shows how to call tcl3dGetVersions. 
foreach glInfo [tcl3dGetVersions] { 
    puts "[lindex $glInfo 0]: [lindex $glInfo 1]" 
} 
 
GL_VENDOR: NVIDIA Corporation 
GL_RENDERER: GeForce FX Go5600/AGP/SSE2 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 25 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

GL_VERSION: 1.4.0 
GLU_VERSION: 1.2.2.0 Microsoft Corporation 

 
The following code snippet shows how to call tcl3dGetExtensions. 
foreach glInfo [tcl3dGetExtensions] { 
    puts "[lindex $glInfo 0]:" 
    foreach ext [lsort [lindex $glInfo 1]] { 
        puts "\t$ext" 
    } 
} 
 
GL_EXTENSIONS: 
 GL_ARB_depth_texture 
 GL_ARB_fragment_program 
 GL_ARB_imaging 
 … 
GLU_EXTENSIONS: 
 GL_EXT_bgra 

 
The following code snippet shows how to call tcl3dGetStates. 
foreach glState [tcl3dGetStates] { 
    set msgStr "[lindex $glState 2]: [lrange $glState 3 end]" 
    if { [lindex $glState 0] == 0 } { 
        set tag "(Unsupported)" 
    } else { 
        set tag "" 
    } 
    append msgStr $tag 
    puts $msgStr 
} 
 
GL_VERTEX_ARRAY_SIZE: 4 
GL_VERTEX_ARRAY_TYPE: 5126 
GL_VERTEX_ARRAY_STRIDE: 0 
GL_VERTEX_ARRAY_POINTER: --(Unsupported) 
GL_NORMAL_ARRAY: 0 
GL_NORMAL_ARRAY_TYPE: 5126 

 
See the demo program tcl3dInfo.tcl for other examples, on how to use these procedures. 
 
4.2.3 Color names module 
 
This module provides miscellaneous OpenGL related functions. 
 
Implementation files: tcl3dColors.tcl 
Header files: None 
Wrapper files: None 

 
Tcl command Description 
tcl3dGetColorNames Return a list of all supported Tcl color names. 
tcl3dFindColorName Check, if supplied color name is a valid Tcl color name. 
tcl3dName2rgb Convert a Tcl color specification into the corresponding OpenGL 

representation. OpenGL colors are returned as a list of 3 unsigned 
bytes: r g b 

tcl3dName2rgbf Convert a color specification into the corresponding OpenGL 
representation. OpenGL colors are returned as a list of 3 floats in the 
range [0..1]: r g b 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 26 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

tcl3dName2rgba Convert a color specification into the corresponding OpenGL 
representation. OpenGL colors are returned as a list of 4 unsigned 
bytes: r g b a 

tcl3dName2rgbaf Convert a color specification into the corresponding OpenGL 
representation. OpenGL colors are returned as a list of 4 floats in the 
range [0..1]: r g b a 

 
See the test program colorNames.tcl for examples, on how to use these procedures. 
 
4.2.4 Large data module 
 
This module provides miscellaneous functions for handling large data like images used for 
textures and vertex arrays. 
 
Implementation files: tcl3dVector.tcl 
Header files: None 
Wrapper files: tcl3dArrays.i, bytearray.i 

 
Low level access 
 
As stated in chapter 3.1.2, some of the OpenGL functions need a pointer to a contiguous block 
of allocated memory. SWIG already provides a feature to automatically generate wrapper 
functions for allocating and freeing memory of any type. This SWIG feature 
%array_functions  has been extended and replaced with 2 new SWIG commands: 
%baseTypeVector for scalar types and %complexTypeVector for complex types like 
structs. It not only creates setter and getter functions for accessing single elements of the 
allocated memory, but also adds functions to set ranges of the memory.  
  
There are wrapper functions for these scalar types defined in file tcl3dArrays.i: 
 
Array of is mapped to 
char char 
short short 
int int 
float float 
double double 
GLenum unsigned int 
GLboolean unsigned char 
GLbitfield unsigned int 
GLbyte signed char 
GLshort short 
GLint int 
GLsizei int 
GLubyte unsigned char 
GLushort unsigned short 
GLuint unsigned int 
GLfloat float 
GLclampf float 
GLdouble double 
GLclampd double 
GLchar char 
GLcharARB char 

 
The generated wrapper code looks like this (Example shown for GLdouble): 
 
static double *new_GLdouble(int nelements) {  
  return (double *) calloc(nelements,sizeof(double));  
} 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 27 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
static void delete_GLdouble(double *ary) {  

  free(ary);  
} 
 
static double GLdouble_getitem(double *ary, int index) { 
    return ary[index]; 
} 
 
static void GLdouble_setitem(double *ary, int index, double value) { 
    ary[index] = value; 
} 
 
static void GLdouble_setarray(double *ary, double value,  
                              int startIndex, int len) { 
    int i; 
    int endIndex = startIndex + len; 
    for (i=startIndex; i<endIndex; i++) { 
        ary[i] = value; 
    } 
} 
 
static void GLdouble_addarray(double *ary, double value,  
                              int startIndex, int len) { 
    int i; 
    int endIndex = startIndex + len; 
    for (i=startIndex; i<endIndex; i++) { 
        ary[i] += (double) value; 
    } 
} 
 
static void GLdouble_mularray(double *ary, double value,  
                              int startIndex, int len) { 
    int i; 
    int endIndex = startIndex + len; 
    for (i=startIndex; i<endIndex; i++) { 
        ary[i] *= (double) value; 
    } 
} 
 
static double *GLdouble_ind(double *ary, int incr) { 
    return (ary + incr); 
} 

 
These low level functions are typically not used directly. They are accessible via the Tcl 
command tcl3dVector, with the exception of the TYPE_ind functions. 
An example for the usage of GLfloat_ind for optimized access to vectors can be found in 
NeHe demo Lesson37.tcl. 
 
File bytearray.i provides the implementation and wrapper definitions to convert Tcl binary 
strings (ByteArrays) into Tcl3D Vectors (tcl3dByteArray2Vector) and vice versa 
(tcl3dVector2ByteArray). 
 
High level access 
 
The file tcl3dVector.tcl contains additional Tcl commands for encapsulation of these low-level 
accessor functions. See the Tcl implementation file for a detailed explanation of the available 
procedures and its parameters.  
 

Tcl command Description 
tcl3dVector Create a new Tcl3D Vector by calling the memory allocation 

routine new_TYPE and create a new Tcl procedure. (See 
example below). 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 28 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

tcl3dVectorPrint Print the contents of a Tcl3D Vector onto standard output. 
  
tcl3dVectorFromArgs Create a new Tcl3D Vector from given aruments. 
tcl3dVectorFromList Create a new Tcl3D Vector from given Tcl list. 
tcl3dVectorFromString Create a new Tcl3D Vector from given Tcl string. Very slow. 
tcl3dVectorFromByteArray Create a new Tcl3D Vector from given Tcl binary string. 
tcl3dVectorFromPhoto Create a new Tcl3D Vector containing the data of a Tk photo 

image. See next chapter for detailled description. 
  
tcl3dVectorToList Copy the contents of a Tcl3D Vector into a Tcl list. 
tcl3dVectorToString Copy the contents of a Tcl3D Vector into a string. Very slow. 
tcl3dVectorToByteArray Copy the contents of a Tcl3D Vector into a Tcl binary string. 
 

Note  
• The tcl3dFromString and tcl3dVectorToString commands can be replaced with 

the corresponding ByteArray commands, which are much faster. 
• For functions converting photos into vectors and vice versa, see the next chapter about 

image manipulation. 
 
The tcl3dVector command creates a new Tcl procedure with the following subcommands, 
which wrap the low-level vector access functions described above: 
 
Subcommand Description 
get Get vector element at a given index. (TYPE_getitem) 
set Set vector element at a given index to supplied value. (TYPE_setitem)
setvec Set range of vector elements to supplied value. (TYPE_setarray) 
addvec Add supplied value to a range of vector elements. (TYPE_addarray) 
mulvec Muliply supplied value to a range of vector elements. 

(TYPE_mularray) 
delete Delete a tcl3dVector. (delete_TYPE) 

 
The following example shows the usage of the tcl3dVector command.  
set ind 23 
set vec [tcl3dVector GLfloat 123] ; # Create Vector of size 123 GLfloats 
$vec set $ind 1017.0              ; # Set element at index 23 to 1017.0 
set x [$vec get $ind]             ; # Get element at index 23 
$vec addvec 33 2 10               ; # Add 33 to ten elements starting at index 2 
$vec delete                       ; # Free the allocated memory 

 
Note 
Indices start at zero. 
 
See the demo program bytearray.tcl and vecmanip.tcl for examples, on how to use the 
ByteArray procedures for generating textures in Tcl. 
 
4.2.5 Image utility module 
 
This module provides access to photo images as supplied by Tk. The Img extension is 
recommended to have access to lots of image formats. 
 
Implementation files: tkphoto.i 
Header files : None 
Wrapper files: tkphoto.i 

 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 29 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

In file tkphoto.i the following C functions are implemented and wrapped to provide access to 
the Tk photo image functionality. 
 
Tcl command Description 
tcl3dPhotoChans Return the number of channels of a Tk photo. 
tcl3dPhoto2Vector Copy a Tk photo into a tcl3dVector in OpenGL raw image 

format. The tcl3dVector must have been allocated with the 
approriate size and type. 

tcl3dVector2Photo Copy from OpenGL raw image format into a Tk photo. The photo 
image must have been initialized with the appropriate size and 
type. 

tcl3dVectorFromPhoto Create a new Tcl3D Vector containing the image data of a Tk 
photo image. Only GL_UNSIGNED_BYTE currently supported. 

 
Example 1: Read an image into a Tk photo and use it as a texture map. 
 
Note Texture map images must have width and height, that are powers of 2. 
 
set texture [tcl3dVector GLuint 1] ; # Memory for 1 texture 
 
proc LoadImage { imgName } { 
    set retVal [catch {set phImg [image create photo -file $imgName]} err1] 
    if { $retVal != 0 } { 
        error "Error reading image $imgName ($err1)" 
    } else { 
        set numChans [tcl3dPhotoChans $phImg] 
        if { $numChans != 3 && $numChans != 4 } { 
            error "Error: Only 3 or 4 channels allowed ($numChans supplied)" 
        } 
        set w [image width  $phImg] 
        set h [image height $phImg] 
        set texImg [tcl3dVectorFromPhoto $phImg $numChans] 
        image delete $phImg 
    } 
    return [list $texImg $w $h] 
} 
 
proc CreateTexture {} { 
    # Load an image into a tcl3dVector. 
    set imgInfo [LoadImage "Wall.bmp"] 
    set imgData   [lindex $imgInfo 0] 
    set imgWidth  [lindex $imgInfo 1] 
    set imgHeight [lindex $imgInfo 2] 
 
    # Create the texture identifiers. 
    glGenTextures 1 $::texture   
 
    glBindTexture GL_TEXTURE_2D [$::texture get 0] 
    glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MIN_FILTER $::GL_LINEAR 
    glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_LINEAR 
    glTexImage2D GL_TEXTURE_2D 0 3 $imgWidth $imgHeight \ 
                 0 GL_RGBA GL_UNSIGNED_BYTE $imgData 
 
    # Delete the image data vector. 
    $imgData delete 
} 

 
Example 2: Read an image from the OpenGL framebuffer and save it with the Img library. 
 
proc SaveImg { imgName } { 
    set w $::toglWidth 
    set h $::toglHeight 
    set numChans 4 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 30 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

    set vec [tcl3dVector GLubyte [expr $w * $h * $numChans]] 
    glReadPixels 0 0 $w $h GL_RGBA GL_UNSIGNED_BYTE $vec 
    set ph [image create photo -width $w -height $h] 
    tcl3dVector2Photo $vec $ph $w $h $numChans 

    set fmt [string range [file extension $imgName] 1 end] 

    $ph write $imgName -format $fmt 
    image delete $phImg 
    $vec delete 
} 
 
proc tclReshapeFunc { toglwin w h } { 
    set ::toglWidth  $w 
    set ::toglHeight $h 
    ... 
} 

 
The actual size of the Togl window (::toglWidth, ::toglHeight), which is needed in 
command SaveImg, can be saved in a global variable when the reshape callback is executed. 
 
See the NeHe demo program Lesson41.tcl or any demo using textures for examples, on how 
to use photo utilities. 
 
4.2.6 Screen capture module 
 
This module implements functions for capturing window contents into an image, file or the 
clipboard. 
 
Note 
All of the functionality requires the help of the Img extension.  
Some of the functionality requires the help of the Twapi extension and is therefore available 
only on Windows. 
 
Implementation files: tcl3dCapture.tcl 
Header files : None 
Wrapper files: None 

 
In file tcl3dCapture.tcl the following Tcl procedures are implemented: 
 
Tcl command Description 
tcl3dWidget2Img Copy contents of a widget and all of its sub-widgets into a photo 

image. 
tcl3dWidget2File Copy contents of a widget and all of its sub-widgets into a photo 

image and save the image to a file. 
tcl3dCanvas2Img Copy the contents of a Tk canvas into a photo image. 
tcl3dCanvas2File Copy the contents of a Tk canvas into a photo image and save the 

image to a file. 
tcl3dClipboard2Img Copy the contents of the Windows clipboard into a photo image. 
tcl3dClipboard2File Copy the contents of the Windows clipboard into a photo image 

and save the image to a file. 
tcl3dImg2Clipboard Copy a photo into the Windows clipboard. 
tcl3dWindow2Clipboard Copy the contents of the top level window (Alt-PrtSc) into the 

Windows clipboard. 
tcl3dWindow2Img Copy the contents of the top level window (Alt-PrtSc) into a photo 

image. (Windows only) 
tcl3dWindow2File Copy the contents of the top level window (Alt-PrtSc) into a photo 

image and save the image to a file. (Windows only) 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 31 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

See the demo program presentation.tcl for an example, on how to use these procedures to 
save screenshots of all available Tcl3D demos by right-clicking on the demo name. 
 
4.2.7 Timing module 
 
This module provides functions for timing purposes. 
 
Implementation files: tcl3dStopWatch.c  
Header files : tcl3dStopWatch.h 
Wrapper files: util.i 

 
The tcl3dStopWatch.* files implement a stop watch with the following commands : 
  
Tcl command Description 
tcl3dNewSwatch Create a new stop watch and return it’s identifier. 
tcl3dDeleteSwatch Delete an existing stop watch. 
tcl3dStopSwatch Stop a running stop watch. 
tcl3dStartSwatch Start a stop watch. 
tcl3dResetSwatch Reset a stop watch, i.e. set the time to zero seconds. 
tcl3dLookupSwatch Lookup a stop watch and return the elapsed seconds. 

 
See the demo program spheres.tcl for an example, on how to use these procedures to 
measure the rendering frame rate. 
 
4.2.8 3D-Model and shapes module 
 
This module provides functions for reading 3D models from files and creating basic shapes. 
 
Implementation files: tcl3dModel.c, tcl3dModelFmtObj.c, tcl3dShapes.c 
Header files: tcl3dModel.h, tcl3dModelFmtObj.h, tcl3dShapes.h 
Wrapper files: util.i 

 
The tcl3dModel.* and tcl3dModelFmtObj.* files provide a parser for reading model files in 
Alias/Wavefront format. The code to read and draw the models is a modified version of the 
parser from Nate Robin's OpenGL tutorial [7]. 
 
Tcl command Description 
glmUnitize "Unitize" a model by translating it to the origin and scaling it to fit in a 

unit cube around the origin. 
glmDimensions Calculates the dimensions (width, height, depth) of a model. 
glmScale Scales a model by a given amount. 
glmReverseWinding Reverse the polygon winding for all polygons in this model. 
glmFacetNormals Generates facet normals for a model. 
glmVertexNormals Generates smooth vertex normals for a model. 
glmLinearTexture Generates texture coordinates according to a linear projection of the 

texture map. 
glmSpheremapTexture Generates texture coordinates according to a spherical projection of 

the texture map. 
glmDelete Deletes a GLMmodel structure. 
glmReadOBJ Reads a model description from a Wavefront .OBJ file. 
glmWriteOBJ Writes a model description in Wavefront .OBJ format to a file. 
glmDraw Renders the model to the current OpenGL context using the mode 

specified. 
glmList Generates and returns a display list for the model using the mode 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 32 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

specified. 
glmWeld Eliminate (weld) vectors that are within an epsilon of each other. 

 
See the demo program gaugedemo.tcl for an example, on how to use these procedures. 
 
The tcl3dShapes.* files implement a sphere based on an algorithm found at Paul Bourke’s 
excellent pages [10] as well as a cube and a helix based on algorithms found in the NeHe 
tutorials 23 and 36 [4]. 
 
Tcl command Description 
tcl3dCube Draw a textured cube with given center and size. 
tcl3dHelix Draw a helix with given center, radius and number of twists. 
tcl3dSphere Draw a sphere with given radius precision. 

 
See NeHe demo program Lesson23.tcl for an example, on how to use tcl3dCube. 
See NeHe demo program Lesson36.tcl for an example, on how to use tcl3dHelix. 
See demo program ogl_benchmark_sphere.tcl for an example, on how to use tcl3dSphere. 
 
Note The standard GLUT shapes are implemented in module tcl3dOgl, see chapter 4.3. 
 
4.2.9 Virtual trackball module 
 
This module provides functions for emulating a trackball. 
 
Implementation files: tcl3dTrackball.c, tcl3dTrackball.tcl 
Header files: tcl3dTrackball.h 
Wrapper files: util.i 

 
The trackball module implements the following commands: 
 
Tcl command Description 
tcl3dTbInit Call this initialization procedure before any other trackball 

procedure. 
tcl3dTbReshape Call this procedure from the reshape callback. 
tcl3dTbMatrix Get the trackball matrix rotation. 
tcl3dTbStartMotion Begin trackball movement. 
tcl3dTbStopMotion Stop trackball movement. 
tcl3dTbMotion Call this procedure from the motion callback. 
tcl3dTbAnimate Call with parameter 1 (or $::GL_TRUE), if you want the trackball 

to continue spinning after the mouse button has been released. 
Call with parameter 0 (or $::GL_FALSE), if you want the 
trackball to stop spinning after the mouse button has been 
released. 

 
See the demo program ftglDemo.tcl for an example, on how to use the trackball procedures. 
 
4.2.10 Virtual ArcBall module 
 
This module provides functions for emulating an ArcBall, which is the same as a trackball. 
 
Implementation files: tcl3dArcBall.c 
Header files: tcl3dArcBall.h 
Wrapper files: util.i 

 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 33 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

The ArcBall module implements the following commands: 
 
Tcl command Description 
tcl3dNewArcBall Create new ArcBall with given width and height. 
tcl3dDeleteArcBall Delete an ArcBall. 
tcl3dSetArcBallBounds Update mouse bounds for ArcBall. Call this procedure from the 

reshape callback. 
tcl3dArcBallClick Update start vector and prepare for dragging. 
tcl3dArcBallDrag Update end vector and get rotation as Quaternion. 

 
See the NeHe demo program Lesson48.tcl for an example, on how to use the ArcBall 
procedures. 

4.3 tcl3dOgl: Wrapper for basic OpenGL functionality 
 
This module wraps OpenGL functionality based on OpenGL Version 1.1, as well as the GLU 
library functions based on Version 1.2. This is due to the fact, that Windows still does not 
support newer versions of OpenGL. OpenGL features defined in newer versions have to be 
accessed via the OpenGL extension mechanism on Windows. 
The shapes of the GLUT library (box, sphere, cylinder, teapot, …) with a GLUT compatible 
syntax are supplied here, too. 
 
Requirements for this module: An OpenGL 1.1 compatible library. OpenGL header files are 
contained in the Tcl3D distribution. 
 
The master SWIG file for wrapping the basic OpenGL library is tcl3dOgl.i. 
 
Basic OpenGL library 
 
Implementation files: tcl3dOglUtil.tcl 
Header files: gl.h, glu.h 
Wrapper files: gl.i, glu.i 

 
The wrapping for this module is based on the unmodified header files gl.h and glu.h. 
 
The following commands are implemented in file tcl3dOglUtil.tcl: 
 
Tcl command Description 
tcl3dOglGetVersion Get the version of the wrapped OpenGL library. 
glMultiDrawElements Procedure to implement the OpenGL function 

glMultiDrawElements.  
tcl3dGetGlError Procedure to find out, if an OpenGL error has been occurred. 

 
GLUT shapes library 
 
Implementation files: glutShapes.c, glutTeapot.c, glutShapes.tcl 
Header files: glutShapes.h 
Wrapper files: tcl3dOgl.i 

 
The shapes library consists of the C files (glutTeapot.c for the teapot, glutShapes.c for all 
other shapes and the common header file glutShapes.h) and the Tcl file glutShapes.tcl. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 34 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

The GLUT shape objects are available under identical names for porting test and demonstration 
programs to Tcl3D. These shapes are used extensively in the examples of the OpenGL redbook 
[1]. See there for a description of the functions and its parameters. 
 
Solid shapes Wire shapes 
glutSolidCone glutWireCone 
glutSolidCube glutWireCube 
glutSolidDodecahedron glutWireDodecahedron 
glutSolidIcosahedron glutWireIcosahedron 
glutSolidOctahedron glutWireOctahedron 
glutSolidSphere glutWireSphere 
glutSolidTeapot glutWireTeapot 
glutSolidTetrahedron glutWireTetrahedron 
glutSolidTorus glutWireTorus 

 

 
All supported GLUT shapes (Demo glutShapes.tcl) 

4.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality 
 
This module wraps OpenGL functionality based on versions 1.2 till 2.0, lots of OpenGL 
extensions not contained in the OpenGL core, as well as Windows specific extensions. 
The files of this logical building block are contained in the same directory as the basic OpenGL 
wrapper files for practial compilation reasons. 
 
This is an optional module. 
Requirements for this module: An OpenGL compatible library. OpenGL header files are 
contained in the Tcl3D distribution. To have access to all wrapped features, the OpenGL library 
should support Version 2.0. 
 
The master SWIG file for wrapping the enhanced OpenGL library is tcl3dOgl.i. 
 
Implementation files: See subdirectory OglExt 
Header files: glext.h, glprocs.h 
Wrapper files: glext.i, wglext.i 

 
The wrapping for OpenGL functions greater 1.1 and the OpenGL extensions is defined in file 
glext.i and based on the header file glext.h. This header file is part of OglExt [24], an OpenGL 
extension library from the research center caesar. It has been slightly modified to fit the Tcl3D 
needs. 
The wrapping of Windows specific OpenGL functions is defined in file wglext.i and based on 
the header file glprocs.h from Intel’s GLsdk [25] library. The GLsdk is an extension library 
similar to the OglExt library. It has been stripped down to only use the Windows specific 
OpenGL functions. 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 35 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Note If using functions from this module, be sure to add a call to tcl3dInit in the create 
callback. This initialization is necessary due to a bug in the OglExt library. 
 
See the demo program extensions.tcl for an example, on how to use OpenGL extensions. 

4.5 tcl3dCg: Wrapper for NVidia’s Cg shading language 
 
This module wraps NVidia’s Cg [18] library based on version 1.5.0015 and adds some Cg 
related utility procedures. 
 
This is an optional module. 
Requirements for this module: The Cg library and header files.  

   Libraries are included in distribution. 
 
The master SWIG file for wrapping the Cg library is tcl3dCg.i. 
 
Implementation files: tcl3dCgUtil.tcl 
Header files: All files in subdirectory Cg 
Wrapper files: cg.i 

 
The wrapping for this module is based on the unmodified Cg header files. 
 
Cg utility module 
 
Tcl command Description 
tcl3dCgGetVersion Get the version of the wrapped Cg library. 
tcl3dGetCgError Check, if a Cg related error has occured. 
tcl3dGetCgProfileList Get a list of Cg profile names. 
tcl3dFindCgProfile Find the first profile supported by the Cg implementation from 

the supplied profile names. 
tcl3dFindCgProfileByNum Find a profile name by it's numerical value. 
tcl3dPrintProgramInfo Print the Cg program information onto standard output. 

 
See the demo programs contained in directory LibrarySpecificDemos/tcl3dCg for examples, 
on how to use the Cg functions. 

4.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library 
 
This module wraps the SDL [19] library based on version 1.2.9 and adds some SDL related 
utility procedures. 
Currently only the functions related to joystick and CD-ROM handling have been wrapped and 
tested. 
 
This is an optional module. 
Requirements for this module: The SDL library and header files. 
       Libraries and header files are included in distribution. 
 
The master SWIG file for wrapping the Simple DirectMedia library is tcl3dSDL.i. 
 
Implementation files: None 
Header files: All files in subdirectory include 
Wrapper files: sdl.i 

 
The wrapping for this module is based on the unmodified SDL header files. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 36 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
SDL utility module 
 
Tcl command Description 
tcl3dSDLGetVersion Get the version of the wrapped SDL library. 
tcl3dSDLGetFocusName Convert a SDL focus state bitfield into a string representation. 
tcl3dSDLGetButtonName Convert a SDL button state bitfield into a string representation.
tcl3dSDLGetHatName Convert SDL hat related enumerations into a string 

representation. 
tcl3dSDLGetEventName Convert SDL event related enumerations into a string 

representation. 
tcl3dSDLFrames2MSF Convert CD frames into minutes/seconds/frames. 
tcl3dSDLGetTrackTypeName Convert SDL CD track type enumerations into a string 

representation. 
tcl3dSDLGetCdStatusName Convert SDL CD status enumerations into a string 

representation. 
 
See the demo programs contained in directory LibrarySpecificDemos/tcl3dSDL for examples, 
on how to use the SDL functions. 

4.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library 
 
This module wraps the FTGL [20] library based on version 2.1.2 and adds some FTGL related 
utility procedures. 
The FTGL library depends on the Freetype2 library [21]. 
 
This is an optional module. 
Requirements for this module: The FTGL and Freetype2 library and header files. 
       Libraries and header files are included in distribution. 
 
The master SWIG file for wrapping the OpenGL Font Rendering library is tcl3dFTGL.i. 
 
Implementation files: None 
Header files: All files in subdirectory include 
Wrapper files: ftgl.i 

 
The wrapping for this module is based on the unmodified FTGL header files. 
 
FTGL utility module 
 
Tcl command Description 
tcl3dFTGLGetVersion Get the version of the wrapped FTGL library. 

 
See the demo programs contained in directory LibrarySpecificDemos/tcl3dFTGL for 
examples, on how to use the FTGL functions. 

4.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library 
 
This module wraps Christophe Geuzaine’s GL2PS [22] library based on version 1.3.2 and adds 
some GL2PS related utility procedures. 
Note Gl2PS does not support textures. 
 
This is an optional module. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 37 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Requirements for this module: None, all files are contained in the Tcl3D distribution. 
 
The master SWIG file for wrapping the Simple DirectMedia library is tcl3dGl2ps.i. 
 
Implementation files: gl2ps.c, tcl3dGl2psUtil.tcl 
Header files: gl2ps.h 
Wrapper files: gl2ps.i 

 
The wrapping for this module is based on the unmodified GL2PS implementation and header 
files. 
 
Gl2ps utility module 
 
Tcl command Description 
tcl3dGl2psGetVersion Get the version of the wrapped GL2PS library. 
tcl3dGl2psCreatePdf Create a PDF file from current Togl window content. 

 
See NeHe demo Lesson02.tcl or the benchmarking demo sphere.tcl in directory 
LibrarySpecificDemos/tcl3dOgl for an example, on how to use the GL2PS functions for PDF 
export. 

4.9 tcl3dOde: Wrapper for the Open Dynamics Engine 
 
This module wraps the ODE [23] library based on version 0.7 and adds some ODE related utility 
procedures. 
 
Note This module is still work in progress. It’s interface may change in the future. 
 
This is an optional module. 
Requirements for this module: The ODE library and header files. 
       Libraries and header files are included in distribution. 
 
The master SWIG file for wrapping the Open Dynamics Engine library is tcl3dOde.i. 
 
Implementation files: None 
Header files: All files in subdirectory ode 
Wrapper files: ode.i 

 
The wrapping for this module is based on the unmodified ODE header files. 
 
ODE utility module 
 
Tcl command Description 
tcl3dOdeGetVersion Get the version of the wrapped ODE library. 

 
See the demo programs contained in directory LibrarySpecificDemos/tcl3Ode for examples, 
on how to use the ODE functions. 

4.10 tcl3dGauges: Tcl3D package for displaying gauges 
 
This package implements the following gauges: airspeed, altimeter, compass, tiltmeter. 
 
This is an optional module. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 38 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

Requirements for this module: None, all files are contained in the Tcl3D distribution. 
 
The gauge package has been implemented by Victor G. Bonilla. 
 
See the demo programs gaugedemo.tcl and gaugetest.tcl for examples, on how to use the 
gauges. 

4.11 tcl3dDemoUtil: C/C++ based utilities for demo applications 
 
This package implements several C/C++ based utility functions for some of the demo 
applications. 
 
This is an optional module. 
Requirements for this module: None, all files are contained in the Tcl3D distribution. 
 
The master SWIG file for wrapping the demo utility library is tcl3dDemoUtil.i. 
 
The following submodules are contained in this module: 
 
Name: tcl3dOglLogo 
Implementation files: tcl3dOglLogo.c 
Header files: tcl3dOglLogo.h 
Wrapper files: demoutil.i 

 
tcl3dOglLogo implements an animated 3-dimensional OpenGL logo.  
It is used in demo animlogo.tcl in directory LibrarySpecificDemos/tcl3dOgl. 
 
Name: tcl3dReadRedBookImg 
Implementation files: tcl3dReadRedBookImg.c 
Header files: tcl3dReadRedBookImg.h 
Wrapper files: demoutil.i 

 
tcl3dReadRedBookImg implements a parser for the simple image file format used in some of 
the RedBook demos. 
It is used in demos colormatrix.tcl, colortable.tcl, convolution.tcl, histogram.tcl and 
minmax.tcl in directory TutorialsAndBooks/RedBook. 
 
Name: tcl3dHeightmap 
Implementation files: heightmap.i, tcl3dHeightMap.tcl 
Header files: None 
Wrapper files: heightmap.i 

 
tcl3dHeightmap implements a photo image to heightmap converter. 
It is used in NeHe demo Lesson45.tcl in directory TutorialsAndBooks/NeHe. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 39 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

5 Miscellaneous Tcl3D information 
 
This chapter contains various information about Tcl3D. 

5.1 License information 
 
The Tcl3D utility library files (see below for exceptions) are copyrighted by Paul Obermeier and 
distributed under the BSD license. 
The following files of the Tcl3D utility library have differing copyrights: 

• The original Wavefront parser code is copyrighted by Nate Robins. 
• The original GLUT shape code is copyrighted by Mark Kilgard. 
• The original code of tcl3dSphere is copyrighted by Paul Bourke. 
• The original code of tcl3dHelix is copyrighted by Dario Corno. 
• The original code of tcl3dArcBall is copyrighted by Tatewake.com. 
• The original code of tcl3dTrackball is copyrighted by Gavin Bell et al. 

 
The Tcl3D gauge library is copyrighted by Victor G. Bonilla and distributed under the BSD 
license. 
 
The original Togl widget is copyrighted by Brian Paul and Benjamin Bederson. The modified 
Tcl3D version is copyrighted by Paul Obermeier and distributed under the BSD license. 
 
The SWIG wrapper files and supporting Tcl files of all modules are copyrighted by Paul 
Obermeier and distributed under the BSD license. 
 
See the homepages of the wrapped libraries for their license conditions. 

5.2 Programming hints 
 
Hint 1: 
Some OpenGL functions expect an integer or floating point value, which is often given in C code 
examples with an enumeration, as shown in the next example: 
 
extern void glTexParameteri ( GLenum target, GLenum pname, GLint param ); 
 
It is called in C typically as follows: 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 
 
As the 3rd parameter is not of type GLenum, you have to specify the numerical value here: 
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_REPEAT 
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST 
 
If called with the enumeration name: 
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S GL_REPEAT 
you will get an error message like this: expected integer but got "GL_REPEAT" 
 
Hint 2: 
Most OpenGL examples written in C use the immediate mode. As Tcl is a scripted language 
and each OpenGL call has to go through the wrapper interface, it’s almost always a bad idea (in 
terms of speed) to translate these examples one-by-one. Using display lists or vertex arrays 
does not add much complexity to your Tcl3D program, but enhances performance significantly. 
Try the Spheres.tcl or ogl_benchmark_sphere.tcl demo for an example, how display lists or 
vertex arrays can speed up your Tcl3D application. 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 40 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
Hint 3: 
Do not use global variables GL_VERSION_X_Y (ex. [info exists GL_VERSION_1_3]) to check 
the OpenGL version supported on your computer. This does not work, because these variables 
are defined in the range 1_1 till 2_0 in Tcl3D. Use the utility function tcl3dHaveExtension 
instead. 

5.3 Open issues 
 
• GLU callbacks are currently not supported. This implies, that tesselation does not work, 

because this functionality relies heavily on the usage of C callback functions.  
• There is currently no possibility to specify a color map for OpenGL indexed mode. As color 

maps depend on the underlying windowing system, this feature must be handled by the Togl 
widget. 

5.4 Known bugs 
 
• The tiltmeter widget from the tcl3dGauge package is not working correctly with Tcl versions 

less than 8.4.7, because of a bug in the namespace implementation. 
• Picking with depth values does not work correctly, as depth is returned as an unsigned int, 

mapping the internal floating-point depth values [0.0 .. 1.0] to the range  [0 .. 232 –1]. As Tcl 
only supports signed integers, some depth values are incorrectly transferred into the Tcl 
commands. 

• SWIG versions up to 1.3.24 had an annoying (but not critical) bug in the Tcl  library file 
swigtcl8.swg: Please check, if your version has a line “printf (“Searching %s\n”, 
key);” in function SWIG_Tcl_GetConstant, and delete this line, if existent. 
swigtcl8.swg can be found in /usr/lib/swig1.3/tcl or /usr/share/swig/VERSION/tcl on 
Linux or in the lib/tcl subdirectory of your SWIG Windows installation. 

• SWIG version 1.3.21 (as delivered with SuSE 9.3) does not correctly wrap the ODE library. 

5.5 Starpack internals 
 
For an introduction to Tclkits, Starkits and Starpacks see Jean-Claude Wippler’s homepage at 
http://www.equi4.com/.  
 
5.5.1 Starpack problem 1 
 
If shipping external libraries with your Starpack, you have to copy them to the file system, before 
they can be used. Best place is the directory containing the Starpack. 
 
# Check if all necessary external libraries exists in the directory  
# containing the Starpack. Copy them to the filesystem, if necessary. 
set __tcl3dExecDir [file dirname $::starkit::topdir] 
set __tcl3dDllList [glob -nocomplain -dir [file join $starkit::topdir extlibs] \ 
                  *[info sharedlibextension]*] 
 
foreach starkitName $__tcl3dDllList { 
    set osName [file join $__tcl3dExecDir [file tail $starkitName]] 
    if { ! [file exists $osName] } { 
        set retVal [catch { file copy -force -- $starkitName $__tcl3dExecDir }] 
        puts "Copying DLL $starkitName to directory $__tcl3dExecDir" 
        if { $retVal != 0 } { 
            error "Error copying DLL $starkitName to directory $__tcl3dExecDir" 
        } 
    } 
} 

http://www.equi4.com/


Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 41 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

 
This aforementioned solution seems to be the best possible solution today, but has the following 
two disadvantages: 

• Windows user will typically place the Starpack onto the desktop. Starting the Starpack 
inflates the desktop with lots of DLL‘s. 

• On Linux/Unix the current directory typically is not included in the LD_LIBRARY_PATH 
variable.  

 
That's why the starpacks are distributed in it's own folder, and the Unix distributions come with 
an additional start shell script: tcl3dsh-OS-VERSION.sh 
#!/bin/sh 
# Startup script for tcl3dsh, the Tcl3D Starpack. 
 
LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH" 
LD_LIBRARYN32_PATH=".:$LD_LIBRARYN32_PATH" 
export LD_LIBRARY_PATH 
export LD_LIBRARYN32_PATH 
 
./tcl3dsh-Linux-0.3.2 

 
5.5.2 Starpack problem 2 
 
Some of the external libraries need files for initialization, ex. the FTGL library needs the name of 
a TrueType font file to construct it‘s OpenGL commands. This font file has to be on the real 
filesystem, so that the FTGL library can find it, and not in the virtual filesystem of the starpack. 
Tcl3D supports a utility procedure tcl3dGetExtFile, which you should use, if intending to 
use a Tcl3D script - depending on such a library - in a Starpack. See file tcl3dFile.tcl in 
directory tcl3dUtil/tclfiles for the code of the procedure and more inline comments. 
 
A typical usage is shown in the following code segment: 
 
set fontfile [file join [file dirname [info script]] "Vera.ttf"] 
# tcl3dGetExtFile is available only in versions 0.3.1 and up. 
# You may check availability of command first, if running scripts with older 
# Tcl3D versions. 
if { [info proc tcl3dGetExtFile] eq "tcl3dGetExtFile" } { 
    # Get the font file in a Starpack independent way. 
    set fontfile [tcl3dGetExtFile $fontfile] 
} 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 42 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

6 Demo applications 
 
More than 100 Tcl3D applications for testing and demonstration purposes are currently 
available. Most of these applications were converted from existing demonstration programs 
written in C/C++ found on the web. A detailed list of all demos is available online on the Tcl3D 
homepage at http://www.tcl3d.org/demos/ or in the Tcl3D Demo Manual. 
 
The Tcl3D demo applications are divided into 3 categories: 

• Category Tutorials and books contains scripts, which have been converted from C/C++ 
to Tcl3D, coming from the following sources:  
  OpenGL Red Book [8] 
  NeHe tutorials [4] 
  Kevin Harris CodeSampler web site [5] 
  Vahid Kazemi’s GameProgrammer page [6] 

• Category Library specific demos contains scripts showing features specific to the 
wrapped library. 

• Category Tcl3D specific demos contains scripts demonstrating and testing Tcl3D 
specific features. 

 
The next figure shows an excerpt from the demo hierarchy. 
 

Tcl3D Demo Hierarchy

 
 
 

http://www.tcl3d.org/demos/


Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 43 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

7 Release notes 
 
This chapter shows the release and feature history of Tcl3D both graphically and in text form. 
 

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

Released 2005/05/29 as TclOgl: Basic OpenGL wrapping, Togl widget with Tcl callbacks.

Tcl3D Version 0.1

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Nvidia‘s Cg

tcl3dSDL
Joystick

Released 2006/01/07: Major rewrite and support of new libraries: OpenGL 2.0, OpenGL 
extensions, Cg, SDL, gauges. Domain www.tcl3d.org created.

Tcl3D Version 0.2

 

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

(Better font handling)
tcl3dCg

Nvidia‘s Cg
tcl3dFTGL

Font Rendering
tcl3dSDL

Joystick and CD

Released 2006/02/12: Enhanced font handling in Togl. Library FTGL added. Mac OS X 
support supplied by Daniel Steffen.

Tcl3D Version 0.3

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Nvidia‘s Cg

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

Released 2006/06/16: Support for GL2PS and ODE (alpha) added. Starpack versions.

Tcl3D Version 0.3.1

 

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Nvidia‘s Cg

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

Released 2007/02/25: Demo cleanup and first official Mac OS X support. Windowing 
system specifics incorporated into Togl widget. New module tcl3dDemoUtil.

Tcl3D Version 0.3.2

tcl3dDemoUtil
C utilities for demos

 

 
 
Date Version Release information 
2007/02/25 0.3.2 Demo cleanup and first official Mac OS X support: 

¾ Unification of demo applications and presentation framework. 
¾ New module tcl3dDemoUtil for C/C++ based utility functions 

needed by some of the demos for speed issues. 
¾ More NeHe tutorials added: Lessons 14, 22-24, 26, 28, 33, 36, 37, 

41, 45-48. 
¾ Nine demos from www.GameProgrammer.org added. 
¾ Updated Tcl3D manual. Created separate demo reference 

document. 
¾ Added support to capture screenshots (Module tcl3dCapture). 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 44 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

¾ Added new functionality to tcl3dUtil: ArcBall emulation. 
¾ Added windowing system specifics (SwapInterval, Multisampling) to 

the tcl3dTogl widget. 
¾ Added support for Visual Studio 2003 (7.1) and 2005 (8.0). 
¾ Enhanced tcl3dVector functionality. 

• Utility functions for manipulation of image data stored in 
tcl3dVectors: tcl3dVectorCopy, tcl3dVectorCopyChannel, 
tcl3dVectorManip, tcl3dVectorManipChannel 

• tcl3dVector member functions for content independent 
manipulation: setvec, addvec, mulvec 

¾ tcl3dOde now uses ODE version 0.7 and is available for Windows, 
Linux, Mac OS X and IRIX. Wrapper still in alpha version and not 
complete. 

¾ tcl3dGl2ps now uses GL2PS version 1.3.2. 
¾ tcl3dCg now uses Cg version 1.5.0015. The 1.4 versions of Cg did 

not work with OS X on Intel platforms. 
2006/06/19 0.3.1 Starpack support for Tcl3D: 

¾ Starpack version of Tcl3D, including demos and external libraries. 
First shown at TclEurope 2006. 

¾ New optional module tcl3dGl2ps, wrapping the OpenGL To 
Postscript library. Thanks to Ian Gay for idea and first 
implementation. 

¾ New optional module tcl3dOde, wrapping the Open Dynamics 
Engine. Very alpha preview, Windows only !!! 

¾ More NeHe tutorials added: Lessons 19-21. 
2006/02/12 0.3 Bug-fixes and enhancements: 

¾ Support for Mac OS X added. (Thanks to Daniel A. Steffen for 
supplying Darwin patches and binaries) 

¾ New optional module tcl3dFTGL, wrapping the OpenGL font 
rendering library FTGL, based on freetype fonts. 

¾ Corrected and enhanced font handling under Windows in the 
tcl3dTogl widget. No more private Tcl header files needed. 

¾ Added new font related demo programs: tcl3dFont.tcl, 
tcl3dToglFonts.tcl, ftglTest.tcl, ftglDemo.tcl. 

¾ Added new SDL demo related to CD-ROM handling: cdplayer.tcl 
¾ Added some of NeHe’s OpenGL tutorials. 
¾ If an optional library is not installed, no error message is created. 

New procedures to check existence of optional modules: 
tcl3dHaveCg, tcl3dHaveSDL, tcl3dHaveFTGL. 

¾ Get information on Tcl3D subpackages with tcl3dGetPackageInfo 
and tcl3dShowPackageInfo. 

¾ Information program tcl3dInfo.tcl enhanced to support commands 
and enums of SDL and FTGL modules. 

¾ Added new functionality to tcl3dUtil: Simple, scrollable Tk widgets 
for demo programs, virtual trackball (used in FTGLdemo.tcl). 

¾ Added new functionality to tcl3dUtil: tcl3dVectorFromByteArray, 
tcl3dVectorToByteArray. Convert Tcl binary strings to tcl3dVectors 
and vice versa (see demo bytearray.tcl). 

¾ Bug fix in OglExt wrapping: Parameters of type float * and 
double * were wrapped incorrectly. 

2006/01/07 0.2 Major rewrite and additional support of several new 3D libraries:      
¾ OpenGL extensions 
¾ Cg shader 
¾ SDL 
¾ Gauge widgets (Thanks to Victor G. Bonilla for supplying this 

library) 
¾ Utility library 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 45 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

¾ Renamed from tclogl to Tcl3D. 
¾ Created domain tcl3d.org. 

2005/05/29 0.1 First version called tclogl: 
¾ Introduced at the Tcl Europe 2005 conference.  
¾ Supported features include basic OpenGL wrapping. 

 
A note for users of the first version 0.1 (called tclogl).  
Usage of tclogl is not recommended anymore. 
The following Tcl procedures have different names in the newer versions. It is recommended to 
update your scripts to the new naming scheme. The following Tcl lines make your old scripts 
run with the new releases: 
        rename ::Vector ::tcl3dVector 
        rename ::VectorPrint ::tcl3dVectorPrint 
        rename ::VectorFromList ::tcl3dVectorFromList 
        rename ::VectorFromArgs ::tcl3dVectorFromArgs 
        rename ::VectorFromString ::tcl3dVectorFromString 
        rename ::VectorToString ::tcl3dVectorToString 
        rename ::VectorToList ::tcl3dVectorToList 
        rename ::CharToNum ::tcl3dCharToNum 
        rename ::Photo2Vector ::tcl3dPhoto2Vector  
        rename ::Vector2Photo ::tcl3dVector2Photo 
        rename ::PhotoChans ::tcl3dPhotoChans 
 



Tcl3D: Doing 3D with Tcl   www.tcl3d.org 

Tcl3D User Manual Version 0.3.2, February 2007 Page 46 of 46 
Copyright © 2005-2007 by Paul Obermeier. All rights reserved. 

8 References 
 
[1] Woo, Neider, Davis: OpenGL Programming Guide, Addison-Wesley, “The Redbook” 
 
[2] Roger E Critchlow’s Frustum: http://www.elf.org/pub/frustum01.zip 
 
[3] Togl page at SourceForge: http://sourceforge.net/projects/togl/ 
 
[4] NeHe’s tutorials: http://nehe.gamedev.net/ 
 
[5] Kevin Harris’ code samples:  http://www.codesampler.com/oglsrc.htm 
 
[6] Vahid Kazemi’s GameProgrammer page: http://www.gameprogrammer.org/ 
 
[7] Nate Robins OpenGL tutorials: http://www.xmission.com/~nate/tutors.html 
 
[8] The Redbook sources: http://www.opengl-redbook.com/source/ 
 
[9] OpenGL GLUT demos:      

http://www.opengl.org/resources/code/samples/glut_examples/demos/demos.html 
 
[10] Paul Bourke’s textured sphere: http://local.wasp.uwa.edu.au/~pbourke/texture/spheremap/ 
 
[11] OpenGL Wiki page: http://wiki.tcl.tk/2237 
 
[12] SWIG (Simplified Wrapper and Interface Generator): http://www.swig.org/ 
 
[13] Paul Obermeier's Portable Software: http://www.posoft.de/ 
 
[14] Tcl3D homepage: http://www.tcl3d.org/ 
 
[15] Tcl3D page on the Tclers Wiki: http://wiki.tcl.tk/15278 
 
[16] Tcl3D discussion page on the Tclers Wiki: http://wiki.tcl.tk/16057 
 
[17] Tcl download: http://www.activestate.com/ 
 
[18] Cg download: http://developer.nvidia.com/object/cg_toolkit.html 
 
[19] SDL download: http://www.libsdl.org/ 
 
[20] FTGL download: http://homepages.paradise.net.nz/henryj/code/index.html 
 
[21] Freetype download: http://www.freetype.org/ 
 
[22] GL2PS download: http://www.geuz.org/gl2ps/ 
 
[23] ODE download: http://www.ode.org/ 
 
[24] OglExt Julius Caesar: http://www.julius.caesar.de/index.php/OglExt 
 
[25] GLsdk library: http://oss.sgi.com/projects/ogl-sample/sdk.html 
 
[26] OpenGL Extension Registry: http://www.opengl.org/registry/ 
 
[27] Starpack Wiki page: http://wiki.tcl.tk/3663 

http://www.elf.org/pub/frustum01.zip
http://sourceforge.net/projects/togl/
http://nehe.gamedev.net/
http://www.codesampler.com/
http://www.gameprogrammer.org/
http://www.xmission.com/~nate/tutors.html
http://www.opengl-redbook.com/source/
http://www.opengl.org/resources/code/samples/glut_examples/demos/demos.html
http://local.wasp.uwa.edu.au/~pbourke/texture/spheremap/
http://wiki.tcl.tk/2237
http://www.swig.org/
http://www.posoft.de/
http://www.tcl3d.org/
http://wiki.tcl.tk/15278
http://wiki.tcl.tk/16057
http://www.activestate.com/
http://developer.nvidia.com/object/cg_toolkit.html
http://www.libsdl.org/
http://homepages.paradise.net.nz/henryj/code/index.html
http://www.freetype.org/
http://www.geuz.org/gl2ps/
http://www.ode.org/
http://www.julius.caesar.de/index.php/OglExt
http://oss.sgi.com/projects/ogl-sample/sdk.html
http://www.opengl.org/registry/
http://wiki.tcl.tk/3663

	Introduction
	Architecture overview
	Modules overview
	tcl3dTogl: Enhanced Togl widget
	tcl3dUtil: Tcl3D utility library
	tcl3dOgl: Wrapper for basic OpenGL functionality
	tcl3dOglExt: Wrapper for enhanced OpenGL functionality
	tcl3dCg: Wrapper for NVidia’s Cg shading language
	tcl3dSDL: Wrapper for the Simple DirectMedia Library
	tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library
	tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library
	tcl3dOde: Wrapper for the Open Dynamics Engine
	tcl3dGauges: Tcl3D package for displaying gauges
	tcl3dDemoUtil: C/C++ based utilities for demo applications

	Supported platforms
	Getting started

	Installation
	Installation of a binary distribution
	Installation from a Tcl3D starpack
	Installation from a binary package

	Installation of a source distribution
	Step 1: Prerequisites
	Step 2: Configuration
	Step 3: Customization
	Step 4: Compilation and installation

	Extending Tcl3D
	Extending with a Tcl utility
	Extending with a C/C++ utility
	Extending with a newer version of an external library
	Extending with a new external library


	Wrapping in detail
	Wrapping description
	Scalar input parameters
	Pointer input parameters
	Output parameters
	Function return values
	Exceptions from the standard rules

	Wrapping reference card

	Modules in detail
	tcl3dTogl: Enhanced Togl widget
	Togl commands
	Togl options
	A simple Tcl3D template

	tcl3dUtil: Tcl3D utility library
	3D vector and transformation matrix module
	Information module
	Color names module
	Large data module
	Image utility module
	Screen capture module
	Timing module
	3D-Model and shapes module
	Virtual trackball module
	Virtual ArcBall module

	tcl3dOgl: Wrapper for basic OpenGL functionality
	tcl3dOglExt: Wrapper for enhanced OpenGL functionality
	tcl3dCg: Wrapper for NVidia’s Cg shading language
	tcl3dSDL: Wrapper for the Simple DirectMedia Library
	tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library
	tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library
	tcl3dOde: Wrapper for the Open Dynamics Engine
	tcl3dGauges: Tcl3D package for displaying gauges
	tcl3dDemoUtil: C/C++ based utilities for demo applications

	Miscellaneous Tcl3D information
	License information
	Programming hints
	Open issues
	Known bugs
	Starpack internals
	Starpack problem 1
	Starpack problem 2


	Demo applications
	Release notes
	References

