
PROGRAMMING

68 LINUX MAGAZINE

Processing XML documents with
Tcl and tDOM

FREEDOM

Issue 20 • 2002

Table 1: Document commands
Command Description

documentElement Returns the root element
createElement tagname Creates an element called tagname
createTextNode text Creates a text element
createCommentText text Creates a comment
createCDATASection data Creates a CDATA element
createProcessingInstruction data Creates a PI element

There’s nothing to

stop Tcl programmers

from processing XML

files with their own

software. Carsten

Zerbst takes a look

at the tDOM

package, which

provides a fast,

streamlined DOM

implementation

XML is fast becoming the lingua franca of file
formats. If you want to use XML within
your own programs there is no need to

write a parser, as many ready-made solutions are
available for this purpose, not least for Tcl, which
offers extensions enabling you to access XML
document elements. One of these is tDOM, a
package that is not only powerful but also
unusually lean and fast.

Access to the actual parser is usually via one of
two types of API. With SAX (Simple API for XML)
the parser reads the data and executes commands
as soon as it reaches certain points in the text,
even if it has not finished loading the document. In
other words, this is an event-driven API. The
alternative to SAX is DOM (Document Object
Model). Here, the parser loads the complete
document into memory first and stores its
structural details in a tree structure. DOM offers
more powerful document retrieval and editing
facilities than SAX. This flexibility comes at the
price of greater memory usage.

Implementations of this API are available in
various programming languages, for example C
and Java. The DOM API basically uses three
different classes: one for creating documents, one
for the documents themselves and one class for
the different elements. The idea behind DOM is
that it uses element objects to represent each XML
tag, all attributes and every text section. The
elements have methods that enable them to inherit
elements located above, below and next to them.
Other methods provide information about the
element.

DOM and XPath in a single
package
The two main DOM packages available under Tcl are
Steve Ball’s TclDOM and Jochen Löwers tDOM. In the
following examples we are using tDOM; this package
has an impressive functionality range and is very fast.
Apart from the DOM specification it contains other
useful things, such as an XPath implementation and a
graphical query tool.

Compiling and installing tDOM is pretty simple:
unpack the sources, change to the unix sub-directory
and perform the usual routine (configure, make,
make install).

tDOM in action
The dom command in tDOM creates new documents.
dom parse string instructs the package to analyse a
string of XML data and to create an XML document
object from it. New empty documents are created
using dom createDocument name.

You will frequently come across files which at first
glance appear as though they should be easy to
process with DOM, but are not pure XML; HTML
being a case in point. There is a solution to this. The
option -html allows tDOM to read many HTML pages
without requiring any manual intervention.

The tDOM syntax is object-oriented in a similar way
to Tk. The dom command’s return value is a domDoc
class object representing the entire document.

% set fd [open filename]
% set doc [dom parse [read $fd]]
% close $fd

Although this looks simple, it does in fact involve a
lot of work. The raw data needs to be turned into a
data structure with XML tags and attributes. tDOM
does a pretty quick job of this. On a computer with
a Duron processor (800 MHz, 512 Mb RAM) the
normal parser takes only 80 milliseconds to read
the 370Kb Mondial database. The Tcl interpreter
and the XML document together take up a mere
2.5Mb of memory. By comparison, Java and JDom
require 1900 milliseconds for the first read and 500
milliseconds for each subsequent read on the same

PROGRAMMING

69LINUX MAGAZINEIssue 20 • 2002

address the third element specifically use
//TYPENAME[3]. As the query may contain square
brackets, these must be protected in Tcl (either with
backslashes or curly brackets). Table 3 shows some
examples of XPath queries.

To get a quick overview of the XPath features,
Jochen Löwer has written the xe tool, which displays
the results of XPath queries in graphical format. The
interface takes a bit of getting used to: the query is
typed into to the upper window, highlighted with the
mouse and submitted with the execute <sel.> button.
The xe input consists of the desired file followed by
the XPath query. xe displays the result, including child
nodes, in the lower window, the branches of the tree
can be expanded using the + symbol (see Figure 1).

Web-grabbing
XPath also makes Web-grabbing (the extraction of
data from HTML files) very easy. The following
example uses the BBC sports news ticker, from which
we are going to read a news item. The last
instalment of this series described how Tcl loads Web
pages from the Internet. Here, we are concentrating
on processing their HTML contents.

As soon as the page is available, we want tDOM to
retrieve the summary of the latest news item and the

Table 2: Element commands
Command Description

ownerDocument Returns a reference to the document containing
the element

Single node
nodeName Returns the name of the node
nodeType Type of node, e.g. element or attribute
nodeValue Node content for text nodes
Attributes
attributes Lists attributes
getAttribute attrName Retrieves single attribute
@attrName Short for getAttribute
setAttribute attrName attrValue Sets attribute
Child nodes
parentNode Returns the node one level above in the tree
childNodes Lists all child nodes
appendChild child Appends element as child node
replaceChild old new Replaces child element
removeChild child Deletes child element
getElementsByTagName Searches the entire sub-tree for elements with a

specific name
XPointer
descendant count type Descendant elements by position and type
descendant all type Descendant elements by type
XPath
selectNode query XPath query
Outputting the DOM tree
asXML Outputs sub-tree as XML
asHTML Outputs sub-tree as HTML

machine, with the JVM taking up 15Mb of resident
memory.

The tDOM package uses James Clark’s Expat parser
and therefore supports Unicode, as is normal for Tcl.
However, as technical data, for example, often does
not require Unicode the ISO-Latin-1 character set will
in many cases be sufficient. tDOM contains a second,
faster parser for this eventuality, which can be
selected using the –simple option. The data now
takes only 45 milliseconds to read.

The memory requirement also depends on the size
of the original file. tDOM needs about double to four
times the size of the original file, other solutions in C
and Java require up to 30 times.

Step by step
Once the document has been read, the dom
command returns a domDoc object. Using this
element’s sub-commands, various element types can
be created or the root element retrieved (see Table 1).
The root element represents the top node, like the
<html> tag in an HTML document. The type of the
root node is domNode, the same as that of any other
DOM element.

The most important commands for the (domNode)
elements are listed in Table 2. Using these
commands, the program can navigate through the
branches of the DOM tree and retrieve the
information it contains.

Creating new elements is a little more complicated.
The DOM uses a two-step process. First, a document
command creates a new element, for instance
createTextNode creates a new element of the type
TEXT_NODE. In the second step, this is appended to
an element of the tree.

% set doc [dom createDocument html]
% set root [$doc documentElement]
% set node [$doc createTextNode “Hello”]
% $root appendChild $node
% puts [$root asHTML]

<html>Hello</html>

To the point
The commands mentioned up to now are pretty
much part of the normal DOM environment but
rather unwieldy for addressing XML elements. Should
you require the first td in the third table element with
an attribute setting of rowspan=2 this will need quite
a bit of work. Fortunately there is a far more elegant
way in tDOM. The magic word is XPath, which
enables you to search for nodes using a handy query
language. This is another W3C specification.

The command selectNodes query can search the
sub-tree starting at any node within a document.
Depending on the type of query the results are
nodes, attributes or their values. To search for all
elements of a particular type, use //TYPENAME. To

PROGRAMMING

70 LINUX MAGAZINE Issue 20 • 2002

reference to the complete story. But which element is
the right one? We could either use xe and keep
trying until the desired result appears, or we could
get some help from Mozilla. If you press the right
mouse button over the relevant text and select
Inspect from the context menu a new window opens,
displaying the DOM viewer (Figure 1 and 2). You can
also reach the DOM inspector via Tasks/Tools/DOM
Inspector in the SuSE 7.3 supplied Mozilla

A simple count is sufficient in this case. The latest
text is in the seventh table, in the second line, in the
second column, within a element. It is
advisable to save this page and design the relevant
query in xe. Now you have all the information
required for writing Listing 1. This calls the page and
extracts the news item using tDOM. The script can be
easily extended, for instance to load the full version
of the news item.

tDOM, the universal XML tool
Simple DOM, parser extensions and XPath are by no
means all that tDOM offers. Recently tDOM has also
learnt XSLT, confirming its position as the XML
equivalent of the Swiss army knife. XSLT support is
almost complete in the current version 0.7test, and
DOM 2 with name spaces is also supported.

Should you be interested in finding out more about
the development of tDOM or have specific questions
you will get to appreciate the tDOM mailing list.
Overall, tDOM is a solid base for XML processing.

Table 3: XPATH examples
Query Description

/option The option element directly below the root node
//option All elements in the document called option
//option[3] The third option element
/table/* All elements below table, where table must be located

directly below the root node
//table[1] The first table element in a document
//table[last()] The last table element
//@colspan All colspan attributes in a document
//td[@colspan] All td elements with the attribute colspan
//table[@width] All table elements that have a width attribute
//table[@width=690] All table elements with a width attribute that has a

value of 690
//*[count(tr)=2] All elements with two tr child nodes
//tr/td|th All td and th elements contained within a tr element
//table//img All img elements contained within a table–element
//table[1]//img[2] Second img element in the first table

Figure 1: The BBC sports news
pages in a Web browser. The
DOM tree can be displayed via
the context menu, with the
selected element on the HTML
page also highlighted in the
DOM viewer

Figure 2: Mozilla shows the document’s DOM
structure. The A element is selected in the left
tree view; on the right the DOM inspector shows
the href attribute with its value (a relative link).

Listing 1: Web-grabbing
with tDOM
#!/bin/sh
#
\
exec tclsh8.3 $0 $@

package require tdom
package require http

set server “http://news.bbc.co.uk”
set path “sport/”
set url “$server/$path”

if {[catch {http::geturl $url –timeout 15000} U
token]} {

puts stderr “Problem with network: $token”
exit 1

}

if {[http::ncode $token] != 200} {
puts stderr “Problem with server, U

[http::code $token]”
exit 1

}

set doc [dom parse –html [::http::data $token]]
set root [$doc documentElement]
set node [$root selectNodes U
{//table[7]/tr[2]/td[2]/a}]
set text [[$node childNode] nodeValue]

puts “Latest news: $text”

Info
TclDOM
http://tclxml.sourceforge.ne
t/tcldom.html
TDOM
http://sdf.lonestar.org/~loe
werj/tdom.cgi

