
The Fast Light Toolkit Extension for Tcl/Tk

Version 0.4

Iain B. Findleton

 This document describes the binding between the Fast Light Tool Kit (FLTK) and the Tcl/Tk programming language. The
language binding enables the creation of graphical user interface based applications that are built using the widget set provided by
the FLTK library. Both the FLTK library and the Tcl/Tk application development language are distributed under various flavours of
the GNU Public Licence.

 The Fltk Extension for Tcl/Tk is a dynamically loadable extension to the Tcl/Tk aplication development environment. The
extension is distributed freely under the licence terms described in the software distribution. All of the materials of the Fltk
extension package for Tcl/Tk, including this documentation, are Copyright (C) I.B.Findleton, 2001, All Rights Reserved.

Table of Contents
1 Introduction...1

1.1 Features of the FLTK Tool Kit..1
1.2 Limitations of the FLTK Tool Kit...1
1.3 FLTK and TCL/TK..2
1.4 FLTK and Other Extensions..2

2 Acquiring and Installing the FLTK Extension for TCL...3
2.1 TCL/TK Distributions...3
2.2 FLTK Distributions...3
2.3 Distributions of the FLTK Extension for TCL/TK...3

3 Introduction to Tcl Programming...5
3.1 Writing Tcl Programs...5
3.2 Tcl Language Syntax..6
3.3 Variables...7
3.4 Tcl Lists ..8
3.5 Command Evaluation...8
3.6 Expressions...9
3.7 Procedures...10
3.8 Control of Statement Execution..11
3.9 Error Handling..12
3.10 Input and Output...13
3.11 Events..13
3.12 Library Code and Extensions..14
3.13 Introspection...15
3.14 Summary...16

4 How to Write Applications Using the Fltk Extension...18
4.1 Designing User Interfaces..18
4.2 Creating Custom Mega-Widgets..20
4.3 Binding Tcl Procedures to Widgets...22
4.4 Using Options and Application Data...23
4.5 The Fltk Global Array..23
4.6 Running the Application using the fltkwish Interpreter..24

5 Fltk Command List...26

6 Widgets - Standard configurable widget options..29
6.1 Getting and Setting Widget Option Values..30
6.2 Qualified Option Names...30

6.2.1 alignment...31
6.2.2 anchor..32
6.2.3 background..32
6.2.4 borderwidth...33
6.2.5 class...33
6.2.6 command...33
6.2.7 cursor...34
6.2.8 damage..34

07/30/2007

i

Table of Contents
6 Widgets - Standard configurable widget options

6.2.9 ..34
6.2.10 data..34
6.2.11 eventdefault..34
6.2.12 font...35
6.2.13 fontsize..35
6.2.14 fontstyle...35
6.2.15 foreground...35
6.2.16 highlightbackground..35
6.2.17 highlightforeground...35
6.2.18 highlightthickness..36
6.2.19 height,width,x,y...36
6.2.20 invertstate..36
6.2.21 label...37
6.2.22 limits..37
6.2.23 nocomplain..37
6.2.24 padx,pady..37
6.2.25 qualifiednames..37
6.2.26 relief...37
6.2.27 resizeable...38
6.2.28 state..38
6.2.29 statevariable...38
6.2.30 statevariablecommand...39
6.2.31 tooltip...39
6.2.32 underline..39
6.2.33 variable..40
6.2.34 variablecommand..40
6.2.35 visible...40
6.2.36 wraplength...40
6.2.37 wallpaper...41

6.3 Configurable Options and the Option Database...41
6.4 Initialization of Widgets from the Option Database...42
6.5 Using Widget Commands...43
6.6 Widget Construction...43
6.7 Widget Destruction...44

7 Alert - Display an alert message..45

8 Ask - Ask a question...46

9 Adjuster - Create an adjuster widget..47

10 Application - Specify application data..48

11 Bind - Manage event bindings for widgets..50
11.1 Event Names..50
11.2 User Event Bindings..51
11.3 Script Expansion...51

7 Alert - Display an alert message 07/30/2007

ii

Table of Contents
11 Bind - Manage event bindings for widgets

11.4 Event Processing..52

12 BindTags - Manage event processing list for a widget..54

13 Button, CheckButton, DiamondButton, LightButton , RepeatButton, ReturnButton,
RoundButton, LEDButton - Construct a button...55

13.1 Typical Button Use...56
13.2 CheckButton - Create a checkbutton..56
13.3 DiamondButton - Create a button with a diamond indicator..57
13.4 LEDButton - Create a LED button...57
13.5 LightButton - Create an illuminating button...57
13.6 RepeatButton - Create a repeat button..57
13.7 ReturnButton - Create a return button..57
13.8 RoundButton - Create a round button...57

14 Canvas - Create a canvas widget...59
14.1 Widget specific commands...59
14.2 Canvas Items...60

14.2.1 The origin of Canvas items...60
14.2.2 The rotate property of Canvas items...61
14.2.3 The scale property of Canvas items..61
14.2.4 Canvas item geometry items..61
14.2.5 The state property of Canvas items...61
14.2.6 Color properties of Canvas items..62
14.2.7 Line style properties of Canvas items...63
14.2.8 The tags property of Canvas items..64

14.3 Canvas Item Creation..64
14.4 Deleting Canvas Items..65

14.4.1 Canvas Arc Items..65
14.4.2 Canvas Circle Items...66
14.4.3 Canvas Curve Items...66
14.4.4 Canvas Image Items..66
14.4.5 Canvas Line Items...67
14.4.6 Canvas Polygon Items...67
14.4.7 Canvas Point Items..68
14.4.8 Canvas Quadrangle Items..68
14.4.9 Canvas Rectangle Items...68
14.4.10 Canvas Text Items...68
14.4.11 Canvas Triangle Items...69

14.5 The Canvas delete function command..69
14.6 The Canvas itembind function command...70
14.7 The Canvas itemcget function command..70
14.8 The Canvas itemconfigure function command...71
14.9 The Canvas itemlist function command...71
14.10 Canvas initialization from text files..71

14.10.1 The Canvas load function command...72
14.10.2 The Canvas save function command...72

07/30/2007

iii

Table of Contents
15 Center - Center a widget on the screen..74

16 Chart - Create a chart widget..75
16.1 Chart Widget Function Commands..76

16.1.1 The Chart bounds function command...77
16.1.2 The Chart clear function command...77
16.1.3 The Chart insert function command..78
16.1.4 The Chart replace function command...78

17 CheckEvents - Check for pending events...80

18 Choice - Construct a choice widget..81

19 Choose - Choose from some options..83

20 Combobox - Create a combobox widget...84
20.1 Widget Specific Commands...84

20.1.1 add - Add items to the list...85
20.1.2 clear - Clear the list...85
20.1.3 delete - Delete items from the list...85
20.1.4 find - Find an item in the list...85
20.1.5 insert - Insert an item into the list..85
20.1.6 load - Load the list from a file...85
20.1.7 replace - Replace the contents of an item..86
20.1.8 sort - Sort the list contents...86
20.1.9 selection - Query or set the current selection..86

21 Color - Color Functions...87

22 ChooseColor - Choose a color...88

23 ColorName - Get the name of a color specification..89

24 Counter - Create a counter widget..90

25 Cursor - Manage User Defined Cursors..91
25.1 Configurable Cursor Options...91
25.2 cget...91
25.3 configure..91
25.4 add..91
25.5 delete..92
25.6 list...92

26 Debug - Set controls on debugging messages..93

27 Destroy - Destroy one or more widgets...94

15 Center - Center a widget on the screen 07/30/2007

iv

Table of Contents
28 Dial - Create a dial widget..95

29 Drawing - Create a Turtle Graphics drawing widget..97
29.1 The Turtle Graphics Drawing Language..97
29.2 Drawing Concepts...99
29.3 Turtle Graphics Command Reference..100

29.3.1 al - Set the text alignment..100
29.3.2 ar - Draw an arc...101
29.3.3 bd - Set the current drawing window limits..101
29.3.4 bg - Set the background color...101
29.3.5 bk - Move backwards..101
29.3.6 cl - Clear the drawing and set the background color...101
29.3.7 cr - Draw a circle...102
29.3.8 cs - Clear the drawing...102
29.3.9 di - Delete items from the display list..102
29.3.10 dl - Draw a line..102
29.3.11 fd - Move forward...102
29.3.12 fl - Set the fill state..102
29.3.13 fs - set the size of the current font...103
29.3.14 ft - Set the current text font...103
29.3.15 hi - Hide draw items..103
29.3.16 hl - Display help information..103
29.3.17 hm - Move the cursor to the home position...103
29.3.18 ht - Hide the cursor..103
29.3.19 im - Draw an image...103
29.3.20 li - List the current draw list..104
29.3.21 ls - Set the current line style..104
29.3.22 lt - Left turn...104
29.3.23 pc - Set the pen color...104
29.3.24 pd - Pen down..104
29.3.25 pp - Pop the drawing engine state...104
29.3.26 ps - Push the drawing engine state..105
29.3.27 pt - Draw a point..105
29.3.28 pu - Pen up...105
29.3.29 rc - Draw a rectangle...105
29.3.30 rp - Repeat a command block..105
29.3.31 rt - Right turn...105
29.3.32 sh - Set the drawing direction..106
29.3.33 si - Show hidden items..106
29.3.34 sp - Set the cursor position..106
29.3.35 st - Show the cursor position...106
29.3.36 sx - Set the horizontal position..106
29.3.37 sy - Set the vertical position..106
29.3.38 tg - Specify item tags...107
29.3.39 th - Set the line thickness...107
29.3.40 tr - Set the command trace state..107
29.3.41 tx - Set the text...107
29.3.42 // - Comment..107

07/30/2007

v

Table of Contents
30 Dummy - Do nothing..109

31 Exit - Terminate the current application..110

32 Frame - Construct a frame widget..111

33 Focus - Set or Query the input focus..113

34 GelTabs - Create a tabs widget using gel syyle tab labels...114
34.1 Widget Commands..114

35 GetInput - Get some input from the user...116

36 GetPassword - Get a password from the user..117

37 GetFileName - Get a file name from the user...118

38 Group - Create a group container widget...120
38.1 Automatic Child Widget Positioning...121

39 Help - Display help information..124

40 HelpDialog - Display Help information..125

41 HelpViewer - Create a HTML viewing widget...126
41.1 Loading HTML Data..126
41.2 value..126
41.3 textcolor,textfont, and textsize..126
41.4 length..127
41.5 doctitle..127
41.6 directory and filename..127
41.7 topline...127
41.8 linkproc...127
41.9 url..128

42 HtmlWidget - Construct an HTML Display Widget...129
42.1 Widget Specific Commands...130

42.1.1 load..130
42.1.2 page...130
42.1.3 font...131

43 Hide - Make one or more windows invisible..132

44 Image - Construct an image widget...133
44.1 Supported File Formats...133
44.2 Configuration Options..134
44.3 Image Markup...134
44.4 Mark Attributes...135

30 Dummy - Do nothing 07/30/2007

vi

Table of Contents
44 Image - Construct an image widget

44.5 Widget Commands...136
44.5.1 add Add a mark to the mark list...136
44.5.2 clear Clear the mark list..137
44.5.3 closest Get the closest mark to a location...137
44.5.4 getpixel Get the color of a pixel...137
44.5.5 Hide Hide items in the mark list..137
44.5.6 List List the items in the mark list..138
44.5.7 ListTags List the tags associated with the items in the mark list.....................................138
44.5.8 Location Convert from window coordinates to image coordinates.................................138
44.5.9 itemcget Query the attributes of a mark...138
44.5.10 itemconfigure Configure mark attributes...138
44.5.11 setpixel Set the color of a pixel..139
44.5.12 save Save the image to a file..139
44.5.13 Show Show hidden items...139

44.6 Drawings...139

45 ImageButton - Construct an image button widget...141

46 Input - Create an input widget..143
46.1 Using Input Widgets...144
46.2 Input Widget Commands..144

46.2.1 The insert command..145
46.2.2 The cut command..145
46.2.3 The copy command...145
46.2.4 The replace command...145
46.2.5 The copycuts command...145
46.2.6 The undo command...145
46.2.7 The load command..146
46.2.8 The mark command...146
46.2.9 The position command..146

47 Iterator - Construct a list iterator button..147
47.1 Widget Specific Commands..148
47.2 Grouping Iterators..149

48 Knob - Create a knob widget...150

49 Label - Create a label widget...152

50 LabeledCounter - Construct a labeled counter widget..153

51 LabeledInput - Create an input box with a configurable label..155
51.1 Input Box Configuration...155
51.2 Widget Configuration Options..156

07/30/2007

vii

Table of Contents
52 LabeledText - Create a text box with a configurable label...157

52.1 Text Box Configuration..158
52.2 Widget Configuration Options..158

53 Lcd - Create a Liquid Crystal Display Widget...159

54 Library - Manage the library search list...161
54.1 Add Library Files...161
54.2 Clear the Library List...161
54.3 Delete Files from the Library List...162
54.4 List the Contents of the Library List..162
54.5 List the Modules in the Library List..162
54.6 List the Procedures in the Library List..162
54.7 Locate a Procedure or Module...163
54.8 Locate the Source of a Procedure or Module...163

55 Listbox - Create a listbox widget..164
55.1 Using Listbox Widgets..166
55.2 Listbox Widget Commands...167

55.2.1 The Listbox add function command...168
55.2.2 The Listbox clear function command...168
55.2.3 The Listbox contains function command...168
55.2.4 The Listbox count function command..169
55.2.5 The Listbox data function command..169
55.2.6 The Listbox delete function command...169
55.2.7 The Listbox deselect function command..169
55.2.8 The Listbox hide function command..169
55.2.9 The Listbox insert function command..170
55.2.10 The Listbox load function command..170
55.2.11 The Listbox move function command..170
55.2.12 The Listbox position function command..170
55.2.13 The Listbox remove function command..170
55.2.14 The Listbox scroll function command..171
55.2.15 The Listbox select function command...171
55.2.16 The Listbox selected function command..171
55.2.17 The Listbox show function command..171
55.2.18 The Listbox text function command..171
55.2.19 The Listbox visible function command..171

56 Menu - Create a Menu..173
56.1 Types of Menu Widgets..174
56.2 Menu Widget Commands...174
56.3 Initialization of Menus...175

56.3.1 The Menu activate function command..175
56.3.2 The Menu delete function command...175
56.3.3 The Menu index function command...176
56.3.4 The Menu invoke function command...176
56.3.5 The Menu listitems function command...176

52 LabeledText - Create a text box with a configurable label 07/30/2007

viii

Table of Contents
56 Menu - Create a Menu

56.3.6 The Menu add function command...177
56.3.7 Configuration of Menu Items..178
56.3.8 The variable option...179

57 Message - Display a message..180

58 Output - Create a text output widget..181

59 Option - Manage the contents of the option database...182
59.1 Adding Option Database Entries..182
59.2 Removing Option Database Entries..183
59.3 Retrieving Option Values...183
59.4 Listing the contents of the option database...183
59.5 Loading the option database from a file...184
59.6 Creating an Option File...184

60 Package - Manage the geometry of widgets..185

61 Popup - Construct a pop up menu..187
61.1 Menu Items..187
61.2 Widget Commands..189

61.2.1 The add command..189
61.2.2 The itemcget command..189
61.2.3 The itemconfigure command..189
61.2.4 The list command...190
61.2.5 The popup command..190

62 ProgressBar - Create a progress bar widget..191

63 RadialPlot - Create a widget to plot radial diagrams...193
63.1 Automatic Plotting..194
63.2 The Background Grid..194
63.3 Adding Annotations...194
63.4 Displayed Values...194
63.5 Selections...195
63.6 Widget Specific Commands..195

63.6.1 Point Attributes...196
63.6.2 add - Add a point to the widget..196
63.6.3 clear - Clear the point list...196
63.6.4 color - Set the color of points...197
63.6.5 count - Get the count of points in the point list..197
63.6.6 delete - Delete points from the plot..197
63.6.7 hide - Hide points in the point list..197
63.6.8 list - List points in the point list..197
63.6.9 replace - Replace points in the point list..198
63.6.10 select - Select a point in the point list...198
63.6.11 show - Show hidden points in the point list...198

07/30/2007

ix

Table of Contents
63 RadialPlot - Create a widget to plot radial diagrams

63.6.12 statistics - Get basic statistics on point values..198

64 Region - Create a region widget..200
64.1 The Add Function...200
64.2 The Delete Function..201
64.3 The ItemCGet Function..201
64.4 The ItemConfigure Function...201
64.5 The List Function..201
64.6 Box Regions..201
64.7 Circle Regions...201

65 Roller - Create a roller widget...203

66 RollerInput - Create a roller input widget...204

67 Run - Run a binary module..205
67.1 Decoder Options..205
67.2 Encoding Binary Module Files..206

68 Scalebar - Create a scroll bar widget..207

69 Scheme - Specify the widget rendering scheme..208
69.1 The normal scheme...209
69.2 The shiny scheme..209
69.3 The gradient scheme...209
69.4 The skins scheme...210
69.5 The image scheme...211
69.6 The plastic and modern schemes..211
69.7 Configuration of schemes...211

70 Screen - Get the current screen geometry...213

71 Scroll - Create a scrollable container widget..214
71.1 Adding widgets to a Scroll..215

72 Scrollbar - Create a scroll bar widget...216

73 Show - Show one or more windows...217

74 Signal - Signal an Event..219

75 Slider - Create a slider widget..221

76 Table - Create a table of items...222
76.1 Features ..222
76.2 Cell Styles...223
76.3 Tcl Variables and the Table Widget..224

64 Region - Create a region widget 07/30/2007

x

Table of Contents
76 Table - Create a table of items

76.4 Widget Commands...224

77 Tabs - Create a notebook tabs widget...226
77.1 Widget Commands..226

78 TestWidget - Create a test widget..229

79 Text - Create a text widget...230

80 Thermometer - Construct a liquid thermometer widget..231
80.1 Changing the temperature value..232

81 Tile - Create a tile widget...233

82 Toplevel - Construct a top level widget...235

83 Update - Redraw widgets...237

84 UserButton - Create a custom button...238

85 Value - Create a Value widget...239

86 ValueSlider - Create a slider with a value display...241

87 Vu - Construct a digital volume units widget..242

88 Windows - Interrogate the list of widgets...243
88.1 list - Get a list of windows..243
88.2 count - Get the widget count of toplevels...243
88.3 toplevels - Get the count of container windows..243
88.4 class - Get the list of widgets in a class..243
88.5 group - Get the widgets in a group..244

89 Winfo - Get information about a widget...245

90 Wm - Interact with the window manager...246

91 Wizard - Create a wizard widget..247
91.1 Widget Specific Commands..247
91.2 Adding Children to a Wizard...247

92 XYPlot Create a 2 dimensional plot widget..250
92.1 Configurable Options...251

92.1.1 Text Options...251
92.1.2 xlabel and ylabel...251
92.1.3 xlabelcommand and ylabelcommand...251
92.1.4 xformat,yformat..251

07/30/2007

xi

Table of Contents
92 XYPlot Create a 2 dimensional plot widget

92.1.5 xrange,yrange,zrange...251
92.1.6 valuegradient..252
92.1.7 line..252
92.1.8 linestyle..252
92.1.9 fit ..252
92.1.10 fitcolor..252
92.1.11 fitlinestyle...252
92.1.12 grid..252
92.1.13 gridcolor...252
92.1.14 gridlines..252
92.1.15 plotbackground...253
92.1.16 autolabel...253
92.1.17 autolabelformat...253
92.1.18 value...253
92.1.19 zerox...253
92.1.20 zeroy...253
92.1.21 zerolinestyle...253
92.1.22 zerolinecolor..253
92.1.23 pagegeometry...254
92.1.24 pagex..254
92.1.25 pagey..254
92.1.26 drawing...254

92.2 Points and their attributes...254
92.3 Using Tcl Arrays...255
92.4 Widget Commands...256

92.4.1 add Add points to the list..256
92.4.2 bounds Set the normalization range for the axes..256
92.4.3 clear Clear a set of points...257
92.4.4 closest Get the point closest to a location...257
92.4.5 color Set the color of a list of points..257
92.4.6 count Get the number of points in the point list...258
92.4.7 hide Hide points..258
92.4.8 labelbackground Set the label background color...258
92.4.9 labelcolor Set the label text color...258
92.4.10 labelalign Set the label position..258
92.4.11 linestyle Set the line style of points..259
92.4.12 show Show points...259
92.4.13 statistics Get the model statistics..259
92.4.14 symbol Set the symbols used to plot points...259

92.5 Example of the use of the XYPlot Widget...259

93 Relief - Specify the type of relief for a widget..262

94 Copyright Notice...263
94.1 Miscellaneous Contributions..263

93 Relief - Specify the type of relief for a widget 07/30/2007

xii

1 Introduction

 The Fltk extension is a dynamically loaded extension to the Tcl application environment that provides an interface between Tcl
and the Fast Light Toolkit (FLTK) GUI toolkit. The Fltk extension implements the collection of widgets available from the FLTK
toolkit, and a number of supporting commands and features that provide an application development support environment that
resembles the Tk application development environment.

 The set of Tcl commands that are implemented by the Fltk extension have names that are similar to the standard set of Tk
commands. Many commands support options that are identical in form and content to those that are implemented by the Tk
application environment. The default usage of the Fltk extension distinguishes between Tk commands and Fltk commands by the
use of capitalization of the first letter of the extension commands. This allows the Fltk extension to co-exist with the Tk command
set so that applications can make use of both GUI development environments at the same time.

 The Fltk extension provides a set of widgets that, while they may offer similar functionality to the corresponding Tk widgets, will
not provide identical functionality, and hence, will usually require configuration options that are not the same as those of the Tk
widget. For example, the implementation based on the Fltk toolkit defines more than 6 types of button widget, while the Tk toolkit
defines only a single, configurable button widget. Many of the options of the Fltk extension'sButton widget are the same as those of
the Tk button widget, but some additional features of buttons provided by the toolkit are also implemented.

1.1 Features of the FLTK Tool Kit

 The Fast Light Tool Kit (FLTK) is a platform independent GUI development library that delivers a generic interface to a
minimalist windowing system. FLTK implementations are available for a wide variety of computing platforms, including the
popular Microsoft Windows and UNIX environments. The strategy of the FLTK approach is to interact with the native window
manager at the level of a generic, largely undecorated window, and to provide through the use of a limited set of drawing primitives
all of the widgets that the tool kit supports. This approach contrasts with, for example, that of the WIN32 API which provides an
interface between a large variety of windows and pre-defined widgets.

 The principle advantages of the FLTK approach are that the interface to the window manager on any given platform is always
native, so the speed of the widget drawing code is always as fast as the platform will support, and that the application development
API is always the same, regardless of the platform in use. This latter feature makes cross platform development much simpler.

 A third feature of the design of FLTK is the use of generic geometric and text generation functions to build up the appearance of
widgets. FLTK uses boxes and labels for most widget rendering operations. The underlying functions that implement these generic
operations are accessed through a lookup table based on a type specification. Because of this design, applications can replace the
standard box and label functions with their own versions, allowing the rendering of widgets using alternative GUI tool kits, such as
the OpenGL tool kit, without the need to change any of the code used to draw the widgets themselves. This powerful design feature
is used in the Tcl extension to implement all widgets as either OpenGL based or FLTK based graphics.

 The design and implementation decisions characteristic of the FLTK tool kit have the happy result that FLTK based widgets have
the same appearance regardless of the implementation target, and, applications have complete control over widget appearance.

1.2 Limitations of the FLTK Tool Kit

 FLTK is fast, but it is also light. Conspicuously absent is a device abstraction, so printing is a labour. The number of colors
available is limited to a 256 color palette, and there are limits to just about everything, including fonts, boxes and labels. The tool kit
is decidedly less feature rich than either the X tool kit or the Windows API. The dearth of features definitely limits the scope
available for the creation of truly exotic appearances.

 FLTK is a C++ based API, and is therefore limited to platforms that have available a good C++ compiler.

 Because FLTK draws all its own widgets, it does not benefit from the investment made by purveyors of some operating systems
in advanced widget behaviours. For example, FLTK widgets may appear rather plain compared to those of the Windows XP
operating system, or the latest GNOME widget set. For those who are sensitive to the appeal of highly polished widget sets FLTK is
probably not attractive, unless there is the will to write appropriate drawing routines to get the needed effects.

1 Introduction 1

1.3 FLTK and TCL/TK

 The extension package that implements the FLTK bindings is a TCL extension package that can co-exist with the TK extension
package. Both types of widgets, FLTK and TK, can appear on the screen as part of the same application, however, the management
of windows for each package must be effected using their respective package specific commands. Windows can not be intermixed,
although, it is possible to wrap FLTK windows in a TK window, and vice versa.

 In general, TK widgets are more primitive, and hence much more configurable than are the FLTK widgets. Most commonly used
FLTK widgets are actually mega-widgets, combining the functionality of more than one basic widget to produce something that is
ready to use out of the box. Because the widgets are typically compound objects, they are necessarily less configurable than are TK
widgets. On the other hand, the amount of code needed to produce an FLTK application will typically be considerably less than that
found in a TK application.

 In developing the FLTK extension, emphasis has been on providing basic functionality in as highly automated fashion as
possible. This has left the FLTK extension package highly functional while missing many of the advanced features of the TK
package. There is nothing in the FLTK package that compares favourably to the TK text widget, for example, although there are
features in the FLTK package, such as state variable bindings, that make application development a lot less time consuming than
would be the case with TK.

 A final note relates to geometry management. The TK package has extensive and elaborate geometry management features
implemented in several different fashions. The FLTK package has relatively limited geometry management. This can be a
significant constraint on the development of certain styles of advanced GUI applications, but it also greatly reduces the time spent in
configuring various geometry managers for various platforms. Because the FLTK geometry management approach is pixel based,
widgets will always appear the same on all platforms and on all displays.

1.4 FLTK and Other Extensions

 The FLTK extension is driven by the TCL event loop. To the extent that another extension may interfere with the TCL event
mechanism, the FLTK extension should co-exist happily with any other extension to either TCL or TK. The only other issue is the
use of the TCL name space. Like all TCL applications, the FLTK extension uses up the TCL name space for its command set. If
required, the extension can be set to use its own name space so that name conflicts can ultimately be resolved using the TCL
namespace mechanism.

1 Introduction

1.3 FLTK and TCL/TK 2

2 Acquiring and Installing the FLTK Extension for TCL

 In order to use the FLTK extension for TCL you must have installed on your platform a version of the Tcl distribution that is at
release 8.1 or later. The extension makes use of the Tcl stubs mechanism to integrate itself with the Tcl development environment.
Earlier releases of Tcl did not support stubs, so those wishing to make use of this extension with earlier Tcl releases will have to
modify the source code and compile a private version of the extension.

 If you already have Tcl or Tcl/Tk installed on your computer, then the most direct method of installation is to acquire one of the
binary distributions of the FLTK extension package and install that on your machine. Binary distributions are available for
Microsoft Windows and the Red Hat Linux operating systems. Other operating systems may require that you build the extension
from the source distribution.

 The binary distributions of the FLTK extension package are built with the static versions of the FLTK library, so, if you do not
need to build from source, you do not need to have FLTK installed on your machine. If you wish to modify the extension, or if you
need to build from the source distribution, you will need to get the source distribution of the FLTK package and install that on your
machine.

2.1 TCL/TK Distributions

 As of December, 2001, the current preferred source for Tcl/Tk distributions is www.activestate.com. Active State is distributing a
number of commercial and public domain versions of various scripting languages and development tools. The Tcl/Tk distribution is
available for free download from their site. Distributions are available in both source and binary formats for Windows and for
Linux. Tcl/Tk has fairly wide penetration in the UNIX world, and if you are running on a UNIX/Linux based machine it is probable
that Tcl/Tk is already installed.

 Tcl/Tk has a large and active user community that can provide help with installation and programming issues should you need it.
There are also several books available on Tcl/Tk and the internet has a large amount of online documentation, example applications,
tutorials and other resources that make Tcl/Tk a very good target language for both small and enterprise scale application
development projects. If you need to access these Tcl/Tk resources just post your questions to the comp.lang.tcl usenet group.

2.2 FLTK Distributions

 As of December 2001 the preferred source for the Fast Light Tool Kit distribution is www.fltk.org. FLTK has an extensive user
base on a wide variety of platforms. Distributions are available in both source and binary format for Windows and Linux machines.
FLTK is distributed freely on the internet.

 The FLTK web site provides various user resources to aid in the implementation of the tool kit and in the development of FLTK
based applications. There are many examples of FLTK applications included with the distributions, extensive documentation, and a
point and click style application generator that can be used for rapid widget development. The FLTK community has an active chat
group and a mailing list which can serve as a good access point to the available FLTK knowledge base.

2.3 Distributions of the FLTK Extension for TCL/TK

 The current source of extension distributions is the Custom Clients web site at http://pages.infinit.net/cclients/software.htm. This
site contains a number of distributions for Tcl/Tk extensions, including both the source and binary distributions available for the
FLTK extension. Instructions for downloading and installing the various distributions are maintained on the web site.

 The FLTK extension for Tcl/Tk is distributed freely in source and binary formats. Binary distributions are available for both the
Windows and the Red Hat Linux operating systems. Currently, support for the package is limited to e-mail based queries to the
author.

2 Acquiring and Installing the FLTK Extension for TCL 3

http://www.activestate.com
http://www.fltk.org
http://pages.infinit.net/cclients/software.htm
mailto://ifindleton@videotron.ca

2 Acquiring and Installing the FLTK Extension for TCL

2.3 Distributions of the FLTK Extension for TCL/TK 4

3 Introduction to Tcl Programming

 The following chapter contains a very brief overview of the Tcl language and its use as an application development environment.
Tcl is a widely used scripting language that has enjoyed many years of development. Tcl distributions come with extensive
documentation and there is a large amount of information on the use of Tcl available on the internet. While this overview will get
one started with the language, it is not a complete reference to Tcl and its facilities. Readers are encouraged to consult one of the
many excellent books on Tcl that are available. To be able to effectively program in Tcl, readers will need to become familiar with
the contents of the on line documentation that is included in standard Tcl distributions.

 Another useful resource is the Tcler's Wiki. This searchable database contains a large number of hints, tips, explanations and code
examples that are useful to all levels of Tcl developers. It is available on the internet at http://wiki.tcl.tk. The Wiki has extensive
links to other Tcl resources on the internet and is the place to look for answers to Tcl questions. Additionally, there is an active
usenet group, news://comp.lang.tcl, where technical issues about Tcl are discussed.

3.1 Writing Tcl Programs

 The Tcl language is a fully functional application development language. Tcl applications are text files that contain a sequence of
statements that form a Tcl script. Tcl scripts are executed by an application that interprets the Tcl statements in the script. The
interpreter reads the script files, parses the statements in the script and executes the Tcl commands that are found in the statements.
The Tcl language specification provides a set of commands that can be used for creating and initializing variables, evaluating
expressions, creating code blocks which can be executed as subroutines with variable parameters, controlling the flow of program
execution, and for performing input/output operations to various types of channels.

 There are several different Tcl interpreters commonly available. The standard Tcl shell, tclsh, is an interactive program that runs
on most computer systems which will accept, in addition to the set of commands characteristic of the local platform, any Tcl
statement. Similarly, the wish shell is a version of the Tcl interpreter that can be used to develop GUI applications using Tcl scripts
based on the standard X Windows API. The fltkwish interpreter that is described in this document is a version of the Tcl interpreter
that, like wish, is used to develop GUI applications based on the Fast Light Tool Kit API. The expect interpreter is a version of the
Tcl interpreter that is adapted for use in the automation of applications that need operator control. All of these interpreters, and
many others, implement the Tcl language as the basis of script development, and therefore have a common language syntax and
basic command sets.

 Tcl provides a rich set of commands that take a fairly large number of switch options and parameters. Tcl interpreter installations
typically include extensive on line documentation that describes the details of the available commands and their options and
parameter meanings. A complete discussion of these parameters and options is beyond the scope of this text, however, the reader
can readily access the on line Tcl documentation for the relevant Tcl interpreter to discover the details of available commands.
Under UNIX systems, the documentation is available using the man command, while under Windows environments, a WinHelp
database is available.

 Developing a Tcl application can be accomplished either by using a text editor to create a Tcl script which has the list of Tcl
commands to be executed and then passing the script to the standard input stream of an interpreter, loading the text file into the
interpreter using the source command, or by starting up an interpreter and typing the commands directly into the command prompt.
Here is the standard test program for computer languages as used in Tcl.

 puts "Hello, world!"

This program will write the text string "Hello, world!" to the standard output of an interpreter. If this statement was in a text file
named "myfile.tcl", then at the interpreter shell prompt one could load the program using the command:

 source myfile.tcl

Most interpreters will also accept the name of the source file as a parameter on the command line that invokes the interpreter.
Entering a command like:

 tclsh myfile.tcl

at a Unix or Windows command prompt will start the interpreter and automatically load the file.

3 Introduction to Tcl Programming 5

http://wikit.tcl.tk
http://www.fltk.org

3.2 Tcl Language Syntax

 The Tcl language syntax is based on the use of tokens delimited by white space. Tokens are strings of characters in the printable
ASCII subset. A token may contain white space, such as blanks, tabs and newline characters, if it is protected by quotation marks or
brackets. In the above example, the string "Hello, world!" is a token because the quotation marks protect the string between them.
For this reason, the presence of a blank in the string does not result in the creation of 2 tokens. This example could also have been
written as follows:

 puts { Hello, world! }

where in this case the curly brackets have the effect of protecting the string and producing a single token. Tcl also uses square
brackets in its syntax to effect protection of the contents between them, however, square brackets have the additional effect of
causing immediate evaluation of the string between them as a Tcl statement. For example, the Tcl statement:

 puts [expr 5 + 3]

will print the number 8 on the standard output stream. Here, the token created by the square brackets is "expr 5 + 3" which is a Tcl
statement that says "compute the result of the expression 5 + 3".

 There are 4 characters of special significance in Tcl. A newline character will signal the end of a statement, unless it occurs within
a set of brackets or quotation marks that protect it as part of a token. The backslash character will allow for the continuation of a
statement beyond a newline, provided that it is the last character of the statement before the newline. A semi-colon character will
signal the end of a statement, so by using a semi-colon many statements can be placed on a single line. The # character, when it is
the first character of a statement, indicates a comment. All of the text on a comment line, up until the end of the statement signaled
by a semi-colon or a newline character, is ignored by the interpreter.

 Here is a block of code that demonstrates the use of these special characters:

 # A comment line

 puts "Hello, world" ;# 2 statements on a single line. The second statement is a comment!

 # A backslash is used to extend a statement to more than 1 line

 puts "now is the time \

 for all good men to come to the aid of the party!"

 The backslash character has an additional use as an escape that specifies special character patterns. The common use is to insert
tabs, newlines or other non printable characters into text strings. For example, a text string might have embedded tab characters like
the following:

 puts "\tThis\tIs\ta\ttabbed\tstring\n"

The list of valid escapes is described in the Tcl documentation and is similar to that used by the C programming language's printf
function.

 A final special case is the $ character. This character is used as a dereferencing operator when it is the first character in a token.
The effect of this character is to return the current value of the variable identified by the remainder of the string. For example, the
statement:

 puts $Data

returns the current value of a Tcl variable named Data.

3 Introduction to Tcl Programming

3.2 Tcl Language Syntax 6

3.3 Variables

 Tcl has only 1 type of variable, the string. The strings used in Tcl may contain any type of data, including binary data, and the
internal representation of the data within the Tcl interpreter will, in general, be related to the machine architecture of the computer
platform that is being used to run the interpreter. The external representation, however, is the only representation that the language
exposes to the user, and this external representation is always a string representation of the variable.

 Variables are created using the set command and deleted using the unset command. For example, the command:

 set Number 10.352

creates a variable named Number which would, presumably, be used to perform some calculation. One could get rid of this variable
by using the following command:

 unset Number

Typically, the unset command is not used because Tcl variables are automatically deleted when they go out of scope. A variable
gets its scope depending on where it is defined in a script, and it goes out of scope according to how the program flow within the
script occurs. Tcl scope defines 3 categories of variables, local, global and namespace. Local variables go out of scope when the
program flow leaves the code block within which they are created. Global and namespace variables go out of scope when the
application terminates.

 Variable names can be formed from any string of characters that does not contain white space. The only qualification to this
statement is that of namespace variable. The namespace mechanism is used to partition the variable names space for ease of
manageability. Namespace variable names employ a special syntax to qualify the variable name. Here is an example of the use of a
namespace variable:

 set Data::Number 10.352

Note the use of the double colon to signify the namespace qualifier. Namespace is convenient because Tcl global variables must be
unique across an application. The namespace mechanism makes it possible to define global variables that have the same name, but
exist in different namespaces.

 There is one more syntax that is used in Tcl to implement arrays of variables. The syntax uses regular brackets to specify array
elements. The following statement:

 set Data(Number) 10.352

defines an element of an array named Data whose element is Number with a value of 10.352. As with variable names, there are no
particular restrictions on the formation of the array index names, other than the use of white space. For instance, simulation of a 2
dimensional array element might be done with a statement like:

 set Data(Number,1) 10.352

The value of a variable can be accessed in one of two ways. The set command can be used with only one parameter:

 set Number

This statement will return the current value of the variable Number. The other syntax is the use of the dereferenceing operator $. The
statement:

 puts $Data(Number,1)

will print the current value of the array element.

3 Introduction to Tcl Programming

3.3 Variables 7

3.4 Tcl Lists

 A string of tokens separated by white space and grouped using brackets or quotation marks is a Tcl list. Lists are used extensively
in Tcl programs for manipulating data, and the language provides a number of commands specifically for the purpose of
manipulating lists. There is no formal distinction between a text string used in a statement such as:

 set text "This is a text string"

and in a statement such as:

 set text {This is a text string}

 In both cases, the data stored in text will appear to be identical, however, the latter syntax creates a Tcl list, while the former does
not. Regardless of how the variable text is initialized, Tcl list processing commands will produce the same results. This is because
the interpreter will attempt to treat any string as a list if a list command is applied to it.

 Lists are useful because the list processing commands available in Tcl allow easy access to and manipulation of list elements.
Using brackets, a list of lists can be easily created as follows:

 set fruit { { apple red } { orange orange } { grape green } }

This creates a list of 3 elements, each of which is itself a list of 2 elements. One possible view of the Tcl language is that everything
is a list, and that all of the Tcl commands are operators on lists. For this reason, it is worth the effort to fully understand the
available documentation for the Tcl list functions.

3.5 Command Evaluation

 Tcl is a language that evaluates its statements through a process of string substitution. The result of every Tcl statement is a
string. When a Tcl statement is passed to the interpreter for evaluation, the statement is parsed into tokens, and the tokens are
assembled into commands and parameters for those commands. A token itself can be a Tcl statement, so the evaluation process can
be recursive.

 The effect of passing a Tcl statement to the interpreter for evaluation is the removal of one level of brackets from the string that
represents the command. All statements have an implied set of brackets around the statement itself. The interpreter will act to
remove the inner most set of brackets first, replacing that token with the result of its evaluation, then proceed to process the next
innermost set of brackets, continuing until the evaluation process is complete. For example, the statement:

 puts [expr 5 + 3]

is evaluated first to the statement:

 puts 8

and then evaluated to execute the command puts which writes the parameter 8 to the output stream.

 In contrast, the statement:

 puts { expr 5 + 3 }

will be first evaluated to the statement:

 puts "expr 5 + 3"

which will write "expr 5 + 3" on the standard output stream of the interpreter. In both cases, the interpreter removed one level of
brackets. In the former case, the type of brackets indicated that the resulting token should be evaluated as a command, in the later

3 Introduction to Tcl Programming

3.4 Tcl Lists 8

case, no evaluation occurs.

 By default, Tcl interpreters always evaluate input statements. The language provides a special command, eval, to initiate this
process within a script sequence itself. The eval command concatenates all of the tokens following it in the statement into a string
and then carries out a bracket reduction operation. For example, the command:

 eval exec start http://pages.infinit.net/cclients

could be used on a Windows computer to start Internet Explorer and load the Custom Clients home page. In this particular case,
there are no brackets to remove, so the operation is equivalent to the command:

 exec start http://pages.infinit.net/cclients

 There are sometimes occasions when it is desirable to carry out the bracket reduction operation but to not evaluate the resulting
string as a command. Tcl provides the subst command for this purpose. The commands:

 set a http://pages.infinit.net/cclients

 set cmd [subst "exec start $a"]

will put the string "exec start http://pages.infinit.net/cclients" into the variable cmd. The eval command can then be used to invoke
the command as follows:

 eval $cmd

 One of the useful attributes of the eval command is that it can be used to apply the same command to all of the values in a list.
Suppose that a list of items is created in a Tcl variable as follows:

 set list { a b c d e f g }

and suppose that these items are to be added to a list box for display to the user. The list box is created using the TclFltk command
Listbox. This widget supports the add function command. The following set of commands create the list box and add all of the
elements of the variable list to the list box:

 Listbox t.l; eval { t.l add } $list

In this example, the effect of the eval command is to expand the token "t.l add" with each element of the list and then evaluate the
resulting Tcl statement. This is equivalent to a series of commands that would look like the following:

 t.l add a b c d e f g

Since this is a valid command for theListbox command, it is an easy method of adding lists to the widget.

3.6 Expressions

 Expressions are used for performing computations, such as the addition of numbers. Tcl provides the expr command that takes its
parameters and evaluates the expression that is defined by the parameters. The parameters are operators and operands ordered in the
usual manner of algebraic expressions. The expr command supports the usual arithmetic operators, the use of parentheses for
specifying precedence, and can access a library of built in functions typical of most programming languages.

 For well formed expressions, the result of the expr command is the mathematical result of the expression. Tcl performs all of the
required conversions to reduce the expression to a homogeneous set of operands, and then applies the operators to the operands. The
result is converted back to a string and returned to the script. For example, the command:

 expr sin(2 * 3.14159 * 25.0 / 100.0)

3 Introduction to Tcl Programming

3.5 Command Evaluation 9

will compute the trigonometric sine of the value inside the brackets. The documentation for the expr command contains the details
of the available built in functions, the available operators and the precedence of the operators.

3.7 Procedures

 A Tcl procedure is a block of Tcl statements that is identified by the proc keyword. The form of a procedure is:

 proc name { parameter list } { body }

where name is the unique name of the procedure, parameter list is a possibly empty list of tokens that represent parameter values,
and body is a set of Tcl statements. The name can be any set of characters that does not contain white space, the dereferencing
operator, or brackets that are meaningful to Tcl. The name is only unique in the sense that the Tcl namespace can have only one
active procedure with a given name. Should the procedure associated with a name be redeclared, the effect is that the new procedure
body replaces the original procedure body. The original procedure body is made inaccessible by such an operation.

 Here is a simple procedure that will print a string:

 proc Print { { what Nothing } } {

 puts "$what"

 }

This procedure might be invoked using the command:

 Print "Hello, world!"

which would result in the string "Hello, world!" being written to the standard output stream of the interpreter. The syntax shown
means that the procedure Print takes one parameter which has a default value "Nothing". Should the command:

 Print

be encountered, the procedure will write the text "Nothing" to the standard output stream of the interpreter. Another way to write the
Print procedure would be the following:

 proc Print { what } {

 puts "$what"

 }

in which case an incidence of the Print command without any parameters would result in an error because the value for the
parameter is missing. A third syntax for procedures is the following:

 proc Print { args } {

 puts $args

 }

Here the special keyword args indicates that a variable number of parameters may be present. In this case, each argument is printed
on the standard output of the interpreter.

 Procedures return when the statements in the body are exhausted, or when a return statement is encountered. When no return
statement is present, the value returned by a procedure is the value returned by the last statement executed in the procedure body. To
return something specific, the procedure can be written as:

 proc Print { args } {

 puts $args

 return 1

3 Introduction to Tcl Programming

3.6 Expressions 10

 }

Here, the string 1 is returned, regardless of the contents of the arguments or the results of the puts commands.

 Typically, a Tcl application will consist of a number of procedures that are called to implement the functions of the application.
Because of the design of the Tcl interpreter, there is no loss in performance associated with breaking a large script down into a
number of procedures. This is because the Tcl interpreter parses a procedure only once, then saves the parsed procedure as a byte
code that is executed each time a procedure is invoked.

 The default scope for a procedure name is global, so the name is known everywhere within the interpreter in which it is defined.
Local scope can be obtained by defining a procedure within another procedure. The namespace mechanism can also be used to
qualify procedure names for the purpose of organizing the Tcl name space. For example, an instance of the Print procedure defined
using the statements:

 namespace eval Printer { proc Print { args } { puts $args } }

will result in a globally available procedure name Printer::Print that will execute the Print procedure. Here the qualifier Printer is
the namespace name. Inside of this namespace, the function is known simply as Print. For example:

 namespace eval Printer { Print "Hello world!" }

will invoke the previously defined procedure.

3.8 Control of Statement Execution

 Control of statement execution in Tcl is accomplished using the implied function call method provided by the square bracket
syntax, through the use of the if function, through the use of the switch construct, and through the use of the break, continue and
return statements. These constructs are very similar to those found in other programming languages such as the C programming
language.

 The if command has the format:

 if { condition1 } { body1 } elseif { condition2 } { body2 } elseif { condition 3 } { body3 }... else { bodyn }

where condition is an expression that evaluates to zero or not zero. The body items consist of one or more Tcl statements. The last
clause is identified by the else keyword. Execution of a body depends on the result of the evaluation of the expression. Typically,
expressions are logical operations such as comparison, or arithmetic operations that result in some value that will suffice to
determine the test result.

 The switch construct has the format:

 switch { key } {

 item1 { body1 }

 item2 { body2 }

 ...

 default { body n }

 }

where the key is compared to the items. A match to an item will result in the execution of the associated body, which is a series of
Tcl statements. If no match occurs and there is a default item, its body is evaluated. The switch construct can take some options that
allow searching to proceed according to several methods, such as exact, glob and regexp. These alternative specifications can be
useful when looking for matches against sub strings or classes of string representations. Read the documentation on this command
to gain a full appreciation of the power of some of these options. The default search scheme is exact matching.

 Looping over a set of Tcl statements can be accomplished using constructs such as for, foreach, and while. The for command has
the following format:

3 Introduction to Tcl Programming

3.7 Procedures 11

 for { init } { condition } { increment } { body }

where init is an initialization statement, condition is the limiting condition for the loop, and increment is the method of changing the
loop variable. Each of these tokens can be complex Tcl scripts that have as their results values appropriate to their function. Here is
a simple example of a for command:

 for { set i 0 } { $i < 100 } { incr i } { puts "Hello, world for the ${i}th time!" }

This statement will produce 100 lines of output on the standard output stream of the interpreter. In a similar manner, the while loop
has an implementation like the following:

 set i 0; while { $i < 100 } { puts "Hello, world for the [incr i]th time!" }

This series of commands will also print out 100 lines of output. Finally, if a list of items is available in a variable named list, then a
construct like:

 foreach item $list { puts "This is item $item" }

would iterate over the elements of list and print them out.

 Where a loop construct contains an if construct, the iteration process can be controlled based on some test condition. Consider the
following code fragment:

 foreach item $list {

 if { $item == c } { break }

 elseif { $item != d } { continue }

 else { puts $item }

 }

Here the iteration is interrupted when the value of temporary loop variable item is c. Similarly, the continue keyword could be used
to implement some type of flow control based on the results of some test condition. While break terminates the loop iteration, the
continue keyword will continue the loop iteration with the next value of the loop variable.

 The final and most common method of execution flow control is the procedure call. Where a procedure has been defined, then it
can be invoked using its name. Here is a construct that uses the Print procedure:

 if { 1 != 0 } { Print "1 != 0" } else { Print "1 == 0" }

3.9 Error Handling

 The evaluation of a Tcl statement can result in an error condition. Error conditions occur because the statement is malformed, or
because there are references to undefined procedures or variables, or because the operation requested of a command can not be
successfully completed. When an error condition occurs, the Tcl interpreter will, baring other instructions, terminate execution of
the current script and return an error message somewhat descriptive of the error that occurred.

 Tcl provides a mechanism for handling error conditions that occur in applications. The catch command can be used to wrap any
block of Tcl code and trap any error conditions that are encountered. The format of the catch command is:

 catch { script } result

where script is the body of Tcl statements to monitor for execution errors and result is the name of the Tcl variable that is to receive
the result of the script, or the error message that is indicative of the error encountered. For example, the construct:

 if [catch { Print "Hello, world!" } result] { puts "An error happened because : $result" }

3 Introduction to Tcl Programming

3.8 Control of Statement Execution 12

will print out the reason for an error, or if no error occurs, the string "Hello, world!". The result of the catch command is either 0 for
the case where no error is detected, or 1 for the case where an error occurs. Clearly, by using catch within an if command construct,
elaborate error handling can be implemented for Tcl applications.

3.10 Input and Output

 Tcl implements the concept of channels for the purpose of input/output operations. A channel can be any type of input/output
device for which the idea of sending and receiving character data is meaningful. By default, all Tcl interpreters create 3 channels,
the standard input channel, the standard output channel and the standard error channel. These 3 channels are character stream
channels that are typically connected to the equivalent channels of the platform console. The channel descriptors for the standard
channels are the keywords stdin, stdout, and stderr.

 Other types of channels can be used by Tcl applications. Tcl has a very easy to use channel implementation for TCP/IP based
socket communications, and there are language extensions that implement channels for various types of computer hardware, such as
game ports, serial communications devices and digital input/output interfaces.

 Input and output operations are carried out using the gets, read and puts commands. Connection support is provided using the
open, close and seek commands. Both byte stream and block operations are supported. Tcl also provides an event driven interface
for use with input/output channels that makes it easy to monitor channels for activity without the need to use a polling construct.
Extensive configuration options are available for channels to support various types of buffering and character translations. Usually,
the default configurations for standard channels will meet most application needs.

 Here is a typical construct that will read data from a text file:

 set fd [open datafile.txt r]

 if { $fd == "" } { puts stderr "Failed to open file datafile.txt! File not found or permissions not valid" ; exit }

 while { [gets $fd line] != -1 } { puts "$line" }

 close $fd

Here the open command gets a channel descriptor for the file datafile.txt. If the open operation were to fail, then the descriptor will
be an empty string. The while loop reads a single line from the channel and prints it out until it comes to the end of the file. The file
is then closed, freeing up the channel and invalidating the channel descriptor.

 Note that the general form of the puts command is:

 puts options stream text

where options are command options for controlling the output to the channel, stream is the channel descriptor, and text is the
character stream to write. In the previous examples, no options are specified, so the command writes the text followed by a newline
character. Since no stream is specified, the command assumes the standard output channel. A commonly used option for the puts
command is -nonewline. When this option is used, no newline character is output at the end of the text.

3.11 Events

 Some Tcl applications, and all GUI based Tcl applications use an event loop to manage the interaction between external events
and the application. External events are such things as mouse clicks, keyboard activity, data available on channels and timer
interrupts. The basic tclsh interpreter does not automatically enter an event loop, so if an application is designed to use the event
constructs, the script must enter an event loop by specifically calling a Tcl command such as vwait or after to initiate event pooling.

 Interpreters such as wish and fltkwish always enter an event loop when started. Using commands such as fileevent andBind
execution of scripts can be structured to respond to external events, greatly simplifying application development. Here is an example
of using events to monitor traffic on a TCP/IP socket:

 # Establish a server socket listening for connections on port 3079

 set s [socket -server ConnectProc 3079]

3 Introduction to Tcl Programming

3.9 Error Handling 13

 # Handle a connection from a client

 proc ConnectProc { client port address } {

 puts "Connection on port $port form $address"

 fconfigure $client -buffering line

 filevent readable $client "HandleData $client"

 }

 # Get a line of data from the client socket

 proc HandleData { client } {

 if { [gets $client line] != -1 } {

 puts "$client : $line"

 }

The structure of the above code fragment is entirely event driven. When a remote client connects to the socket on TCP port 3079,
the ConnectProc procedure is executed. This procedure configures the socket to buffer full lines of input before signaling that data
is available. The fileevent statement will cause the HandleData procedure to be executed when a line of data is available. Because
the socket identified by the client parameter is a Tcl channel, the general stucture of I/O event handling is the same as with a data
file that was being read for, for example, user input, or as part of a pipe.

 When using the TclFltk extension, an event loop must be entered in order for the display to be updated. if you use the tclsh shell
to run Fltk scripts, then the last line of your script should use the Tcl vwait command to start the event loop. If you use a version of
the Tcl interpreter that already initiates the event loop, such as fltkwish, then you need do nothing to start the event loop.

 Here is an Fltk example of the use of events to control program execution:

 # An example of the use of Events in Fltk

 package require Fltk 0.4

 Image t.i -file $Fltk(Library)/images/ashley.gif

 Bind t.i <motion> { puts { %x %y } }

 Show t

 Wm title t "Event example"

 This script will create a window with anImage widget inside of it. When the mouse is moved over theImage widget, the window
relative coordinates of the mouse will be written to the standard output stream of the Tcl interpreter. The Bind command causes the
script fragment that prints the mouse location to be executed whenever the mouse moves over the Image widget. Since there are
event names defined for all of the principle user interaction events, it is possible to create an application that will respond to mouse
clicks, keyboard activity, communications line activity, socket input and a few other things. Event driven programs have wide
application in GUI environments, amongst other places.

3.12 Library Code and Extensions

 Commonly used Tcl scripts can be collected into script libraries and bundled into packages. Extensions, which add additional
commands the the Tcl command set, can be written using compiled languages such as C or C++ and bundled into packages as well.
Tcl scripts can find library procedures and extensions using the package mechanism.

3 Introduction to Tcl Programming

3.11 Events 14

 A Tcl package is known by its name and its version number. It is located by a package index file. A package index file is a Tcl
script that conditionally loads other Tcl scripts or compiled extensions into an interpreter. Typically, extensions and library code are
stored in a location that the Tcl interpreter will know about, such as its library path. When the interpreter is started it will search its
library path for package index files. These files will specify the conditions under which a named package should be loaded, and will
have instructions for loading the package.

 Within an application, extensions and library packages are invoked using the package statement in the following format:

 package require options name version

where options are optional flags controlling the identification of the package, name is the name of the package, and version is a
version number string. By default, the package loader will load the most recent package version available. If a version string is
specified, the package loader will load the specified version or a later version, but will fail if the requested version is less recent than
the latest available version.

 Here is an example of the method of loading the TclFltk package:

 package require -exact Fltk 0.4

This statement will result in an error for all versions of the package other than the 0.4 version.

3.13 Introspection

 Introspection is the ability to interrogate the application environment about itself. Tcl is a language that implements many
mechanisms that allow applications to interrogate aspects of the application environment and even the application itself while it is
running. A basic tool for introspection is the info command. Tcl's info command can be used to get information about the existence
of variables, the source of procedures, the arguments used by procedures, the list of commands currently available, and many other
potentially useful aspects of the running application and its environment.

 One very common application of introspection is to determine whether a variable is currently accessible to a procedure or script.
A variable is accessible if it exists within the currently accessible scope of variable name spaces. Applications might wish to
perform such a test, for instance, when one part of an application initializes the variable for use by another part of the application.
To prevent script errors from aborting the current script, the info command can be used to test if the variable was, in fact, created
and initialized. For example, the command:

 info exists MyVariable

will return the value 1 if there is currently accessible a Tcl variable named MyVariable, or the value 0 if no such variable currently
exists.

 The command:

 set p [info body MyProc]

will return the current source for the body of the procedure named MyProc. Applications can then inspect and possibly modify the
body of this procedure. Some applications, for instance, implement schemes for generating procedures based on a template using
this type of technique.

 Most Tcl commands that are used by GUI environments, such as those that implement widget constructors, provide a mechanism
for interrogating the current configuration parameters of the widget. All Fltk widgets, and all Tk widgets, implement the cget
sub-function which can be used to retrieve the current value of any of the widget configurable parameters. For example, the
command:

 $w cget -width

3 Introduction to Tcl Programming

3.12 Library Code and Extensions 15

will return the current width in pixels of the widget whose command token is contained in the variable w. Typically, the use of the
cget sub-function without any parameters will return the list of all of the option names that can be queried for the widget.

 GUI implementations, such as Fltk and Tk, also implement commands for the interrogation of various aspects of the widget tree
and the associated geometry manager and window manager. An example of such a command is Winfo, which will return details of
the geometry of currently displayed widgets.

3.14 Summary

 To develop a Tcl application, use a text editor to write the series of Tcl statements that implement the desired application
functionality. Start by loading the required library packages and extensions, compose the necessary procedures, initialize the
required variables, create the desired user interface, then either enter the event loop or call the main entry point.

 Here is a simple Tcl application that uses the TclFltk extension to implement a command line calculator. This script is designed to
run as a command under a Unix operating system. It will start the wish shell, which is a form of the Tcl intepreter, and then load the
Fltk extension, and produce a widget window that has an input area for use by the application. The same script can be used directly
under Microsoft Windows operating systems by starting the wish shell and reading in the script file using Tcl's source command.
Note that the wish shell will automatically start the event loop, so the GUI elements will be displayed correctly.

 #!/bin/sh

 # \

 exec wish "$0" ${1+"$@"}

 # A simple calculator application in Fltk

 package require Fltk 0.4

 set Data ""

 Input t.c -command { catch { eval expr $Data } Data } -variable Data -w 200

 Show t

 Wm title t "Calculator"

You can enter arithmetic expressions into theInput widget and when you press the enter key you will see the calculated result, or an
error message, appear in the widget window. This simple application can be terminated using the standard system menu items on the
application window.

 In the above script, the first 2 lines are, to a Tcl interpreter, comments. Under a UNIX operating system, the first line will cause
the default command shell to start in batch mode and begin executing commands at the exec statement. This statement tells the
operating system to start the wish shell, pass any command line parameters to the shell, and send the rest of the input file to the shell
as its standard input. It does not matter if you just use the source command to read this file as is into a Tcl interpreter, because the
effect of the second line is to make the exec command a comment. Under the Microsoft Windows operating system, the first three
lines are always treated as comments because the only way to execute a script under Microsoft Windows is to pass it to an
interpreter through its standard input.

3 Introduction to Tcl Programming

3.13 Introspection 16

3 Introduction to Tcl Programming

3.14 Summary 17

4 How to Write Applications Using the Fltk Extension

 The Fltk extension adds a new set of commands to a Tcl interpreter that can be used to construct GUI elements called widgets.
Widgets are useful components of a Graphical User Interface (GUI) that provide an interface between the user of an application and
the application itself. Typically, the user will interact with a widget through mouse actions or keyboard actions which the widget
then translates into some desired functionality.

 In an application built with the Fltk extension, the functions of the application will typically be implemented as Tcl procedures.
User actions that apply to a widget invoke the appropriate procedures. These procedures may or may not change the appearance of
the widget, affect the appearance of the user interface, or invoke other applications that themselves may be built using the Fltk
extension.

 The basic steps in building an application with the Fltk extension are:

Design the target user interface using Fltk widgets•
Write the Tcl procedures that implement the required functionality•
Use the Fltk widget construction commands the build the user interface•
Bind the procedures to the widgets•
Activate the application by causing the widgets to be displayed•

4.1 Designing User Interfaces

 The design of a user interface is a subject that has received a lot of attention over the history of computing. The commonly seen
varieties on modern day computers are those that implement a window paradigm, such as that of the Microsoft Windows family of
operating systems, or the X Windows based user interfaces used by the UNIX operating systems. The idea is that an application
presents itself as a frame window that contains a number of specialized sub-windows, each of which implements some function of
the application. Over the years all of these user interface efforts have drifted to standard types of layouts which have some or all of
the following elements:

A frame window having a title bar and some icons that implement system functions, such as maximizing the application
window or terminating the application

•

A menu bar with various types of drop down menu selection features•
One or more button bars that implement through single button presses elements of the application menus•
An application area which displays various aspects of the application functionality•
A status bar that display status information and provides flyover help information as the mouse moves over an application
menu or widget

•

In the Fltk context, all of the elements of this type of GUI are widgets, and the entire GUI is assembled by constructing the widgets
and placing them inside a frame window, either by specifically specifying their location and size, or by using special container
widgets that arrange their child widgets according to preset rules. A given application may have more than one frame window, each
of which may contain one or more child widgets. All of the widget objects in a Tcl/Fltk application are uniquely identified by their
widget path name, a list of character strings separated by periods that identifies the widget in the context of its logical heirarchy
within the containing frame window. A typical widget path name might look like:

 t.all.label

which describes 3 widgets, a root container window named t, a second container, possibly aPackage widget, named all, and a final

widget, possibly aLabel widget, named label. This type of widget path usuallly describes a single widget in a more complex GUI

for an application that uses aPackage widget to do thegeometry management.

 It is always possible to specify the layout of a GUI using thestandard widget options that fix the top left hand corner and the
horizontal and vertical dimensions of the widget. This method is, however, somewhat tedious, particularly when there are more than
a few widgets involved and the GUI is changing for some reason or other during the running of the application.

 The Fltk extension provides support for the layout of GUIs by implementing the idea of container widgets that themselves
provide geometry management functionality that operates on child widgets that are constructed inside of the containers. There are 7
basic types of containers, theToplevel widget, the Frame widget, the Group widget, thePackage widget, theScroll widget, the Tabs

4 How to Write Applications Using the Fltk Extension 18

widget, the Wizard widget and the Tile widget.

 TheToplevel widget creates application frame windows. AToplevel widget creates the root widget in which a collection of child
widgets can be constructed. When aToplevel widget is minimized, all of the children of theToplevel are minimized. All widgets
that are not eitherToplevel widgets or pop up menus must be children of aToplevel widget. Aside from system level geometry
management, theToplevel widget does not explicitly manage the internal layout of its children, except in the case where it is
constructed implicitly. Implicit construction of aToplevel widget will cause it to resize itself such that it wraps all of its children
inside a 2 pixel border. ImplicitToplevel construction is a convenience useful for short GUI applications.

 TheFrame widget is a simple frame that can be used to hold a number of child widgets. Typically, the child widgets will be

positioned using the geometry properties of thestandard widget options, however, theFrame widget also can be configured to lay
out child widgets in a user defined array of rows and columns. This latter feature is useful where all the child widgets are the same
size.

 The Group widget is a container that can be used to group a collection of child widgets into an object that resembles the
ubiquitous Group Box widget found in popular GUI tool sets. . The Group widget provides no special geometry management
functionality, other than allowing the displacement of its children while preserving their relative positions. Optionally, theGroup
widget can be configured to perform automatic layout of a collection of widgets that are all of equal size. When so configured, the
Group widget will lay out the child widgets in a user specified array of rows and columns, and resize the widgets to fit within the

client area of theGroup widget itself.

 ThePackage widget operates on its children by resizing them all to the same dimension along one of its axes, and packing the
widgets together along the other of its axes. By constructing a hierarchy ofPackage widgets, it is possible to layout widgets in any
desired manner. Once constructed inside of aPackage, child widgets take their resize behaviour from thePackage, not their internal
geometry specification. Here is an example of a simplePackage that will align someLabel widgets vertically:

 # Construct an empty Package

 Package t.p -width 200 -orientation vertical

 # Add some child widgets

 Label t.p.l1 -text "Label 1"

 Label t.p.l2 -text "Label 2"

 Label t.p.l3 -text "Label 3"

 # Display the GUI. Note the implied creation of the Toplevel widget t

 Show t

 This script shows the use of the widget path name convention used by the Fltk extension. The first element of the path name is the
root widget name, and the parents of any particular widget are evident from the list of elements. Root names can not begin with a
period. The script also shows an example of implicit construction of the root widget. NoToplevel construction command is present,
so an application frame window is automatically constructed that will nicely wrap the Label widgets.

 TheScroll widget is a container that allows the construction of child widgets whose client areas are larger than that of theScroll.
TheScroll will automatically manage scroll bars to provide visibility over all children of the scroll and their client areas. This is a
very convenient container as evidenced by the following

4 How to Write Applications Using the Fltk Extension

4.1 Designing User Interfaces 19

 # Create a Scroll

 Scroll t.s -w 200 -h 200

 # Put a drawing in it that is large

 Drawing t.s.d -w 1000 -h 1000 -variable d

 set d "cs fl 1 bg black cr 400 bg red cr 300 bg black cr 200 bg red cr 100 bg black cr 75 bg red cr 50 bg black cr 25"

 # Show it

 Show t

Here theDrawing is large (1000 x 1000) compared to the client area of theScroll (200 x 200). This will result in the appearance of
scroll bars that will allow the user to scroll the Drawing so that all parts of it are visible.

 The Tile widget is a container into which widgets can be packed using their own geometry specifications, such as the location of
the top left hand corner and their width and height. Once in a Tile, the internal borders that separate the widgets can be dragged with
the mouse to resize the child widgets. This type of feature is used for things like paned windows where the panes can be resized.

 The Tabs widget is a fifth type of container. It presents a series of tabs using a file folder paradigm the can be selected using the
mouse. Each tab is a container which can have child widgets that implement different aspects of application functionality. The Tabs
widget does not, in itself, provide for any geometry management of its child widgets, although a Tabs container can have as children
any of the other container widgets.

 The Wizard widget is a container that is used to build an interface that can carry the user through a structured set of steps.
The Wizard widget is similar to the Tabs widget, except that the contained widgets are exposed under control of the script rather
than through direct user interaction. Any of the other container widgets can be one of the children of a Wizard widget.

4.2 Creating Custom Mega-Widgets

 The container widgets provide the foundation for the construction of custom mega-widgets using the standard set of widgets
provided by the Fltk extension. A mega-widget is a widget that is built using a collection of basic widgets to provide enhanced
functionality. An example of a mega-widget is a the labeled listbox widget. This widget is built up using the Label widget and the
Listbox widget to form a mega-widget that provides a label at the top of the Listbox.

4 How to Write Applications Using the Fltk Extension

4.2 Creating Custom Mega-Widgets 20

 Here is the code needed to implement the LabeledListbox widget:

 proc LabeledListbox { w args } {

 global Data

 set f [Package $w -orientation vertical -relief sunkenframe]

 eval { Label $f.label -text $w -relief raised -qn true } $args

 eval { Listbox $f.list -relief flat -bg tan } $args

 return $f.list

 }

 The LabeledListbox procedure will construct a mega-widget with a path name set to the contents of the w parameter and will
apply the configuration options supplied via the args parameter. The mega-widget is constructed using a Package widget set to pack
its child widgets vertically. The Package will automatically resize the children in the horizontal dimension so that they will all have
the same width. The chosen width is the width of the widest child.

There are 2 child widgets, the Label and the Listbox. Typically the only options that are of interest for the Label part of the
mega-widget are the displayed text and its color rendition. The vertical size is left to the widget default, and the width is determined
automatically based on the width of the Listbox widget. The qn option supplied for the Label widget will cause the Label not to
respond to any options in the args parameter that are not specifically qualified to refer to the Label.

 The Listbox child widget will accept both qualified and unqualified option names. The widget constructor for the LabeledListbox
could then look something like the following:

 LabeledListbox t.list -w 300 -h 200 -label.text "Labeled Listbox Widget" -variable Data(Selection) -command "Select
%W.list"

This constructor will create a mega-widget with a Listbox child that has the dimensions 300 x 200 pixels, bound to the Tcl variable
Data(Selection) and with a command Select that is to be executed when the user makes a selection. The title displayed in the label
component will be Labeled Listbox Widget. Note that all of the unqualified option names, such as w, h, variable and command, are
ignored by the Label child. The qualified option name label.text is the only option that the Label will process, because the qualifier
label is a component of its path name.

4 How to Write Applications Using the Fltk Extension

4.2 Creating Custom Mega-Widgets 21

 The LabeledListbox procedure returns the path name of the Listbox as its result. This makes it convenient to make use of Listbox

commands, such as the add command, to load theListbox with items to be selected. A complete code fragment might look like the
following:

 set list [LabeledListbox $f.list -w 300 -h 200 -label.text "City Names" -variable Data(City)]

 eval { $list add } $CityList

Here, the variable CityList is presumed to hold a list of cities for the user to choose from.

4.3 Binding Tcl Procedures to Widgets

 The Fltk extension provides the programmer with a lot of help when it comes to binding user actions to Tcl procedures. Every
widget implements options to specify a widget command that is executed according to the occurrence of user actions. The specific
actions vary according to the widget. All widgets also provide for the automatic binding of the widget to a Tcl variable that will be
maintained synchronous as to contents between the Tcl variable and the widget. All widgets also support a binding to a second Tcl
variable that controls the state of the widget, and controls the invocation of a command that occurs whenever the state of the widget
changes. A final mechanism is the use of theBind command which allows the binding of Tcl procedure to both system defined and
user defined events that occur while a particular widget has input focus.

 The simple example of a binding between a widget and a Tcl procedure is the use of theButton widget to activate some function:

 # This is the procedure to be invoked

 proc ButtonProc { w } {

 global ButtonState

 puts "Hello, world from button $w"

 incr ButtonState -1

 }

 # Here is the button constructor

 Button t.b -text "Press Me!" -command { ButtonProc %W } -statevariable ButtonState

 # Here is the button state variable

 set ButtonState 10

 Show t

When this script is executed, theButton will initially be enabled, because the value of its state variable is not zero. Each time the
Button is pressed, it will print a message on the standard output stream of the Tcl interpreter, and decrement the value in
ButtonState. When this value reaches zero, theButton will become inactive, and stop responding to button press actions.

 The Fltk extension extends the ideas of variable bindings, state bindings and command invocation for both state and variable
changes to all widgets. The type of widget determines the meaning and utility of these bindings. For instance, aCounter will
typically be bound to a variable that is being controlled by the widget, while aDrawing might be bound to a variable that contains
the current script needed to create the image in the Drawing. Using these mechanisms greatly simplifies the construction of an
application using Fltk as compared to other available Tcl GUI bindings.

4 How to Write Applications Using the Fltk Extension

4.3 Binding Tcl Procedures to Widgets 22

4.4 Using Options and Application Data

 The Fltk extension includes a facility for setting the values of widget options in a database that can be used to configure the
widgets of an application. This facility is useful when a number of widgets in a GUI need to have common behaviour, such as
having the same background color, dimensions, or have their state controlled by a single state variable. TheOption command is
used to manipulate the contents of the option database.

 Widgets constructed using the Fltk extension have a class property and a name property. The name property has a value that is the
path name of the widget itself. The class property has a value that is, as a minimum, the class name of the widget. Class names are
typically the same as the name of the widget construction command, so, for example, the class name of aButton widget isButton,
and the class name of a Label widget is Label . Class names are a bit more flexible than path names in that a widget may have any
number of class names. Applications can set additional class names for a widget using the class option of the widget.

 Several widgets will be automatically given more than 1 class name. All widgets that behave as buttons have are members of the
Button class. For example, theImageButton widget is a member of theImageButton class and theButton class. Additional class
memberships can be established through the use of the class option of the widget constructor command.

 An application can specify the value of a widget configurable option by adding an entry in the option data base that specifies it
value. This is done with a command of the form:

 Option add name.option value

where name is either a widget path name or a widget class name, option is the name of the option, and value is the value to be used.
In the following example,

 Option add Button.foreground red

an entry is added to the option data base that applies to all widgets which have membership in theButton class. This entry will cause
the foreground property of these widgets to be set to the color red. Using the option database is a very powerful way to configure
the look and feel of an application, and provides a convenient method of providing parameters for some types of widget layout
schemes.

 Application data is user data that can be manipulated using theApplication command. This data is typically used to implement
version control for applications, and to pass parameters to applications that are used to configure a generic application script to some
specific purpose. The Application command provides an interface that manages a few generic application parameters, such as the
application name, the default language for messages, the application version, and some general purpose data. Using the application
data is one way of preparing an application for the use of international languages.

4.5 The Fltk Global Array

The global array named Fltk has a number of elements that are initialized by the extension package to provide information to
applications about the version of the Fast Light Tool Kit used to generate the extension, the location of the package library, and the
version of the extension itself. The array has the following elements that applications may query:

ToolkitName For this extension it is "Fast Light Tool Kit"

ToolkitVersion The release version numbers for the tool kit used to compile the extension

Version The version of the extension

PatchLevel The patch level of the extension

Copyright Copyright notice for the extension

Library Location of the extension library

Interpreter Name of the interpreter (fltkwish)

DoubleBuffering If the GUI is double buffered

4 How to Write Applications Using the Fltk Extension

4.4 Using Options and Application Data 23

BuildDate Date of the build of the extension

BuildNumber Number of the build of the extension

PackageName Name of the extension package (Fltk)

The Tcl set command will return the values of these variable. For example, the command:

 set Fltk(Library)

will return the path to the extension library directory. Note that while it is possible to modify the values of the variables within a
script, once modified the information they contain is no longer reliable.

4.6 Running the Application using the fltkwish Interpreter

 The fltkwish interpreter is a version of the Tcl interpreter that automatically loads the Fltk extension. Tcl scripts that make use of
Fltk extension commands can be run by starting the fltkwish interpreter and passing the scripts to its standard input stream. This can
be done by specifying the script file name on the fltkwish command line, or by issuing the Tcl source command at the interpreter
command prompt.

 The fltkwish command line has the following general form:

 fltkwish options file

where the options are command line switches that control the behaviour of the interpreter and file is the name of the file to interpret.
If no file is specified, the interpreter will start up as an interactive console application and present the user with the usual Tcl
command prompt. If a file is specified, the interpreter will not present the interactive command prompt, but will interpret the
commands in the file.

 Under UNIX operating systems, the options can be any of the standard X toolkit options supported by the platform. Under the
Windows operating systems, the options are limited to a small set of keywords that directly relate to the behaviour of the FLTK
toolkit and the Fltk extension.

 Here is the list of Fltk related options:

-fg Set the default foreground color

-bg Set the default background color

-bg2 Set the default alternate background color

-namespaceSet the name of the Tcl name space to use

The -fg, -bg and -bg2 colors have defaults that are typically established by the window manager in use. The -namespace option can
be used to tell the interpreter to create its command set in a specific Tcl name space, a facility that is useful where there exists the
possibility of name conflicts in the Tcl global name space.

 Here is the typical method of running an Fltk application:

 fltkwish myapp.tcl

This command will start the fltkwish interpreter and begin interpretation of the script file myapp.tcl.

4 How to Write Applications Using the Fltk Extension

4.5 The Fltk Global Array 24

4 How to Write Applications Using the Fltk Extension

4.6 Running the Application using the fltkwish Interpreter 25

5 Fltk Command List

 The following is the list of commands added to a Tcl interpreter by the Fltk based toolkit extension. Note that the capitalization is
important in the use of the command names. The type column shows the nature of the command, while, for those commands that
construct widgets, the class column shows the list of default widget class names that the widget inherits.

Command Type Class Function

Adjuster Widget Adjuster Adjust values

Alert Command Display an alert message

Application Command Set or get application variables

Ask Command Ask a question to the user

Bind Command Associate a script with an event and a widget

BindTags Command Specify event processing order

Button Button Button Create a button widget

Call Command Invoke a module or procedure from a library

Canvas Widget Canvas Create a canvas widget

Chart Widget Chart Create a chart widget

CheckEvents Command Process pending events

CheckButton Widget CheckButton,ButtonCreate a check button widget

Choice Widget Choice Choose from a list of items

Choose Command Ask the user to choose an option

ChooseColor Command Display a color selection dialog

Color Command Color utility functions

ColorName Command Find the name of a color description

Combobox Widget Combobox Create a combo box widget

Counter Widget Counter Create a counter widget

Cursor Command Manage user defined cursors

Debug Command Set controls on debugging messages

Destroy Command Destroy one or more widgets

Dial Widget Create a dial widget

DiamondButton Widget
DiamondButton,
Button

Create a diamond button

DiskDrive Widget DiskDrive Construct a disk drive widget

Drawing Widget Drawing Create a turtle graphics drawing widget

Dummy Command A command that does nothing

Exit Command Terminate the FLTK application

Frame Container Frame Create a frame widget

Focus Command Set or query the input focus

GelTabs Widget GelTabs,Tabs Construct a Tabs widget with gel style tab labels

GetFileName Command Get a file name from the user

GetInput Command Get some input from the user

GetPassword Command Get a password from the user

Group Container Group Create a group container widget

Help Command Display help information

HelpDialog Widget HelpDialog A dialog box with help information

5 Fltk Command List 26

Hide Command Hide windows

HtmlViewer Widget HtmlViewer Display HTML format text

HtmlWidget Widget HtmlWidget An HTML viewer with navigation controls

Image Widget Image Create an image widget

ImageButton Widget
ImageButton,
Button

Create an image button widget

Input Widget Input Create an input widget

Iterator Widget
Iterator,
RepeatButton

Construct a list iterator button

Knob Widget Knob Create a knob widget

Label Widget Label Create a label widget

LabeledCounter Mega-Widget LabeledCounter,CounterCreate a labeled counter widget

LabeledInput Mega-WidgetLabeledInput, InputCreate a labelled input widget

LabeledText Mega-WidgetLabeledText, Text Create a text box with a configurable label

LightButton Widget LightButton, Button Create an illuminated button

Light Widget Light Create a light widget

Listbox Widget ListBox Create a list box widget

Menu Container Menu Create a menu widget

Message Command Display a message box

Option Command Get or set option database values

Output Widget Output Create an output widget

Package Container Package Arrange widgets in a frame

Popup Container Construct a Popup menu

ProgressBar Widget ProgressBar Create a progress bar widget

RadialPlot MegaWidget RadialPlot Create a radial plot widget

Region Hidden Region Create an event region widget

RepeatButton Widget
RepeatButton,
Button

Create a repeating button

ReturnButton Widget
ReturnButton,
Button

Create a button that handles the enter key

Roller Widget Roller Create a roller widget

RollerInput Mega-WidgetRollerInput Create a roller with an input widget

RoundButton Widget
RoundButton,
Button

Create a button that has a round shape

Run Command Evaluate a script file

Scalebar Command Scalebar,Scrollbar Create a scrollbar with an adjustable range

Scheme Command Specify a widget rendering scheme

Scroll Container Scroll Create a scrolling container widget

ScrollBar Widget ScrollBar Create a scroll bar widget

Signal Command Generate an event

Slider Widget Slider Create a slider widget

Show Command Show windows

Table Mega WidgetTable Create a table widget

Tabs Container Tabs Create a set of notebook tabs

TestWidget Widget TestWidget Create a test widget

Text Widget Text Create a text widget

Thermometer Widget Thermometer Create a thermometer widget

5 Fltk Command List

5 Fltk Command List 27

Tile Container Tile Create a tile container widget

Toplevel Container TopLevel Create a top level widget

Trace Command Insert command tracing code in a procedure

TraceFile Command Insert command tracing code in a file

Update Command Redraw specified widgets

UserButton Widget UserButton, Button Creates a custom button
Value Widget Value,Label Displays a read only value

ValueSlider Mega-WidgetValueSlider, Slider Create a slider with a value display

Vu Widget Vu Create a digital volume units display widget

Windows Command Interrogate the widget list

Winfo Command Interrogate widget characteristics

Wm Command Interact with the window manager

XYPlot Widget XYPlot A plotting widget for displaying data

5 Fltk Command List

5 Fltk Command List 28

6 Widgets - Standard configurable widget options

 All widgets supported by the Fltk extension accept a common list of configurable options as well as a set of widget specific
options. Widget commands support 2 functions, theconfigure function and thecget function. The configure function is used to set
the values of the configurable options for a widget, while the cget function is used to interrogate the current value of the
configurable options of a widget.

 The list of standard configurable options is:

alignment Alignment of the widget label

anchor How to anchor text

background Color of the widget background

borderwidth Width of the widget border

class Class name of the widget

command Widget command script

cursor Cursor to use in a window

damage Specify the status of the widget invalidation region

data User data for the widget

eventdefault If default event handling is used

font Label font

fontsize Size of font characters

fontstyle Style of the label

foreground Text foreground color

highlightbackground Background color when highlighted

highlightcolor Color to use when highlighted

highlightthickness Border thickness when highlighted

height Height of the widget

invertstate Invert the state of the widget state variable

label Label string for the widget

limits Range of values for window size

nocomplain If errors in options are ignored

padx Internal horizontal padding

pady Internal vertical padding

qualifiednames If option names must be qualified

relief Widget relief

resizeable If a window can be resized and how to do it

state Set the state of the widget

statevariable The variable to monitor for the state

statevariablecommandCommand to execute on a state change

tooltip The tooltip text for a widget

underline State of the underline text

variable Name of the associated text variable

6 Widgets - Standard configurable widget options 29

variablecommand Command to execute when a variable changes

visible If the widget is visible

wraplength If text should be wrapped

wallpaper Name of the wallpaper image

width Width of the widget

x Horizontal location of the widget

y Vertical location of the widget

While the widget command for all widgets will process all of the standard options, not all options are meaningful to all widgets.
Specific widgets may also support additional configurable options.

 The Fltk extension uses a system of keyword aliases that provides for the use of alternate names, abbreviations and translations
into multiple languages of the option names listed above. Depending on the option, there may be one or more names that will be
recognized for an option. Common examples are the use of w for width, h for height, and justify for alignment. The option names
listed above are those that are guaranteed to be valid when the English language message table is used.

6.1 Getting and Setting Widget Option Values

 Widget option values can be set when the widget is constructed, or by using the widget command. The widget command is the
command whose name is returned when a widget is constructed and will typically be the path name of the widget.Menu items can
also return a widget command which will be the path name of theMenu

Here is an example of a widget construction:

 set w [Label t.l -label "This is a label" -foreground red -relief raised]

This command will construct aLabel widget whose widget command is t.l, which, in this case, is stored in the Tcl variable w. The
form of a widget command may be either:

 path config ?-opt? ?value? ...

 or

 path cget ?-opt?

Where opt is the name of one of the options and value is the value to set for the option. Both the configure and the cget functions
will report available options if the widget command line includes none. In general, each type of widget will report a list that contains
the standard options indicated here and the widget specific options documented for the widget.

6.2 Qualified Option Names

Option names can be either qualified or not qualified. A qualified option name has the form:

 qualifier1,...qualifiern.name

where the qualifiers can be either widget path names or widget class names. If no qualifier is specified, then the option is applied to
the widget. If the widget path name or one of the widget class names matches one of the qualifiers, the option is applied to the
widget, otherwise, the option is ignored.

 Here is an example of a widget command that uses qualifiers for the options:

 $w configure -width 100 t.v.r,t.v.l.height 200 Package,Label.relief flat

6 Widgets - Standard configurable widget options

6.1 Getting and Setting Widget Option Values 30

In this example, the width option will be applied to any widget, the height option will be applied only to widgets whose path name is
t.v.r or t.v.l, and the relief option will be applied to widgets that have thePackage orLabel class name.

 Qualified option names are convenient when a list of options is to be applied to several widgets. This situation occurs when
compound widgets are built up in scripts. By using qualifiers with the widget option names, there is no need to filter the option list.
The qualifiers will act to filter the relevant options to the widgets that make up the compound widget.

 Here is an example of a compound widget that makes use of qualified option names for its initialization. The compound widget
consists of a Label widget and a Counter widget. The following procedure will construct the new widget and process any arguments
that are supplied:

proc LabeledCounter { w args } {

 set f [Package $w -orientation horizontal]

 Label $f.label -relief flat -width 70 -align left,inside -qualifiednames true
 Counter $f.counter

 eval { $f.label set } $args
 eval { $f.counter set } $args

 return $f
 }

 Here is the constructor for the LabeledCounter compound widget. The component widget class names are used to initialize
options relevant to the components of the compound widget.

LabeledCounter $f1.a -Label.label "Value of A" -variable a -label.anchor w

In this case, the label option will be applied to Label component, while the variable option will be applied to the Counter
component The anchor option applies to the Label component, because its qualifier matches part of the path name of the Label at its
lowest level in the widget tree.

When constructing compound widgets from the standard widget set, it is sometimes convenient to limit access to the widget
options of the component widgets to only qualified option names. In this manner, the set of standard widget options can be
selectively applied to component widget, while access to the options of specific widgets can still be garnered using qualified option
names. The qualifiednames option can be used to restrict application of the options to only qualified option names. In the above
example, the width option will apply only to the Counter widget, because it is not a qualified option name and the Label widget has
its qualifiednames option set to true.

Default Widget Behaviour

All of the standard widget options are automatically initialized to a set of default values when a widget is constructed. The
default values of the options define, amongst other things, the default behaviour of a widget when it receives event notifications,
cause by, for instance, mouse or keyboard actions. Options such as the foreground, background, highlightforeground and
highlightbackground ones define the appearance of the widget when it is active and has input focus. Options such as width, height

and x and y define the geometry of the widget.

Standard Widget Option Reference

6.2.1 alignment

 All widgets have the label property that is a text string that can be set to a string that can be displayed in a number of locations
relative to the widget. The position of the label text is determined by the alignment property. The alignment property is composed of
a number of specifiers that combine to define the position of the label text. The specifiers are:

6 Widgets - Standard configurable widget options

6.2 Qualified Option Names 31

centered The text should be centered

top The text should be at the top of the widget

bottom The text should be at the bottom of the widget

left The text should be at the left of the widget

right The text should be at the right of the widget

inside The text should be inside the widget

By default, the alignment value is centered, and the label text is drawn centered with respect to the widget rectangle. If the inside
specifier is not present, then the label text is drawn outside the widget rectangle. Here is an example of a specification that would
draw the label text vertically centered and right justified inside of a widget:

 -alignment right,inside

 Note that there are possible constructs that do not make any sense, such as:

 -alignment top,bottom

These constructs will result in unpredictable label text positioning.

6.2.2 anchor

The anchor property is identical to the alignment property. It exists as an alias only.

6.2.3 background

 The background property is used to specify the color of the background for a widget. The default background color is determined
by the particularScheme being used to draw the widgets, and possibly by any widget toolkit options specified on the command line
used to start the interpreter being used to process the application script. For a standard invocation of fltkwish with no toolkit options
and the default scheme, the background color will be clear, a specification that results in a background color determined by the
current GUI desktop color scheme.

 The background color for a widget can be set using the command:

 $w configure -background color

where $w is the token that represents the widget command, and color is either the name of a color or a color specification. The Fltk
extension has a database of color names that includes the usual set of primary colors (i.e. red, green, blue, orange), an extensive list
of color names commonly found as part of X Windows color databases, and the names of color specifications used by desktop color
schemes (i.e. app_workspace, color_buttontext).. Colors can also be specified using comma separated red, green and blue triplets as
follows:

 $w configure -background 193,24,86

 There is also provision for the specification of gray scale colors using the form:

 $w configure -background gray80

which will set the color to 80 percent gray. Effectively, this mans that the luminance of the gray shade is 80 percent of maximum, so
the color is a light gray color. The specification gray10 is nearly black.

 The Fltk extension uses an internal color cube representation that limits the actual number of colors that can be displayed to 256
values. Actual color specifications are mapped to the closest color cube value for most widget purposes.

6 Widgets - Standard configurable widget options

6.2.1 alignment 32

6.2.4 borderwidth

 The borderwidth property can be used to specify the width of the internal border for container widgets. The Fltk tool kit specifies
the window border width for the default scheme, so the borderwidth property has no effect on window borders. For the OpenGL
scheme, the borderwidth is used to set the width of the OpenGL rendered borders.

 Container widgets are those that have children, such asFrames,Packages, Groups andTiles. The borderwidth property is used
by these widgets to specify a border between the contained widgets and the window border.

6.2.5 class

 The class of a widget is a list of comma separated strings that is useful for the specification of option values in the option
database and for the specification of widget bindings for event handlers. All widgets are given a class specification when they are
created that consists of at least the name of the widget command that created the widget. For example, all widgets created by the
Button command will have the class Button. LightButtons will also have the class LightButton.

 Typically, applications do not set the class string unless there is a particular need to do so. There is not much use in changing the
class of widgets after they have been created as option database values are scanned during the widget creation operation, but a
command of the form:

 LightButton t.b1 -class Button,LightButton,MyLightButton ...

might have some use. Here, the default set of class specifiers is extended to add the specifier MyLightButton, which could then be
used to bind events to all widgets with this class specifier. Using class specifiers helps when the option database is being used to
provide configuration for a group of widgets that have characteristics that differ from the configured characteristics of a standard
class. For example, suppose the option database is initialized using the following command:

 Option add Button.foreground blue

which will cause all widgets that are members of the Button class to have their text colored blue. Subsequently, the following script
fragment is executed:

 Option add MyButton.foreground green

 Button $f.mybutton -class MyButton ...

The result is that the widget $f.mybutton will collect options for the MyButton class instead of the options for the Button class. Using
this technique, the contents of the option database can be set up to selectively configure the same type of widget in different places
of an application script.

6.2.6 command

 The command property of a widget can be used to specify a script that is executed when some event occurs that changes the state
of a widget. The most common use of the command property is with Buttons and Menus. When aButton is pressed, the command
script is executed to implement the action of theButton or Menu item. By default, widgets have no command script associated with
them, and state changes have no effect on the application. Here is an example of aButton with a command script:

 Button t.b1 -text Dismiss -command Exit

In this case, pressing the button will terminate the application. Command scripts are expanded to substitute any embedded keywords
before execution. For example, the command:

 Button t.b1 -text Dismiss -command { puts "Button %W was pressed!" }

will generate a message on the standard output stream of "Button t.b1 was pressed!" each time the button is pressed.

6 Widgets - Standard configurable widget options

6.2.4 borderwidth 33

6.2.7 cursor

 The cursor property is used to specify the name of the cursor that is to be used when the mouse pointer is over a widget. If no
cursor is specified, the default cursor is the usual arrow cursor. The value of the cursor option can be a comma separated string of
up to 3 items that specify the name of the cursor, the cursor foreground color and the cursor background color. For example, the
following specification:

 $w set -cursor wait,blue,white

indicates a built-in wait cursor with a foreground color of blue and a background color of white. The default cursor is the usual
black arrow cursor with white background. The actual color rendition will depend on the operating system in use. Windows, for
instance, does not support the color specification of cursors.

 The cursor name can be one of the built-in cursors or may be a user defined cursor that has been loaded using the Cursor
command. The list of supported built-in cursors includes the arrrow, wait, cross, insert, hand, help, move, ns, ew,nwse,nesw and the
invisible cursor called none.

6.2.8 damage

 The damage property can be used to set the flags used by the FLTK tool kit to determine the status of the widget's invalidateion region. Normally,
applications do not have to manipulate these flags. Any combination of the following flags can be specified:

child Redraw the children of the widget

scroll Redraw the scrollable region of the widget

expose Redraw the widget following its exposure

all Redraw all of the widget

While this property can be queried, any non-empty value returned probably indicates an application problem that is causing the internal event loop not to

update the display rapidly enough.

6.2.9

6.2.10 data

 The data property is used to store widget specific data with the widget. By default, the data property contains an empty string.
Applications can put whatever data that is desired into the widget data area using a command of the form:

 $w configure -data { ...anything...}

and may later recover the data with a command of the form:

 $w cget -data

where $w is the token that represents the widget command.

6.2.11 eventdefault

 The eventdefault property determines whether a widget will benefit from default event bindings for the mouse and focus events.
By default, for most widgets, the value of the eventdefault option is false, and the widget does not benefit from default behaviour.
Some widgets, such as the Button class of widgets, have the eventdefault option value set to true. When the mouse enters the widget,
thehighlightforeground and highlightbackground colors are used to enhance the appearance of the widget. The effect is further
enhanced when the widget has input focus.

6 Widgets - Standard configurable widget options

6.2.7 cursor 34

 When the eventdefault property has the value true, the entry of the mouse cursor into the area of the widget causes the text to take
the color of the value of the highlightforeground options, and the widget background color to take the value of the
highlightbackground option. If the widget has input focus, the text color is a lighter value of thehighlightforeground, and the
widget background is a lighter value of the highlightbackground color. When the mouse cursor leaves the widget, the text color
reverts to the default foreground and background colors, unless the widget retains input focus.

6.2.12 font

 The font property is used to specify the font that is used to draw the widget label text. The default font is normal weight helvetica
12 point text. Other fonts can be specified using a comma separated list of font name and attributes. Here is an example:

 $w configure -font times,bold,italic

where $w is the token that represents the widget command.

6.2.13 fontsize

 The fontsize property is a numeric value that specifies the relative size of the font. The default value is 12 and the range of useful
values is from 8 to 60.

6.2.14 fontstyle

 The fontstyle property specifies the style of the current font. Font styles are specified as a comma separated list of style names
from the list normal, shadow, engraved, none, symbol, bitmap, pixmap, image, multi, freeform, and embossed. By default, the font
style is normal, which represents a font style without any special effects. The fontstyle of none results in the relevant text not being
displayed. This is sometimes useful when constructing widgets for which the label property is not useful.

6.2.15 foreground

 The foreground property is used to specify the color used to draw label text for a widget. By default, the value of foreground is
black. Here is an example of how to change the text in aButton to the color orange:

 Button t.b1 -foreground orange

All of the color specification features described for the background option apply to the foreground color specification.

6.2.16 highlightbackground

 The highlightbackground property specifies the color to be used to draw the background of the widget when it is highlighted. The
default value is clear, a color that is defined by the current desktop scheme and tool kit options. The default behaviour of a widget is
to set its background to the color specified for highlightbackground whenever the mouse moves into the area of the widget. If the
widget has input focus, the color used will be a lighter version of the highlightbackground color. The Bind command can be used to
alter the default behaviour of widgets.

6.2.17 highlightforeground

 The highlightforeground property is used to specify the color used to draw the label text when the widget is highlighted. The
default value is red. The default behaviour of a widget is to set the text color to the color specified by highlightforeground when the
widget is notified that the mouse enters the area of the widget. When a widget has input focus, the color of the label text is set to a
lighter version of this color. The Bind command can be used to alter the default behaviour of widgets.

6 Widgets - Standard configurable widget options

6.2.11 eventdefault 35

6.2.18 highlightthickness

 The highlightthickness property is used to specify the border width of the widget when it is highlighted. Because of the
characteristics of the Fltk tool kit, this property has no effect on widgets. It exists for Tk compatibility.

6.2.19 height,width,x,y

 The height, width, x and y properties are used to specify the geometry in pixels of a widget. All widgets have default values for
these properties that are reasonable for the type of widget. Here is an example of a widget construction command that specifies the
geometry:

 Package t.p1 -x 100 -y 50 -o horizontal -height 20

In this case, aPackage is being created that will limit the vertical dimension of the widgets it contains to 20 pixels. This type of
command might be used for packingButton widgets into a horizontal button bar.

 At any time the geometry of a widget can be changed by using the widget command to adjust any of these properties. The values
supplied can use the relative syntax to adjust values relative to their current values. For example, a widget might be moved down the
screen with the following command:

 $w configure -y +20

This command will move the widget represented by the token $w down the screen by 20 pixels.

 The geometry options can take special keywords instead of numerical values which may be useful in alignment of child widgets
inside containers. For child widgets, the width and height options can optionally be specified as width and height. Using these
keywords will cause the width and height of the child to be set to the current client area width and height of the containing parent
widget.

 The x option can be specified using the keywords left, right, or centered. Using one of these keywords causes the child to be
positioned within its parent container accordingly. Similarly, the y option can be specified using the keywords top, bottom or
centered. For example, the following command would construct a child of the container specified by the path name in $w, and
position the child centered, along the top edge of the client area of the parent:

 Button $w.button -x centered -y top

while a command of the form:

 Image $w.image -w width -h height

might be used to create a child widget within a container that has the dimensions of the client area of the parent.

 Finally, the relative syntax can be applied to the keywords to further adjust the computed locations and dimensions of the child
widgets. For example, the following command would align the child along the right hand border of the parent client area with a gap
between the child widget's border and that of the parent of 10 pixels:

 Button $w.button -x right-10 -y centered

See the wizard.tcl script in the scripts directory of the distribution for an example of how keywords are used to aid in the layout of
child widgets.

6.2.20 invertstate

 The invertstate property determines how the value in the widget statevariable, if any, is to be treated. By default, invertstate is
false, and the interpretation of the widget state variable is as described below. If the value of the invertstate property is true, then the
interpretation of the value of the state variable is inverted.

6 Widgets - Standard configurable widget options

6.2.18 highlightthickness 36

 For example, if the statevariable for aButton widget is a Tcl variable whose value is 0 and if invertstate is true, then the state of
the widget will be normal. If, however, invertstate is false, then the state of the widget will be disabled.

 Where a widget has no statevariable, the effect of this option is nothing. If a statevariablecommand has been specified for the
widget, the invertstate option has no effect. The statevariablecommand script must set the widget state.

6.2.21 label

 The label property is used to specify the text of the widget label. Widget labels are used for various purposes by the Fltk tool kit,
and many of the Fltk extension widgets use the label text to display values that are either labels in the usual sense of the word, or the
variable contents of the widgets themselves.

 Here is an example of a widget command that sets the widget label text:

 $w configure -label "This is label text"

 Here $w is a token that represents the widget command. If the widget is aButton , the label text would become the text displayed
in the button. If the widget is a Label, then the text would be the contents of the label. If the widget is an Input, then the label text
would be displayed beside the widget as a label.

6.2.22 limits

 The limits property is used to specify the range of values that the widget geometry can take. By default, widgets can be resized to
any dimensions. Specifying limits will limit resize behaviour to the ranges given.

6.2.23 nocomplain

 The nocomplain option is used to specify whether or not errors in configuration option names result in a command failure. By
default, the value of nocomplain is false, and the presence of an invalid option name on a widget command will result in an error
message. If the value of nocomplain is true, then invalid options are simply ignored. This option is useful when constructing
compound widgets. One set of configuration options can be passed to all of the widgets in the compound widget. Invalid options for
specific widgets will be ignored.

6.2.24 padx,pady

 The padx and pady properties are used to specify internal padding values for widgets. By default these values are both 0. Widgets
such as thePackage andImage widgets use these value to position their child widgets.

6.2.25 qualifiednames

 The qualifiednames option is used to force the widget configuration and query functions to respond only when passed a properly
qualified option name. By default, the value of the qualifiednames option is false and the widget will accept either qualified option
names or unqualified option names. By setting the value of this option to true, the widget will process only qualified option names.

6.2.26 relief

 The relief property is used to specify the relief that is used to draw the widget. The Fltk tool kit defines two classes of relief,
frame relief and filled relief. Frame relief draw only the borders of the widget in the specified relief style, while filled relief will
draw the internal background of the widget as well. Usually, a frame style is used when the entire inside contents of a widget are
filled with other widgets.

The Fltk extension provides a large number of relief types. The Help command can be used to list all of the values. Commonly used
values are:

6 Widgets - Standard configurable widget options

6.2.20 invertstate 37

none No relief

raised Raised

sunken Sunken

flat No relief

ridge A Ridged relief

groove A grooved relief
Note that the value none is not the same as the value flat. Where none is specified, nothing is drawn, and unless the widget contains some other drawings, you
see the desktop background through a transparent area that represents the widget.

 There are both normal relief styles and frame relief styles. The difference between a frame relief style and a normal style is that where a frame style is used,
only the relief frame is drawn, the client area of the widget is not filled with the background color, leaving the widget transparent to whatever is already on the
background. When a normal style is used, the widget client area is filled with the current background color. Frame styles are typically specified by appending
the word frame to the basic style, as in raisedframe or flatframe, as opposed to the normal frames or raised or flat.

6.2.27 resizeable

 The resizable property is used to specify if and how a widget window can be resized. The value of this property can be either a
boolean name that specified whether the widget window can be resized, or it may be the path name of a widget that defines the area
of the widget window that can be resized. For some widget windows, such as aToplevel widget, the resizable area is the entire

widget, so when theToplevel is resized, all of the widgets within the window are also resized proportionally.

 Setting the value of resizable to false will remove the resizable area from the widget, and it will not respond to resize requests.
Alternately, the value specified for this property can be the path name of another widget, which may be a hidden widget, that
defines the resizable area within the widget window. Widgets within the resizable area are resized, while those outside of the
resizable area are not resized.

 For aToplevel widget, a command of the form:

 Toplevel t -resizable true

will make the window resizable, with all of the child widgets being resized proportionally. Using false as the value for this option
will make theToplevelnot resizable at all. Other possibilities are application dependant. By careful specification of the resize area

assigned to container widgets, such as the Frame, Group or Package widgets, any desired resize behaviour can be achieved.

6.2.28 state

 The state of a widget can be either normal or disabled. By default all widgets are created in the normal state. When disabled a
widget will not process any input events when it has focus.

6.2.29 statevariable

 The statevariable property is used to set up a relationship between the state of a widget and a Tcl variable. The Tcl variable
should have a binary behaviour that can be used to deduce the state of the widget. This means that the state of the widget will be
disabled when the Tcl variable is either an empty string or has the value of 0. When the variable is non zero, or contains a non
empty string, the state of the widget will be normal.

 Using statevariables is a convenient method of setting the state of widgets in an application based on something that may be
going on in the application. For example, in a client and server application, the statevariable might be a socket connection. When a
connection occurs, all of the widgets monitoring the connection handle will change state.

 Here is an example of aButton that is tied to a Tcl variable for its state:

 set Data(ButtonState) 0

6 Widgets - Standard configurable widget options

6.2.26 relief 38

 Button t.b1 -statevariable Data(ButtonState) -label Disconnect -command Disconnect

In this example, the initial state of theButton will be disabled because its state variable is 0. When the state variable changes to a
nonuser value, the state of theButton will also change to normal. Here, when active, theButton will, presumably, disconnect the
connection and restore the state variable to 0 again, thereby disabling theButton .

 The Tcl variable used for statevariable bindings must be a Tcl global variable. They can be simple variable or members of Tcl
arrays, as in the above example.

6.2.30 statevariablecommand

 The statevariablecommand property is used to specify the script that is to be executed when the statevariable of a widget
changes. If a widget has a statevariable and it changes value because of some application related action, the script specified for the
statevariablecommand is executed. By default, widgets have no statevariable associated with them, and the value of the
statevariablecommand has no effect.

 The scripts specified for the statevariablecommand property are first expanded in the manner ofcommand scripts to substitute
any embedded keywords, then are executed. If a statevariablecommand script is specified, then the command must set the state of
the widget. If no statevariablecommand script is specified, then the combination of the contents of the statevariable and the
invertstate options will determine the state of the widget. For example, the following command:

 $w set -statevariable MyVar -statevariablecommand "if { $MyVar == Off } { %W set -state disabled } else { %W set -state
normal }"

would cause the interpreter to check the value of the Tcl variable MyVar whenever it changes, then set the state of the widget whose
path name is contained in the variable $w according to the contents of MyVar.

6.2.31 tooltip

 The tooltip property can be used to specify a tool tip style help text string for the widget. Tool tips are short captions that appear
when the mouse pointer lingers over a widget. By default, widgets are created without any tooltip text. If tooltip text is specified
then the tool tip feature is automatically activated for the widget.

The text specified for a tooltip can contain the following embedded keywords:

%w The path name of the widget

%l The label text of the widget

%d The current widget data

%v The current widget variable

%s The current widget state variable

Before a tool tip is displayed, the keywords are replaced by their relevant values. Here is an example of aButton with a tooltip text:

 Button t.b -tooltip "Help for the %l button" -label Dismiss

This command will produce the tool tip "Help for the Dismiss button" when it appears.

6.2.32 underline

 The underline option controls the state of underlined text in the label. By default, the value of this option is true.

6 Widgets - Standard configurable widget options

6.2.29 statevariable 39

6.2.33 variable

 The variable property is used to associate the value of a widget with a Tcl variable. This option only applies to widgets that have
the value property, such as Buttons,Scrollbars,Input andOutput widgets and a few others. By default, the value of the variable
property is an empty string and no Tcl variable is bound to the value of the widget.

 If the name of a Tcl variable is specified for the variable property, then whenever the value of the widget changes, the new value
will be stored in the Tcl variable. Similarly, should the value of the Tcl variable change, the value of the widget is automatically
updated to reflect the change.

 The Tcl variable can be a simple variable or an array element, but must be a global variable. If the variable does not exist when
the variable property is set, a suitably named global variable will be created and initialized from the value of the widget. If,
conversely, a Tcl variable with the specified name does exist, the value of the widget will be initialized from the Tcl variable.

 Here is an example of aLabel widget whose text is bound to the contents of a Tcl variable:

 set Data(LabelText) "This is some text"

 Label t.l -variable Data(LabelText) -width 200 -alignment left,inside

The result will be aLabel widget which contains the text in the bound variable aligned in a left justified fashion.

6.2.34 variablecommand

 The variablecommand property is used to specify a script to be executed whenever the value property of a widget changes. The
script can contain keywords that are replaced with appropriate values before the script is evaluated. See the discussion on script
expansion for the details on the available keywords.

 By default, widgets have no variablecommand script. If a widget is not bound to a Tcl variable, the value of the variablecommand
property has no effect. If a script is specified, then the script should set the appropriate value option of the widget when it is
invoked. If no script is specified, then the value option of the widget is set by the automatically. For example, the following
command:

 $w set -variable MyVar -variablecommand "%W set -value $MyVar"

would be equivalent to the command:

 $w set -variable MyVar

In either case, the value of the value option of the widget whose path name is in the variable $w would be set the the contents of the
Tcl variable MyVar.

6.2.35 visible

The visible property is used to set or query the visibility of a widget. Widgets may be hidden or visible. When the value of the visible property is false, the
widget is hidden. When the value of the visible property is true, the widget is visible. By deault, the value of the visible property is true and the widget is
visible.

6.2.36 wraplength

 The wraplength property is used to specify the character position in a text string to use for wrapping the text. In Fltk the
determination of this value is automatic, so this option is ignored.

6 Widgets - Standard configurable widget options

6.2.33 variable 40

6.2.37 wallpaper

 The wallpaper property is used to specify the name of an image file that contains an image that is to be used as the background
image for the widget. Not all widgets support this option. Typically, wallpaper images are used withToplevel widgets to implement
themes. By default, widgets are created with no wallpaper image.

 The image files should be in one of the image formats that is supported by theImage widget. Widgets such as the Toplevel

widget support features such as centering and tile placement of the background image.

6.3 Configurable Options and the Option Database

 All configurable options can be initialized using values in the option database. TheOption command is used to specify the
contents of the option database. The contents of the database consist of string keys and priority based values that are retrieved when
widgets are constructed or configured.

 Widget options that are integer values, such as x, y, width and height, can be configured using a special syntax that relates the
configured value to the current contents of the value applied to the widget in the option database. The syntax is recognized by
prepending to the specified configuration value a non-digit operator symbol that specifies how to apply the value following the
operator to the value in the option database to produce a value with which to configure the widget.

 The list of operators is:

+ Add the value to the database value

- Subtract the value from the database value

* Multiply the value by the database value

/ Divide the database value by the value

% Take the modulus of the database value and the value

& Take the logical AND of the value and the database value

| Take the logical OR of the value and the database value

If there is no option value set in the option database that applies to the widget being configured, the database value applied is
zero. For example, the widget command:

 $w config -x +10 -y +10

6 Widgets - Standard configurable widget options

6.2.37 wallpaper 41

would place the widget identified by $w at the location computed using the current option database values for x and y and adding
the value 10 to each.

6.4 Initialization of Widgets from the Option Database

 When a widget is created its characteristics are initialized by first searching the option database for key patterns that could refer to
the widget and applying any matches that are found to the initial values of the widget configurable options.

 All applications define an application name string and a separator string that are used in the generation of keys for searching the
option database. The database is searched for keys in the following order:

 global

 application name.global

 widget class

 widget class.widget name

 application name.widget class

 widget name

 application name.widget name

 application name.widget class.widget name

Here, the separator is a period, and the application name is the current application name string. These two parameters can be set
using the Application command. The widget name is just the path name of the widget and the widget class is just the class name of
the widget.

 The keyword global means that an option should be applied to all widgets in all applications that make use of a specific option
database. The option database itself could be saved in a file that is automatically read whenever the Fltk extension is loaded, in
which case the global keyword could be used to set the default values for all widgets in any application that is run using the
extension. For example, the default location for all widgets and the default background color for all widgets could be set using the
following commands:

 Option add global.x 50

 Option add global.y 50

 Option add global.background tan

 The default application name is "Fltkwish" so the relief for all widgets of classButton could be preset using the following
command:

 Option add Fltkwish.Button.relief raised

which will cause the default relief for all buttons in that application to be raised.

 Typically, a non permanent copy of the option database is created for each application run using the Fltk extension. Option values
are set to configure the widgets used in the GUI so that all widgets, or all widgets in a specific class have common default
characteristics. For example, the following command will configure the default relief of widgets in theButton class:

 Option add Button.relief ridge

Since the usual default relief forButton widgets is raised, any widgets created by this instance of the Fltk extension would now have
a ridge relief.

6 Widgets - Standard configurable widget options

6.3 Configurable Options and the Option Database 42

6.5 Using Widget Commands

 When a widget is constructed, the result of the widget creation command, if no error is detected, is a token that represents a
widget command. The widget command supports the functionality of the widget. For example, the command:

 set w [Frame t.f]

creates aFrame widget and returns the token that represents the widget command to the Tcl variable w. This token can then be used
as a widget command to access the features of the Frame widget.

Here is an example of the use of a widget command:

 $w config -x 20 -y 40 -label "My Widget"

This command will configure the widget identified as $w to be position at location (x,y) relative to its parent widget, and to have a
label of "My Widget". The use of label strings varies with the type of widget. For aToplevel widget, the specified x and y

coordinates will be relative to the screen.

6.6 Widget Construction

 Widgets are created using the appropriate Fltk extension command, such as Toplevel,Frame or Button. The general format of
these commands is:

 Widget path ?-opt? ?value? ...

Where Widget is the actual command that creates the widget and path is the path name of the widget. A valid path name consists of
a set of strings separated with periods (.) that specify a route to a root node in a hierarchical tree. The first element of the path is the
name of the top level widget that is the root parent of the widget being created, and the last element is the unique name of the widget
itself. For example, the path name:

 root.frame.child

says that child is a child of frame which is itself a child of root.

 Generally speaking, the elements of a path name can be any sequence of characters that are not prohibited by Tcl. Tcl uses some
characters to indicate special treatment during the evaluation of a command. Quotation marks ("), dollar signs ($), square ([]) and
curly ({}) brackets must be used with circumspection as path name elements. The Fltk extension does not care what the string
contents are, depending only on the period for its proper functioning in finding widget parents. Names such as:

 $...[help]{}

will probably cause undesirable results when running your applications.

 The special root widget name '.' is intrinsic to the Tk package. If the Fltk extension is running while Tk is active, then you may
not name a root widget '.'. Doing so will cause Tk to assume the widget is one of its own set, and unless this is what you intend, you
will have some problems. If Tk is not active, then you can use the name '.' for your root widget.

6 Widgets - Standard configurable widget options

6.5 Using Widget Commands 43

6.7 Widget Destruction

 Widgets that belong to the Fltk extension can be destroyed by three basic mechanisms, using theDestroy command, closing the
widget's parent container widget, or using the Tcl rename command.

 TheDestroy command is the direct method of destroying a widget. The named widgets in theDestroy command are closed and
removed from the master list of widgets managed by the Fltk extension. For an application whose root widget is named root, the
following command would destroy all of its widgets:

 Destroy root

 If the parent container of a widget is destroyed, then the widgets that are children of the container are also closed. A parent
container is either a top level widget, which might have been closed using its system menu, or it might be aFrame widget that acts

as a group container for a number of widgets that have their geometry managed by theFrame.

 The Tcl rename command can be used to destroy a widget by renaming its widget command to an empty string. The Fltk package
initialization procedure actually captures the Tcl rename command to check for the case of a rename with implied destruction, and
calls theDestroy command when needed.

 Of course, the Tcl exit command, or the Fltk Exit command, will also close all open widgets.

6 Widgets - Standard configurable widget options

6.7 Widget Destruction 44

7 Alert - Display an alert message

 The Alert command can be used to display a message box that contains a message. The user responds by pressing a button to
indicate that the alert message is acknowledged.

The format of the command is:

 Alert message

where message is the text of the alert message. If no message is supplied an error message is returned, otherwise, nothing is
returned. For example:

 Alert "The world is coming to an end! Prepare thyself!"

is a method of either alarming or amusing the user.

7 Alert - Display an alert message 45

8 Ask - Ask a question

 The Ask command will display a message box with two buttons that present the user with two possibilities for answering a
question, either yes or no.

The format of the command is:

 Ask message

where message is the question to be posed. If the user selects the yes response button, the command returns without raising an error,
if the user selects the no response, the command raises an error.

For example:

 if { catch { Ask "Do you want to continue?" } result } { exit }

would terminate an application if the user selects no.

8 Ask - Ask a question 46

9 Adjuster - Create an adjuster widget

 An Adjuster is a widget that changes its value property through user interaction with the mouse. The classic spinner is an example
of an Adjuster.

The format of the command is:

 Adjuster path ... options ...

Where path is a valid widget path and options is the list of option and value pairs used to configure the widget. In addition to the
standard set of widget options, the Adjuster supports the following widget specific options:

max Set the maximum value for the widget value

min Set the minimum value for the widget value

orientation Set the orientation of the widget

step Set the step value for the widget value

value Specify the current value for the widget

By default, the values of min and max are 0 and 100 respectively, the value of step is 1, and the value of value is 0. Orientation can
be used to set the layout of the Adjuster controls to either horizontal or vertical. The default orientation is horizontal.

 For example, the following command will create a spinner that steps by 5 units from -50 to 50:

 Adjuster t.a -min -50 -max 50 -step 5 -value 0 -orientation vertical -variable CurrentValue

This Adjuster updates the Tcl global variable CurrentValue each time the user changes its value by clicking on one of its controls.

9 Adjuster - Create an adjuster widget 47

10 Application - Specify application data

 The Application command is used to query or define application data. The command supports the sub functions configure and
cget. Configure is used to set the values of the application variables while cget is used to obtain the current values.

The list of application variables available is as follows:

name The name of the application

version The application version string

copyright The application copyright string

comment A comment string

data A string of user data

separator A single character that is used for option parsing

compatibility A boolean value controlling Tk compatibility features

options A string of values that may be used to pass options to an application.

All of the variables are strings. In a safe interpreter, the configure function is not available, so the initialized values set at the
compile time of the Fltk extension in use are fixed.

 The format of the command is:

 Application cget ?-var? ...

 or

 Application configure ?-var? ?value? ...

where var is the name of the application variable and value is a string that specifies the new value for the variable. If no parameters
are specified after the function name, then the list of options available will be returned.

 For example, to set the application name and version, use the command:

 Application configure -name "My Application" -version "1.01"

and to determine whether the Tk compatibility mode is active, use the command:

 Application cget -compatibility

This latter command will return the string true or false according to the state of the compatibility mode. When compatibility mode is
true commands that begin in lower case are treated as Tk commands, while commands that begin in upper case are treated as
commands for this package. This is the default mode, and it allows Tk to co-exist with the toolkit extension. If compatibility mode
is false Tk should not be loaded when using this extension.

 The default values of the application data are set when the Fltk extension is compiled. They have the following values:

name "fltkwish"

version The current version number of the extension

copyright "Copyright(C) I.B.Findleton, 2000,2001. All Rights Reserved"

separator "."

compatibility true

options ""

10 Application - Specify application data 48

all other values are empty strings.

10 Application - Specify application data

10 Application - Specify application data 49

11 Bind - Manage event bindings for widgets

 TheBind command is used to associate an event with a widget. An event can be either one of the pre-defined events that are
associated with keyboard, mouse, or window manager actions, or it may be a user defined event that is activated by some
mechanism such as theSignal command.

 The format of the Bind command is:

 Bind widget name script

where widget is either the path name of a widget or a widget class name, name is a string that names the event and script is a Tcl
script that is to be executed when the widget receives the event.

 The widget parameter can be the special keyword all. In this case, the binding is a global binding that will be applied to all of the
widgets in the current widget list. If widget is not all and it is not the name of an existing widget, it is assumed to be a widget class
name. The event will be automatically bound to all of the widgets of the specified class that exist or are subsequently created.

 The following command would bind an event script to all of the widgets currently in the widget list:

 Bind all <ButtonPress> { HandleClick %W %x %y }

while the following command:

 Bind Button <ButtonPress> { HandleClick %W %x %y }

would bind the event script to all widgets of class Button. Given that there is a widget with the path name of t.b , then the following
command would bind the event script to it:

 Bind t.b <ButtonPress> { HandleClick %W %x %y }

Note that in the case of a specific widget, the widget must exist at the time theBind command is executed if it is to be bound to the
event handler.

11.1 Event Names

 An event name can be any string of characters. The list of pre-defined events include the following:

<Nothing> No event

<Resize> A resize or reposition event

<ButtonPress> A mouse button is pressed

<ButtonRelease>A mouse button is released

<KeyPress> A keyboard key was pressed

<KeyRelease> A keyboard key is released

<Enter> The mouse entered a widget

<Leave> The mouse left a widget

<Motion> The mouse moved in a widget

<FocusIn> The widget received focus

<FocusOut> The widget lost focus

<Activate> The widget is activated

11 Bind - Manage event bindings for widgets 50

<Deactivate> The widget is deactivated

<Destroy> The widget is destroyed

<Map> The widget became visible

<UnMap> The widget became invisible

<Paste> The widget is receiving data

<Selection> The widget should have a selection

<DNDEnter> The widget is entered for drag and drop

<DNDRelease> Drag and drop released

<MouseWheel> Mouse wheel motion in the widget

These built-in names for events are typical of many of the window managers that are used on GUI based computer interfaces and
their meaning is, for the most part, obvious. For example, to track the location of a mouse pointer inside a widget, the following
code might be used:

 Bind $w <Motion> { puts "Widget %W Mouse Location (%x,%y)" }

When the mouse is moved over the widget specified by $w then the interactive console would see the message specified in the
script.

11.2 User Event Bindings

 The following command will bind an event handler to a user defined event that is named MyEvent:

 Bind t.w MyEvent { puts "Event MyEvent occurred in widget %W" }

At some point in an application, this event can be raised using a command of the form:

Signal t.w MyEvent -x x -y y

where x and y are the values that the event should report as the window relative location where the event occurred. Here the Signal
command is being used to create a simulated event with the name MyEvent. User event names can be any string of characters,
however, they must be unique within an application in the event name space. You can not override, or overload, the set of
predefined event names.

11.3 Script Expansion

 The script associated with the event can specify a number of special tokens that are replaced with widget and window manager
data before it is evaluated. The tokens are recognized as sub strings of the script that begin with the % sign. The list of supported
tokens is as follows:

%% Replaced with a single % sign

%# Event serial number

%A The ASCII value of the keyboard event

%b The mouse button that caused the event

%k The key code that caused the event

%K The key symbol that caused the event

%N The decimal value of the ASCII key that caused the event

11 Bind - Manage event bindings for widgets

11.1 Event Names 51

%R The name of the parent of the widget

%t The time code of the event

%T The name of the event

%W,%w The path name of the widget

%U The user data associated with the event

%x The widget relative horizontal location of the event

%X The screen relative horizontal location of the event

%y The widget relative vertical location of the event

%Y The screen relative vertical location of the event

For example, in the script associated with the <Motion> event shown above, the items %W, %x and %y would be replaced with the
widget path name, and the window relative location of the mouse when the event was generated.

 In the Fltk tool kit there is a distinction between a window and a widget. Windows are widgets that are managed by the native
window manager on the computing platform in use. Widgets are visual objects that are created by the Fltk tool kit. AToplevel
widget is a window. Typically, aToplevel widget will contain a collection of widgets that make up the graphical user interface of
the application. When events are handled for a widget in the collection, it is important to note that the values of event locations, such
as the position of the mouse or where the cursor was when a keystroke happened, are usually relative to theToplevel container, not
the widget itself.

 To convert from the window relative coordinates to widget relative coordinates, note that the widget command can be used to
retrieve the location of a widget within a window. For example:

 set x [$w cget -x] ; set y [$w cget -y]

will get the location of the widget whose command token is in w with respect to the containing window. These values can then be
subtracted from the event positions to get the widget relative location of an event.

11.4 Event Processing

 Associated with each widget is a list of tags that specify the order of processing events received by the widget. This list is created
by default with 3 or 4 tags in the following order:

widget name The path name of the widget

parent name The path name of its parent if it is not a top level

class name The class name of the widget

all Global event handlers

Clearly, Toplevel widgets and some types of Menu widgets have no parents, so they have only 3 tags in their default bind list. Other
widgets will have all four tags. In addition to the set of standard tags, the list may also contained user defined tags that maybe the
object of invocation using the Signal command.

 Events received by the widget are handled by proceeding down the tag list until either all bindings have been successfully
processed or until the script associated with a binding returns either TCL_ERROR or TCL_BREAK. A widget may have an event
binding associated with each of the tags in its tag list. For example, the script:

 Bind Button <Enter> { %W set -background yellow }
 Bind t.b1 <Enter> { %W set -foreground green }
 Bind t.b2 <Enter> { %W set -foreground red}
 Bind Button <Leave> { %W set -foreground black -background gray }

11 Bind - Manage event bindings for widgets

11.3 Script Expansion 52

would cause all Button widgets to turn to a yellow background when the mouse enters the widget, and back to a gray background
when the mouse leaves the widget. The particular buttons t.b1 and t.b2, however, would adopt green and red foreground colors,
respectively.

 In addition to the default set of tags, widgets may have tags associated with user defined events The order of the bind tags can be
established using theBindTags command. Using this command an arbitrary list of event bindings can be specified for the widget.

11 Bind - Manage event bindings for widgets

11.4 Event Processing 53

12 BindTags - Manage event processing list for a widget

 The BindTags command is used to specify the content and order of the event binding processing list for a widget. Using the
BindTags command, the order of processing of events bound to a widget can be specified. By default, all widgets inherit a list that
orders the event processing sequence as:

 { widget ?parent? class all}

where widget is the path name of the widget, parent is the path name of the widget's parent if it has one, class is the class name of
the widget, and all signifies the global event bindings that apply to all widgets. Some widgets, such as theToplevel widget, do not
have a parent.

When an event occurs over a widget, such as a <ButtonPress> event, the event handler will traverse the list of bind tags for the
widget and invoke the events bound, if any, at each level of the list. Unless the event script terminates with a return code indicating
a failure occured, the events bound to the next level in the list will be invoked. The default list proceeds from the specific to the
general, as in from the widget path name to the global event bindings identified by all. See the Bind command for a description of
how events are processed.

 The format of the BindTags command is:

 BindTags widget ?list?

where widget is the path name of the widget and list is a list of tag names that specifies the content and order of the event processing
tags for a widget. If list is not present, the result of the command is the current list of tags for the widget.

 The list specified can contain both the standard tag names such as the widget name, its class name, its parent's name, and all, as
well as user defined event binding names. If the list is empty, then the tag list for the widget is cleared, and events will not be
handled by the widget. Note that an empty list is not the same as specifying no list on the command.

 For example, to clear the list of tags for a widget, use the command:

 BindTags $w {}

and to reverse the standard order of processing for a widget, use:

 BindTags $w { all [Winfo $w class] [Winfo $w parent] $w }

12 BindTags - Manage event processing list for a widget 54

13 Button, CheckButton, DiamondButton, LightButton,
RepeatButton, ReturnButton, RoundButton, LEDButton -
Construct a button

TheButton command is used to construct a standard button widget that is characterized by a typical rectangular button with text
centred in the rectangle. This is the basic widget of theButton widget class.

Along with thestandard widget options, theButton widget class supports the following widget specific configurable options:

type Specifies the behaviour of the button

value Specifies the value of the button

onvalue Specifies the on value string

offvalue Specifies the off value string

shortcut Specifies the name of the shortcut key

downrelief Specifies the button relief when pressed

Button type can be invariant, toggle, or radio. The default type is invariant which means that the value of the button does not
change when the button is pressed and released. For toggle buttons, the value is inverted when the button is pressed, and for a radio
button, the value is set for the button and cleared for all other buttons in the same container group. (Container groups are determined
from the widget path name).

 The value of a button is internally either 1 or 0. Externally, the options onvalue and offvalue can be used to specify strings that
will be returned by the widget command depending on the current internal value of the button. For example, a button constructed as:

 Button root.b1 -onvalue true -offvalue false -value true

would result in the widget command:

13 Button, CheckButton, DiamondButton, LightButton, RepeatButton, ReturnButton, RoundButton, LEDButton - Construct a button55

 root.b1 cget -value

returning either true or false depending on the internal value of the button. Note that the construction of the button set the initial
value according to the specified onvalue and offvalue strings. By default, all buttons have onvalue and offvalue strings of 1 and 0
respectively.

 The shortcut for a button specifies the key sequence that can be used to effect a button press and release sequence from the
keyboard. Shortcut specifications are just strings of the form:

 Control-Alt-PgUp

that indicate that, in this case, the button is activated when the keyboard key PgUp is pressed while the Ctrl and Alt keys are
depressed.

 The downrelief option is used to specify the type of relief that the button will have when it is pressed. The relief when released is
set using the standard widget option relief. By default, buttons have relief of raised and a downrelief of sunken.

13.1 Typical Button Use

 TheButton widget is a very common component of GUI applications. Typically, when aButton is pressed, the result is an action
that is executed, usually a Tcl procedure. In addition to the action, GUI developers sometimes prefer to have the visual
characteristics of the button change when the mouse moves over the widget to indicate that it has the current input focus. Here is an
example of a fairly standard button that is used to terminate an application:

 Button root.quit -command Exit -text "Dismiss" -tooltip "Click to terminate the application"

 Bind root.quit <Enter> { %W configure -fg red }

 Bind root.quit <Leave> { %W configure -fg black }

Here the command script to be executed when the button is pressed is the Exit command, which will terminate the application. The
Bind commands are used to cause the text in the button to change from black to red when the mouse is over the button, then back to
black when the mouse leaves the area of the button. The %W token in the Bind scripts is replaced by the path name of the button
widget which is, in this case, root.quit.

 All widgets that are in the collection of buttons, including theImageButton widget, are members of theButton widget class. By
default, these widgets will have the class namesButton and a class name that is identical to that of the widget constructor command.
Using the class name it is possible to implement uniformButton behaviour. For example, the commands:

 Bind Button <Enter> { %W configure -fg red }

 Bind Button <Leave> { %W configure -fg black }

would make all buttons respond to mouse movement over the widgets in the same way.

13.2 CheckButton - Create a checkbutton

 A CheckButton is a button that has 2 states, on and off. CheckButtons support the same options as theButton widget. This button
displays a small check box in its client area that displays the current state of the button. Here is a command that controls the value of
a Tcl variable named MyOption using a CheckButton:

 CheckButton root.check -variable MyOption -text "My Option" -onvalue TRUE -offvalue FALSE

Whenever the button is clicked, the value of the variable MyOption will change between TRUE and FALSE.

13 Button, CheckButton, DiamondButton, LightButton, RepeatButton, ReturnButton, RoundButton, LEDButton - Construct a button

13.1 Typical Button Use 56

13.3 DiamondButton - Create a button with a diamond indicator

 A DiamondButton is a button that uses a diamond shaped indicator that shows the state of the button value. It supports all of the
options of the Button widget. The format of the command is:

 DiamondButton path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
Here is an example of a DiamondButton:

 DiamondButton root.b -x 100 -y 100 -text "Diamonds?" -command { puts "Diamonds are forever, husbands leave!" }

13.4 LEDButton - Create a LED button

 A LEDButton is a button widget that uses a simulated LED instead of a coloured square. It is otherwise similar to a LightButton.
This button can be used to control the value of a Tcl Variable in the same manner as the CheckButton example. The only real
difference between these buttons is the type of indicator drawn.

13.5 LightButton - Create an illuminating button

 A LightButton is a button widget that has a light that can be illuminated either by pressing the button of changing its value. It
supports all of the options of theButton widget.

13.6 RepeatButton - Create a repeat button

 A RepeatButton is a button that repeatedly issues its command while it is held down. It supports the same options as aButton
widget. This button is convenient when developing an application that has to loop through a list. By holding down the button, the
command will repeat. For example:

 set idx 0

 RepeatButton root.r -text Next -command { puts $idx; incr idx }

will produce a nicely incrementing list if integers when it is held down.

13.7 ReturnButton - Create a return button

 A ReturnButton is a button that generates a key event with the key value for the enter key. It responds to the same option list as
theButton widget This button is a good one to use as the default response to a dialog box. For example:

 ReturnButton root.quit -text "Exit Now?" -command Exit

This button can be either clicked with the mouse, or the enter key can be pressed to cause the current application to be terminated.

13.8 RoundButton - Create a round button

 A RoundButton is a button that is useful for creating radio button style dialogs. It has a sub widget that illuminates according to
the value of the button. It supports the same widget options as theButton widget. This button behaves the same way as the
CheckButton and the LightButton.

13 Button, CheckButton, DiamondButton, LightButton, RepeatButton, ReturnButton, RoundButton, LEDButton - Construct a button

13.3 DiamondButton - Create a button with a diamond indicator 57

13 Button, CheckButton, DiamondButton, LightButton, RepeatButton, ReturnButton, RoundButton, LEDButton - Construct a button

13.8 RoundButton - Create a round button 58

14 Canvas - Create a canvas widget

 The Canvas command creates a widget that implements a general purpose drawing surface. The Canvas widget provides a
number of drawing primitives that can be used to construct complex drawings and provides support for event bindings to the
elements of the Canvas drawing.

The format of the command is:

 Canvas path ... options ...

where path is the path name of the widget and options are option and value pairs that are used to configure the widget. The Canvas
command supports the list ofstandard widget options.

14.1 Widget specific commands

 Most of the functionality of the Canvas widget is implemented using widget specific commands. The Canvas widget supports the
standard cget and configure commands, as well as the following widget specific function commands:

create Create a canvas item

delete Delete a canvas item

itembind Bind events to canvas items

itemcget Get item attributes

itemconfigure Set item attributes

itemlist List the names of canvas items

load Load a file of canvas items

save Save canvas items to a file

The general format of a canvas function command is:

 $w function options

where $w is the path name of the Canvas widget, function is one of the supported functions, and options are either option names or
option name and value pairs supported by the command.

14 Canvas - Create a canvas widget 59

14.2 Canvas Items

 A canvas item is a geometric primitive that has a collection of properties. Every item supports a set of basic properties and
possibly a set of item specific properties. The list of basic properties supported by all canvas items is:

origin Location of the item origin

rotate Rotation angle for the item

scale Scale factors for the item

translate Translation of the item

color Drawing color of the item

fillcolor Filled color of the item

linestyle Line style of the item

linewidth Width of the line used for an item

tag Tag list for the item

activefillcolor Filled color of an active item

disabledfillcolor Filled color of a disabled item

activecolor Drawing color for an active item

disabledcolor Drawing color for a disabled item

activelinestyle Line style for an active item

disabledlinestyleLine style for a disabled item

state The state of the item

transform Transformation matrix

x Horizontal location

y Vertical location

vertex A vertex

vertexlist List of vertices

extent Extent of the item

width Width of the item

height Height of the item

Using the itemconfigure command all of the item properties can be specified. Using the itemcget command all of the item properties
can be queried. Not all items make use of all the properties. Rotation of a circle, for example, has no obvious use, so the circle item
does not make use of the rotate value.

14.2.1 The origin of Canvas items

 All of the coordinates of location properties of canvas items are specified relative to an origin. By changing the origin of an item
the object can be moved about on the canvas. The origin is set by default to be (0.0). Canvas coordinates are relative to the upper
left hand corner of the widget. When a canvas item is created it is the usual case that the location of the item on the canvas will be
specified using the x and y properties of the item. Items can be moved by either changing the x and y values, or by changing the
origin of the item. An origin is specified as a pair of comma separated values.

 For example, here is a circle on a canvas with an origin set so that the circle will be centred at the point (100,100) on the canvas:

 set c [$w create circle -x 0 -y 0 -origin 100,100 -fill yes -fillcolor red -radius 20]

14 Canvas - Create a canvas widget

14.2 Canvas Items 60

This command produces a red circle on the canvas. The value returned in the Tcl variable c will be a token that identifies the circle.
This circle could then be moved about using commands of the form:

 $w itemconfig $c -x 20 -y 20 -fillcolor green

which would move the circle so that its centre would be at canvas location (120,120) and its colour would be green.

14.2.2 The rotate property of Canvas items

 The rotate property is an angle in degrees that is used to compute a rotation for a geometric object. Because of the
implementation used for some canvas objects, this value is ignored. Other objects do however use the rotation angle. By default, the
rotate value is 0 and objects are not rotated.

14.2.3 The scale property of Canvas items

 The scale property is two numbers that specify the horizontal and vertical scale factor for the coordinate values used to specify
the location and dimensions of geometric objects. By default, the scale values are set to (1.0,1.0) so that coordinates and lengths are
identical to the values specified for the item. Changing the scale will distort, expand or shrink geometric primitives.

 For example, here is a command that will change the scale of an existing canvas item whose token identifier is contained in the
Tcl variable id:

 $w itemconfig $id -scale 0.5,0.5

This command would shrink the size of the item by a factor of 2.

14.2.4 Canvas item geometry items

14.2.4.1 Positional properties

 The location of the canvas item may be specified using the x and y configuration options. These values are measured with respect
to the origin specified for the item. A circle, for example, can be moved about by changing the x and y values after it is created.

 The position of some items can be specified with a list of vertices. A vertex list is a comma separated list of coordinate values that

specify the location of polygon vertices.

14.2.4.2 Extent properties

 The height and width properties can be used to specify the dimensions, with respect to an origin, of rectangular items.

14.2.5 The state property of Canvas items

 Canvas items can have a state of either normal, active, disabled or hidden. By default an item is in the normal state. When a
mouse moves over an item it becomes active, unless it is disabled or hidden. When active the item can respond to user input from
mouse actions or keyboard actions. When disabled or hidden the item will not react to user input.

 When building a collection of canvas objects, it is typically desirable that not all of the objects on the canvas be active. Things
such as static background images and static text labels generally don't need to be responsive to mouse events, and the GUI designer
may not want the visual appearance of these static items to change as the mouse moves over them. Setting the state of the items to
disabled will prevent user input from affecting the canvas items.

 For example, here is a procedure that produces a popup window with a background image and some text over the image:

14 Canvas - Create a canvas widget

14.2.1 The origin of Canvas items 61

 # --- about.tcl --- Display an about box with version information

 # Display the copyright information

 proc About { name width height } {

 # Destroy any previous widget trees beginning with the name prompt.

 catch { Destroy prompt }

 set f [Toplevel prompt]

 # Create a canvas with dimensions that surround the image

 set c [Canvas $f.text -w $width -h $height]

 # Create an image item as a background

 $c create image -origin 0,0 -state disabled -file $name

 # Get the application data for this application

 set data [Application get -name -version -copyright -comment]

 # These static text items will not be affected by mouse motion

 $c create text -x 20 -y 10 -text [lindex $data 0] -state disabled -disabledcolor black

 $c create text -x 20 -y 30 -text "Version [lindex $data 1]" -state disabled -disabledcolor black

 $c create text -x 20 -y 50 -text "Copyright (C) [lindex $data 2]" -state disabled -disabledcolor black

 $c create text -x 20 -y 70 -text "[lindex $data 3]" -state disabled -state disabled -disabledcolor black

 Show $f

 Wm title $f "About ..."

 }

This procedure makes a good about box for applications. The parameters are the name of the image file to use as a background, the
width of the image and the height of the image.

14.2.6 Color properties of Canvas items

 The visual appearance of Canvas can be altered by changing the colors used to draw the objects. The following properties affect
the color presentation of the items according to their state. Unless they are hidden or disabled, an item is active when the mouse is
within the boundaries of the item, and is normal when the mouse is not within the boundaries of the item.

14.2.6.1 The color property

 The color property is used to specify the color employed to draw a canvas object when it is in the normal state. This color is the
line color that draws the outline of the object. By default this color is black.

14.2.6.2 The activecolor property

 The activecolor property is used to specify the drawing color for an object when it is in the active state. By default, the
activecolor color is red.

14 Canvas - Create a canvas widget

14.2.5 The state property of Canvas items 62

14.2.6.3 The disabledcolor property

 The disabledcolor property is used to specify the drawing color for an item when it is in the disabled state. By default, the
disabledcolor color is gray.

14.2.6.4 The fillcolor property

 The fillcolor property is used to specify the color used to fill items such as circles and closed polygons when these items are in the
normal state. By default this color is the same as that of the color property.

14.2.6.5 The activefillcolor property

 The activefillcolor property is used to specify the color that should be used to fill the item when it is in the active state. By
default, the activefillcolor color is white.

14.2.6.6 The disabledfillcolor property

 The disabledfillcolor property is used to specify the color that should be used to fill the item when it is in the disabled state. By
default the disabledfillcolor color is gray.

14.2.7 Line style properties of Canvas items

 The visual appearance of Canvas can be altered by changing the line style used to draw the objects. The following properties
affect the line style of the items according to theirstate. Unless they are hidden or disabled, an item is active when the mouse is
within the boundaries of the item, and is normal when the mouse is not within the boundaries of the item.

14.2.7.1 The linestyle property

 The linestyle property is used to specify the type of line to draw when an item is in the normal state. The available line styles are:

solid Solid lines

dash Dashed lines

dot Dotted lines

dashdot Dashed and dotted lines

dashdotdashDash dot dashed lines

Line styles can be qualified with the following additional optional enhancements to the lines as they are drawn. These features can
be added to the ends of line segments:

cap-flat

cap-round

cap-square

join-mitre

join-round

join-bevel

For example, a line style for a line segment could be specified as solid,cap-round. By default, the linestyle is set to solid.

14 Canvas - Create a canvas widget

14.2.6 Color properties of Canvas items 63

14.2.7.2 The linewidth property

 When an item is drawn on the screen, the drawing functions use a pen with a width specified by the linewidth property. By
default the value is 1.

14.2.7.3 The activelinestyle property

 The activelinestyle property is used to specify the line style used to draw an item when it is in the active state. All of the styles
specified for the linestyle property are available. By default, the activelinestyle is set to solid.

14.2.7.4 The disabledlinestyle property

 The disabledlinestyle property is used to specify the line style used to draw an object when it is in the disabled state. All of the
styles specified for the linestyle property are available. By default, the disabledinestyle is set to solid.

14.2.8 The tags property of Canvas items

 Each item of the Canvas can have one or more tags associated with it. When an item is created it gains a tag that is the same as its
name, and a tag that specifies its class. For example, all circles will have the tag circle. Tags can be used to configure groups of
items that all have the same tags.

 For example, the following widget command will create a triangle:

 set t [$w create triangle -fill yes fillcolor blue -tags blue]

Suppose that the item identifier returned by this command is tri5. The resulting canvas item will have a tag list that contains the
following items:

 tri5,triangle,blue

Tags can be used to manipulate all of the items in a canvas that have the same tag. For example, using the itembind function, the
following command would attach an event handler script for a mouse button press to all items with the tag blue on the canvas:

 $w itembind withtag blue <ButtonPress> { puts {%w %x %y} }

Since the triangle has the tag blue, clicking a mouse button while inside the triangle will invoke the script.

14.3 Canvas Item Creation

 Geometric primitives supported by the Canvas widget are created using the create function command. The format of the create
function command is:

 $w create type options

where $w is the path name of the widget to use, type is the type of geometric object to create, and options is a list of option and
value pairs that are used to configure the attributes of the geometric object. The list of geometric objects supported is:

arc Create an arc

circle Create a circle

curve Create a bezier curve

image Create an image

line Create a line

14 Canvas - Create a canvas widget

14.2.7 Line style properties of Canvas items 64

polygon Create a polygon

point Create a point

quadrangle Create a quadrangle

rectangle Create a rectangle

text Create a text object

triangle Create a triangle

The result returned by the create command is a token that identifies the canvas item that is created. This token is used to refer to the
specific item for the purposes of other widget commands which manage, configure and query the characteristics of the widget. For
example, the command:

 set mytext [$w create text -text "Don't worry! Be happy!"]

might return the token text10 into the variable mytext. This token could later be used to modify this text item to change the display
color as follows:

 $w itemconfig $mytext -color orange

 All canvas items are defined by a set of option values that are initially set to reasonable default values, so items can be created
with no options specified and configured at a later time.

14.4 Deleting Canvas Items

 Items in a canvas can be deleted using a command of the form

 $w delete id1 ... idn

where $w is the canvas command and the values id1 through idn are the item identifiers that identify the canvas items to be deleted.

14.4.1 Canvas Arc Items

 The format of the command that creates an arc is:

 $w create arc options

where $w is the path name of the canvas and options are the list of option and value pairs that is used to configure the arc. In
addition to the set of standard canvas item options, the following item specific options are supported:

from Start angle in degrees

to End angle in degrees

fill If the arc should be filled

The from and to angles along with the extent option values define the arc to be drawn. If the fill option is true, the canvas item will
look like a section of pie. For example:

 $w create arc -extent 100,100 -from 45 -to 90 -fill yes -fillcolor orange

will create an octant of an orange cream pie. The standard item options origin and extent define a rectangular area the encloses the
circle that would define an arc of 360 degrees.

14 Canvas - Create a canvas widget

14.3 Canvas Item Creation 65

14.4.2 Canvas Circle Items

 The format of the command used to create the circle canvas item is:

 $w create circle options

where $w is the path name of the canvas to use and options are the list of option and value pairs used to configure the canvas item.
In addition to the set of standard canvas item options, the circle canvas item supports the following item specific options:

radius The radius of the circle

fill If the circle is filled

The circle is created at the current origin with the specified radius and optionally filled with the current fillcolor. For example:

 $w create circle -x 150 -y 150 -radius 200 -fillcolor blue -fill yes

will create a circle at location (150,150) and radius 200 filled with the color blue

14.4.3 Canvas Curve Items

 The curve is an item that is drawn using 2 end points and 2 control points that are parameters to a Bezier curve tracing function.
The format of the command is:

 $w create curve options

where $w is the path name of the canvas and options is the list of option and value pairs that are used to configure the curve. The
curve has no item specific options and supports the list standard canvas item options. To draw a curve, use a command of the form:

 $w create curve -vertexlist 10,20,40,40,-20,-20,50,80

 Here the pairs of numbers in the vertexlist represent to 4 locations that are used by the Bezier function to draw the curve.

14.4.4 Canvas Image Items

The format of the command used to place images on a canvas is:

 $w create image options

where $w is the path name of the canvas to be used and options is the list of option and value pairs needed to configure the item. In
addition to the standard canvas item options, the image item supports the following options:

file Name of the image file to use

colormode How to display the image

flip If the image is flipped

mirror If the image is mirrored

center If the image is centered

The file option specifies the name of a file that contains the image to be displayed in a graphic format that is supported by the
package. TheImage command describes all of the file formats that are currently supported.

The colormode option may be either mono or rgb. By default, the colormode value is rgb and the image is displayed in full color. If
colormode is specified as mono, then the image is displayed in a gray scale format.

14 Canvas - Create a canvas widget

14.4.2 Canvas Circle Items 66

The flip, mirror and center options can be used to flip, mirror or center the image. By default, these options are false. The following
command could be used to display and image on a canvas:

 $w create image -file images/ashley.gif -x 100 -y 100 -colormode mono

Here the image is being placed on the canvas at location (100,100) and will be displayed as a gray scale image. Note that the image
will be clipped to the default item dimensions, so if you want to see the entire image, you need to create the item large enough to
hold the entire image, or implement some scrolling or panning mechanism.

14.4.5 Canvas Line Items

 The format of the command that creates a line is:

 $w create line options

where $w is the canvas to be used and options is the list of option and value pairs that are used to configure the line. In addition to
the list of standard canvas item options, the line supports the following item specific options:

from Start location of the line

to End location of the line

x1 X location of the start of the line

y1 Y location of the line start

x2 X location of the line end

y2 Y location of the line end

 A line can be created using a command as follows:

 $w create line -from 20,20 -to 145,90 -color red -linewidth 4 -linestyle dash

which will draw a red dashed line between the 2 end points. Alternatively, the same line could be specified as:

 $w create line -x1 20 -y1 20 0x2 145 -y2 90 -color red -linewidth 4 -linestyle dash

14.4.6 Canvas Polygon Items

 Polygons are closed convex objects formed by joining a list of vertices together with line segments. There are regular polygons
and irregular polygons, the former being objects such as the square, the octagon and the pentagon, the latter being objects whose
sides are not all of equal length.

 The format of the command that creates a polygon is:

 $w create polygon options

where $w is the path name of the canvas and options is the list of option and value pairs that are used to configure the polygon item.
In addition to the set of standard canvas item options, the polygon supports the following item specific options:

fill If the item is filled

sides Number of sides for a regular polygon.

If the sides option is specified, then the resulting object will be a regular polygon with the specified number of sides. Otherwise, the
vertices of the polygon are specified in a vertex list. In the latter case, the number of vertices specified will be used to draw a closed

14 Canvas - Create a canvas widget

14.4.4 Canvas Image Items 67

polygon by joining the last vertex to the first vertex. If the vertices do not actually represent a convex closed polygon, then the fill
operation can produce unpredictable results.

 For regular polygons, the resulting object is drawn inside of the bounding box defined by the current origin end extent values.
For example, a hexagon might be drawn using the command:

 $w create polygon -extent 200,200 -sides 6

14.4.7 Canvas Point Items

 The point is a mark at a single location on the canvas that covers 1 pixel on the display screen. Points use a subset of the standard
canvas item options. The following command creates a point:

 $w create point -x 100 -y 100 -color green

which will color the pixel at (100,100) on the canvas green.

14.4.8 Canvas Quadrangle Items

 A quadrangle is a closed convex irregular polygon of 4 sides. The format of the command used to create a quadrangle is:

 $w create quadrangle options

where $w is the canvas to be used and options is the list of option and value pairs used to configure the item. In addition to the set of
standard canvas item options, the following widget specific option is supported:

fill If the quadrangle is filled

Quadrangles are created using a command of the following form:

 $w create quadrangle -vertexlist 10,10,100,25,125,90,40,20

The 4 pairs of coordinates define the corners of the quadrangle.

14.4.9 Canvas Rectangle Items

 A rectangle is a regular closed convex polygon of 4 sides. Like the quadrangle item, int addition to the list ofstandard canvas
item options, the rectangle supports only 1 item specific option, the fill option which is true if the rectangle is to be filled. The
following command us used to create a rectangle:

 $w create rectangle -width 200 -height 100 -fill yes -color purple

Alternatively, the actual vertices could be specified as in the quadrangle item.

14.4.10 Canvas Text Items

The format of the command used to create text items is:

 $w create text options

where $w is the canvas to be used and options is the list of option and value pairs used to configure the text item. In addition to the
set ofstandard canvas item options, the text item supports the following item specific options:

14 Canvas - Create a canvas widget

14.4.6 Canvas Polygon Items 68

text The text to be displayed

textfont The font to use in displaying the text

textsize The size of the text font to be used.

Here is an example of using the text item to display some text on the canvas:

 $w create text -text "Hello, world" -textfont times,italic,bold -textsize 20 -color tan

The textfont option value is a comma separated list of items that specify the characteristics of the font to be used. By default, the
textfont option value is helv and the textsize option value is 12.

The following fonts are supplied as part of the Fltk extension package under the Linux and other UNIX operating systems:

helvetica

courier

times

symbol

system

dingbats

Font descriptions can be qualified by appending the following qualifier strings:

bold Set the text to a bold font

italic Set the text to an italic font

For example, a font could be specified as helvetica,bold,italic to achieve an effect that is both bold and italic.

14.4.11 Canvas Triangle Items

 Triangles are closed convex polygons of 3 sides. They are created by specifying the vertices of the triangle in a vertex list, or,
they can be created using the polygon item creation command. Amongst the list ofstandard canvas item options, triangle items
support the fill option for the creation of filled triangles. For example, the command:

 $w create triangle -vertexlist 100,100,200,200,0,200 -fill yes -fillcolor yellow

will produce a yellow triangle on the canvas identified by the contents of $w variable.

14.5 The Canvas delete function command

The delete function command is used to delete items from the canvas. The format of the command is:

 $w delete list

where $w is the canvas to use and list is an optional list of canvas item identifiers to be deleted. If no identifiers are specified, all of
the items on the canvas are deleted. Any non-existent items are ignored.

 For example, to clear the canvas, use the command:

 $w delete

while the item identified as circle9 can be removed using the command:

14 Canvas - Create a canvas widget

14.4.10 Canvas Text Items 69

 $w delete circle9

 When a canvas is destroyed, either through the use of theDestroy command, the destruction of a parent, a call to Exit or through
the use of the Tcl rename command, all of the items in the canvas are automatically destroyed.

14.6 The Canvas itembind function command

 Event handlers for mouse and keyboard events, and if so desired, user defined events, can be bound to the items on a canvas using
the itembind function command. The format of the itembind function command is:

 $w itembind id event script

where $w is the canvas path name, id is the canvas item identifier to use, event is the name of the event to use, and script is the event
handler script to be executed when the event occurs. To bind an event, the specified id must refer to an existing canvas item.

 The id parameter can take the following special forms in addition to being an item identifier:

all Bind an event to every item on the canvas

withtag Bind an event to every item with a specified tag or tags

withouttag Bind an event to every item that does not have a tag or tags

The all keyword is convenient for assigning global event handlers to every item. Each canvas item will have an associated tag list
which consists of the item class tag and any user applied tags. The class tag is a string that describes the item. All circles, for
instance, will have the class tag of circle. A command of the form:

 $w itembind withtag circle <Motion> { puts %w %x %y }

could be used to display the location of the mouse when it moves over any circle item on the canvas. Similarly, the withouttag form
could be used to apply the event handler to all canvas items that are not circles.

 The event can be any of the standard mouse or keyboard events as described for theBind command, or, a user defined event that
could be invoked using the Signal command. If no event name is specified, the result returned by this command is a list of the events
currently bound to the item.

 The script is a Tcl script that is first expanded to fill in any substitutable parameters and then evaluated. If no script is specified,
the result of this commend is to delete any event handlers associated with the event. If the script is prepended with a plus sign, then
the script is appended to the current event handler script for the specified event, otherwise it replaces the script for the event. The
substitutable parameters available are those that can be used with the event mechanism implemented for binding events to widgets
as described in the documentation for theBind command.

14.7 The Canvas itemcget function command

 The format of the itemcget command is:

 $w itemcget id -name1 ...-namen

where $w is the canvas, id is the identifier of an item on the canvas, and the names are the names of item configurable options for
which the item is being queried. The result returned by this command is a list of the current values of the configurable parameters
for the specified canvas item.

 If no names are specified, the result of this command is a list of the names of the configurable options for the item.

14 Canvas - Create a canvas widget

14.5 The Canvas delete function command 70

14.8 The Canvas itemconfigure function command

 The itemconfigure command is used to change the values of the configurable options of items on a canvas. The format of the
command is:

 $w itemconfigure id -name value ...

where $w is the canvas path name, id is the name of the canvas item to configure, and the name and value pairs define the new
values of the configurable options of the item.

 If no name and value pairs are specified, the result of this command is the list of configurable options for the specified canvas
item. Missing option values result in an error message being returned.

 For example, the following command could be used to set the activefillcolor of a circle with the identifier circle3:

 $w itemconfigure circle3 -activefillcolor red

14.9 The Canvas itemlist function command

 The itemlist command is used to list the identifiers of the items on a canvas according to some specific criteria. The format of the
command is:

 $w itemlist how parameters

where $w is the canvas path name, how is a keyword that specifies the selection criteria for canvas widgets, and parameters are
optional parameters that depend on the selection criteria keyword. If no selection criterion is specified, then the result returned by
this command is a list the available criteria keywords.

 The list of selection criteria is:

all List all items

withtag List all items with a specified tag or tags

withouttag List all items without a specified tag or tags

disabled List all disabled items

hidden List all hidden items

visible List all visible items

type List all items of a specified type

For the tag related criteria, the parameter is a comma separated list of tags to look for with the items. For the type criterion, the
parameter is the name of an item type, such as triangle or curve. To produce a list of all items with the tags circle and blue use a
command of the form:

 set blue_circles [$w itemlist withtag circle,blue]

14.10 Canvas initialization from text files

 The Canvas widget provides for the storage of its contents in text format to a file and the loading of previously saved canvas
drawings from a text file.

14 Canvas - Create a canvas widget

14.8 The Canvas itemconfigure function command 71

14.10.1 The Canvas load function command

 The load function command is used to load canvas items from a file that was created in a format compatible with that produced
by the save command. The format of the command is:

 $w load path

where $w is the name of the canvas and path is the name of the file to load. This command will return an error if the file does not
exist.

14.10.2 The Canvas save function command

 The save function command writes a file that contains all of the widgets in the canvas in a form that can be loaded by the load
command. The format of the command is:

 $w save path

where $w is the canvas path name and path is the name of the file to be used.

14 Canvas - Create a canvas widget

14.10.1 The Canvas load function command 72

14 Canvas - Create a canvas widget

14.10.2 The Canvas save function command 73

15 Center - Center a widget on the screen

 The center command will center a widget on the screen. The format of the command line is:

 Center path -width width -height height

where path is the path name of the window to center, and width and height are optional values that describe the width and height of
the widget being centered.

 If the width and height parameters are not specified, the command will use the values returned by the widget. Because of the way
the FLTK tool kit works, these value may not be the values that the widget will have when it is drawn on the screen. This is due to
the fact that child widgets can resize their parent widgets, a feature of the tool kit.

 The value returned by this command is the path name of the widget being centered. For example, the command:

 Show [Center top]

might be used to center a widget whose path name is top.

 It is possible to apply this command to any widget, however, operations on widgets that are not Toplevel widgets may produce
undesirable results.

15 Center - Center a widget on the screen 74

16 Chart - Create a chart widget

 The Chart command is used to create a number of different types of charts that can be used for the rapid plotting and display of
data. Here is an example of a chart using the spike style that plots a series of data points:

The format of the command is:

 Chart path options

where path is a valid widget path and optionsare option and value pairs used to configure the widget. In addition to the set of
standard widget options, the Chart command supports the following widget specific options:

autosize Automatically scale the plotted data

chartstyle Specify the type of chart

maxsize Specify the maximum number of points to plot

size Query the number of points

autoscale Automatically rescale the plot to the current range in the widget

mean Query the current average value of plotted points

variance Query the current variance of plotted points

localmean Query the current value of the local window mean

localvariance Query the current value of the local window variance

localstdev Query the current value of the local window standard deviation

stdev Query the current standard deviation of plotted values

count Query the total count of points used in statistics computations

maximum Maximum value of plotted points

minimum Minimum value of plotted points

By default, autosize is true, and the plotted data is automatically scaled to the current range of the points in the data buffer for the
chart.

 The maxsize option can be used to set the number of points that the chart will hold for plotting. When this limit is reached,
additional plot points cause the removal of those points that are the oldest in the chart data buffer list. This feature is very handy for
developing monitoring applications that look at a time window of data points. By default, there is no limit, beyond that posed by
available memory, on the number of points.

 The chartstyle option is used to specify the type of chart to produce. The Chart widget provides the following types of charts:

bar A bar char

filled A filled line chart

16 Chart - Create a chart widget 75

horbar A horizontal bar chart

line A line chart

pie A pie chart

specialpie Another pie chart with a sector emphasized

spike Spikes instead of bars.

By default, the chartstyle is line.

 The size option is only used to query the number of points in the chart data buffer. It is used with the widget cget command as
follows:

 $w cget -size

where $w is the widget path name of the chart. The value returned is the number of points currently in the data buffer.

 The autosize option, when set to true, causes the Chart to automatically scale itself to the current range of values in its point list.
This feature can be useful when the maxsize option is used to specify a limited number of points for the widget. The dynamic range
of values plotted in the window specified by the maxsize value can be highly variable, depending on the nature of the data being
displayed. Using this option can improve the readability of the widget. By default, the value of the autoscale option is false.

The mean , variance and stdev options can be used to query the current values of the mean, variance and standard deviation of the plotted values. If the
maxsize option has been set to a non-zero value, the localmean option returns the average value of the plotted points within the window defined by maxsize. If
the maxsize value is set to zero, then the value returned by the localmean option is identical to the value returned by the mean option. If there is a window
defined and there are sufficient points plotted, the localvariance and localstdev options will return the current values of the local window variance and standard
deviation. Otherwise, the values returned are the same as those for the variance and stdev options.

 The count option returns the number of points used when computing the mean, variance and stdev option values. These statistics are based on the
accumulated values of the plotted points from the most resent initialization of the point list for the widget. The point list for the widget is initialized when it is

first created, and when the clear command is applied to the widget.

 The maximum and minimum options return the largest and smallest values of the points in the current point list.

16.1 Chart Widget Function Commands

 In addition to the standard widget commands configure and cget, the Chart widget provides the following widget specific
commands:

add Add data points to the chart

bounds Specify the range of values to use in scaling

clear Clear the chart data buffer

insert Insert a data point

replace Replace a data point

 The general format of the widget commands is:

 $w function ...options ...

where $w is the path name of the Chart widget,function is the name of the widget function, and options are option and value pairs
that are used by the widget commands to manage the data buffer and control the appearance of the chart.

 The functions that manage the data buffer support the following options:

16 Chart - Create a chart widget

16.1 Chart Widget Function Commands 76

color Specify the color to use for plotting the points

label Specify a label for the data points

position Specify the location for the points

values Specify one or more point values.

Each point in the data buffer has the properties described by the list of options for the functions. Individual function commands
make use of the options according to their purpose.

The Chart add function command

 The format of the add function command is:

 $w add -color color -label label -values values

where color is the name of the color to use when plotting the point values, label is a label to use, and values is a comma separated
list of point values.

 This command adds the specified list of point values to the end of the current list of points in the data buffer. The color and label
values specified apply to all of the points added. By default, color is black and label is an empty string. At least 1 value must be
supplied, otherwise, this command generates an error message.

 For example, the following command will add 3 points to a chart and draw them in green:

 $w add -values "10.2,-3.7,45.1" -color green

The displayed result will depend on the type of chart being used.

16.1.1 The Chart bounds function command

 The format of the bounds function command is:

 $w bounds lower upper

where lower and upper are 2 numbers that specify the range that is to be used to scale the plotted points in the data buffer. If no
parameters are given, the result of this command is a string that contains the current values of the lower and upper bounds in use.

 For example, to scale data between -50 and 50 a command of the form:

 $w bounds -50.0 50.0

could be used.

16.1.2 The Chart clear function command

 The clear function empties the data buffer and erases the chart. The format of the command is:

 $w clear

where $w is the path name of the Chart widget to be cleared.

16 Chart - Create a chart widget

16.1.1 The Chart bounds function command 77

16.1.3 The Chart insert function command

 The insert function can be used to insert data into a chart data buffer at a specified location. The format of the insert function
command is:

 $w insert -position position -color color -label label -values values

where $w is the path name of the chart widget, position is a number that specifies where to put the point values, color and label
specify the plotting color and label properties for the points, and values is a comma separated list of point values to insert.

 At least 1 point value must be provided. The specified position must be within the range of the number of points currently in the
chart data buffer. Chart points are numbered from 0 through size - 1, where size is the number of points in the chart data buffer.

 Suppose a chart has 20 points in its data buffer. The following command could be used to add 2 points at location 14 and plot
them in red:

 $w insert -position 14 -color red -values 12.35,32.807

16.1.4 The Chart replace function command

 The replace function command can be used to replace a single point at a location in the chart data buffer with a new point value
and point attributes. The format of the command is:

 $w replace -position position -color color -label label -values value

where $w is the path name of the chart widget, position is a location of a point in the chart data buffer, color is a color for use in
plotting the point, label is a label for the point, and value is a new value for the point. The new value and the position must be
supplied.

 For a chart containing 100 points, the following command could be used to correct the 35th point in the data buffer:

 $w replace -position 34 -color blue -value -36.4 -label Error

Note that the 35th point has a position of 34. This command would change the plotting color to blue and add the label Error to the
point.

16 Chart - Create a chart widget

16.1.3 The Chart insert function command 78

16 Chart - Create a chart widget

16.1.4 The Chart replace function command 79

17 CheckEvents - Check for pending events

 The CheckEvents command is used to initiate processing of the Fltk tool kit's event loop. The Fltk extension automatically polls
the toolkit event queue, but, because of the way Tcl is constructed, there may be applications for which explicit polling of the event
queue is required.

 The format of the CheckEvents command is:

 CheckEvents ?-active? ??-delay? ?value??

CheckEvents will always poll the toolkit event queue. Without any options, CheckEvents returns nothing. If active is specified, the
result is either true if there are any active widgets, or false if there are no active widgets.

 The rate at which the toolkit extension polls the toolkit event loop can be queried or set using the delay option. If no value is
specified, then the command returns the current delay time in milli-seconds. If value is specified, the polling rate is set to the new
value. Note that setting a large delay will make responsiveness of the toolkit widgets sluggish!

17 CheckEvents - Check for pending events 80

18 Choice - Construct a choice widget

The Choice command is used to construct a button like widget that when pressed presents the user with a list of choices. The widget displays the currently
selected choice. The format of the command line is:

 Choice path options

where path is the path name of the widget to be constructed and options is the set of option and value pairs that are used to configure the widget.

In addition to the set of standard widget options, the Choice widget supports the following widget specific options:

value The current value of the selection

list The name of a Tcl list that contains the available choices

length The number of choices available

index The index into the list of choices of the current selection

The value option is used to set or query the current selection. When used to query the current selection, the result is a string that is the current selection. When
used to set the current selection, the value supplied is compared to the list of available selections, and the first matching item is set as the current selection.

The list option is used to set or query the name of a Tcl list that provides the list of available choices. To change the current set of available choices, the value
provided must be a valid Tcl list. When queried, the value returned is the name of the Tcl list currently being used to define the available choices. For
example, the following series of command could be used to establish the list of choices for a Choice widget:

 # Construct a list of choices

 set choices { Wind Rain Snow Hail Thunder Sleet Smog Fog }

 # Construct a widget to provide the choices

 Choice t.c -list choices -command { puts { Its going to %value tomorrow! } }

 Show [Center t]

 Wm title t "Make a forecast"

Choosing one of the available choices will result in the printing of a message related to the choice.

The list option can also take a string of items separated by blanks, commas, or end of line characters. For example, the following command could be used to
initialze the Choice widget:

 Choice t.c -list "Wind Rain Snow Hail Thunder Sleet Smog Fog"

Here, the same list of choices is available as with the example above that used a Tcl list to initialize the widget. The widget will automatically detect the use of
a Tcl list by first verifying that the supplied option value is the name of a Tcl variable. If it is not, the assumption is that the value is a list in the form of a
string.

The rendition of the items in the widget can be changed using a format of the form:

18 Choice - Construct a choice widget 81

 text:color:font:size:type

where the text is the text to display for the choice, the color is the forground color to use, the font is the name of the font to use, size is the font size to use, and
type is the type of font rendition to use. Some or all of the possible items can be specified. If none of these additional qualifiers is found, then the default for
the widget are used to establish the rendition of the items. For example:

 Choice t.c -list "red:red green:green blue:blue yellow:yellow"

Colors the choices displayed according to the names of the colors they represent.

The length option is a read only option that can be used to determine the current number of available choices. It is set automatically by the contents of the Tcl
list, or the choice string, used to initialize the widget.

The index option is used to set or query the current selection. This option behaves similarly to the value option, except the selection is described in terms of a
zero based index into the list of choices. When queried, the value returned is the index of the current choice selection. When set, the option requires a value
that is interpreted as a zero based index into the choice list and is used to set the current selection.

18 Choice - Construct a choice widget

18 Choice - Construct a choice widget 82

19 Choose - Choose from some options

 The Choose command will present the user with a dialog that asks that a choice be made between three options. There are 2
options, the second one being the default option. Note that pressing the Enter key will choose the default option, in the following
example, "Squeak squeak!".

The format of the command is:

 Choose question option1 option2

where the question is the prompt to be used, and the options are strings that describe the options available. The value returned is a
number that represents the chosen option.

19 Choose - Choose from some options 83

20 Combobox - Create a combobox widget

The Combobox command creates a widget that has the features and functionality of a combobox, comprised of a drop down list and
a fixed region that displays the current selection.

 The format of the command is:

 Combobox path options

where path is the path name of the widget to be created and options are to list of option and value pairs that are used to configure the
widget. In addition to thestandard set of widget options, the widget supports the following widget specific options:

value The value of the current selection

color The color used for the widget items

textsize Size of the font

textfont Name of the font

length Length of the selection list

title Title for the combobox

displayheight How many lines to display

This particular Combobox implementation provides for automatic scrolling of the drop down box and easy management of the
selection list. Here is an example of a Combobox command:

 Combobox t.c -variable Choice -command HandleChoice

Here the variable Choice will be updated whenever the user changes the selection in the Combobox. The Tcl procedure
HandleChoice will be executed whenever a change occurs.

20.1 Widget Specific Commands

 In addition to the standard widget commands configure and cget, the Combobox supports the following widget specific
commands:

add Add items to the list

clear Clear the item list

delete Delete an item from the list

find Find an item in the list

insert Inset an item into the list

load Load the list from a file

replace Replace an item in the list

selection Set the selection in the list

sort Sort the items in the list

20 Combobox - Create a combobox widget 84

20.1.1 add - Add items to the list

 The add command is used to add items to the selection list used by the Combobox. The format of the command is:

 t.c add item ?item? ...

where t.c is the path name of the widget to use and the items are strings to be added to the Combobox selection list. Any number of
items may be specified.

20.1.2 clear - Clear the list

 The clear command is used to empty the Combobox selection list. The format of the command is:

 t.c clear

where t.c is the path name of the widget to use.

20.1.3 delete - Delete items from the list

 The delete command will remove items from the list. The format of the command is:

 t.c delete item ?item? ?item? ...

where t.c is the path name of the Combobox widget and the items are the ordinals of the items in the list. Items are numbered from 0
through n-1 where n is the number of items in the list.

20.1.4 find - Find an item in the list

 The find command is used to determine the ordinal of an item in the list. The format of the find command is:

 t.c find item

where t.c is the path name of the Combobox to use and item is a string to find in the list. If the string is found, the value returned by
this command is the ordinal of the item in the list. If the item is not found, the value returned is -1.

20.1.5 insert - Insert an item into the list

 The insert command is used to insert an item into the list. The format of the command is:

 t.c insert where item

where t.c is the path name of the Combobox to use, where is the ordinal in the list to place the item after, and item is the item to
insert. The value of where can be end, in which case the insert command behaves like the add command.

20.1.6 load - Load the list from a file

 The load command can be used to load a Combobox list from the contents of a file. Each line in the file is treated as an item to be
added to the list. The format of the command is:

 t.c load name

20 Combobox - Create a combobox widget

20.1 Widget Specific Commands 85

where t.c is the path name of the Combobox and name is the name of the file to use. If the file is not found, the value returned by
this command is an error message, otherwise the command returns the number of items added to the list.

20.1.7 replace - Replace the contents of an item

 The replace command is used to change the contents of an item in the list. The format of the command is:

 t.c replace where with

where t.c is the path name of the Combobox to use, where is the ordinal of the item to replace and with is the value to use for the
new item contents.

20.1.8 sort - Sort the list contents

 This command causes the current list contents to be sorted in alphabetical order. The format of the command is:

 t.c sort

where t.c is the path name of the Combobox to use.

20.1.9 selection - Query or set the current selection

 The ordinal of the current selection can be set or queried using the selection command. The format of the command is :

 t.c selection ?value?

where t.c is the path name of the Combobox to use. If the value parameter is specified, and it is a valid ordinal, then the current
selection is set to the item whose ordinal matches the value. If the value parameter is not specified, the value returned by this
command is the ordinal of the current selection.

20 Combobox - Create a combobox widget

20.1.6 load - Load the list from a file 86

21 Color - Color Functions

 The Color command implements utility operations on colors. The format of the command line call to the Color command is:

 Color function parameters

where function is the operation to be performed and parameters are the color specifications on which to perform the operation. The Color command supports
the following list of functions:

lighten Lighten the specified color

darken Darken the specified color

contrast Adjust a foreground color to provide good contrast

average Compute a blended color

rgb return the RGB specification for a color name

The value returned by the Color command is a color specification determined by the requested function and its parameter values. For the lighten and darken
functions, the parameter is the color to be modified. For the contrast function, the parameters are 2 color specifications that represent the foreground and
background color specifications to be considered. The average function takes 3 parameters, the two colors to be blended and a floating point value that
specifies the weight factor to apply for the blending operation.

For example, the contrast function uses a command of the form:

 Color contrast orange red

which returns the value black, since the contrast between orange and red is not large. The average function has a command of the form:

 Color average cyan yellow 0.5

which returns the color lightgreen.

The rgb function accepts a color name as input and returns the color's RGB specification, and its nearest FLTK color cube color value, if the name is found in
the color name database. If the color name is not found in the database, an error message is returned. For example, the command:

 Color rgb silver

will return the string "silver 153,153,178 196". This string has 3 components, the color name, silver, the RGB specification, 153,153,178, and the FLTK color
value of the nearest matching value in the current color cube, 196.

21 Color - Color Functions 87

22 ChooseColor - Choose a color

 The ChooseColor command presents the user with a color selection dialog that can be used to select colors. The format of the
command is:

 ChooseColor title

where title is a title for the dialog window. If no title is supplied a default title is used. The value returned by this command is a
string of 3 numbers separated by commas that represents the red, green and blue values of the chosen color. If the user cancels the
dialog then an empty string is returned.

22 ChooseColor - Choose a color 88

23 ColorName - Get the name of a color specification

 The ColorName command can be used to find the name of the color that matches a color specification. The format of the
command is:

 ColorName spec

where spec is a color specification in the form r,g,b, where r, g, and b are the red, green and blue color component values of the
color. The value returned by this command is the name of the closest color. For example, the command:

 ColorName 255,0,0

will return red.

23 ColorName - Get the name of a color specification 89

24 Counter - Create a counter widget

 A Counter is a widget that can be used to control the value of a single number. The LabeledCounter widget is also available and
is a mega-widget that has the Counter and a Label widget.

The format of the command is:

 Counter path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the Counter supports the following widget specific options:

value The current value of the widget

step The increment value

min The minimum value

max The maximum value

faststep The increment for fast steps

counterstyle The type of counter

By default, the values of min and max are 0 and 100, and the step value is 1. The default value for the faststep option is 10. The
counterstyle option can be either simple or normal. A simple Counter has no faststep buttons. The default counterstyle is normal.

 Here is a command that uses a Counter to change the value of a Tcl variable named MyCounterVar:

 Counter root.c -x 20 -y 20 -variable MyCounterVar -value 0 -min -20 -max 20 -faststep 5

24 Counter - Create a counter widget 90

25 Cursor - Manage User Defined Cursors

 The Cursor command is used to manage user defined cursors. The standard FLTK tool kit support a number of commonly used cursors. Applications may
require the use of cursors that are not found amongst the commonly used set. Using a cursor editor, custom cursors can be drawn and saved to files that my be
loaded for use with the widgets of the Fltk widget set.

 The format of the command is:

 Cursor function options

where function is one of the supported functions of the command and options are function specific options. If no function is specified on the command, the
result is a list of the valid functions for the command.

 The list of functions supported by the Cursor command is:

25.1 Configurable Cursor Options

 Cursors are 2 color images that are characterized by the following list of options:

 The x and y options define the location within the cursor image that is used when passing the cursor location to applications. Each cursor will have its
uniquely specified hot spot.

 The outline and fill colors are those used to draw the cursor. By default, these colors are black and white.

25.2 cget

 The cget command is used to query the values of the configurable options of a cursor. The format of the cget command is:

 Cursor cget cursor options

where cursor is the name of the cursor to query and options is the list of configurable options to be queried. The result of this command is the list of values of
the specified options. If no options are specified, the result of the command is a list of the configurable options.

25.3 configure

 The configure command is used to set the values of the configurable options of a cursor. The format of the configure command is:

 Cursor configure cursor options

where cursor is the name of the cursor to configure, and options is the list of option and value pairs that is used to configure the cursor. If no options are
specified, the result of the command is a list of the available options.

 For example, to set the hot spot of a cursor named target, a command like this could be used:

 Cursor configure target -x 15 -y 15

This command will set the hot spot of the cursor named target to the center of the cursor. Cursors are images of dimension 32 x 32 pixels.

 Note that each time a cursor is configured, it must be reloaded into the widget for the new configuration to become active.

25.4 add

 The add command is used to load cursors into a table of cursors that are available for use with widgets. The format of the command is:

 Cursor add cursor1 ... cursorn

where the cursors are the names of files that contain cursor images. The cursor image files are created using the cursor editor application distributed as part of

25 Cursor - Manage User Defined Cursors 91

the Fltk package. The result of this command is the list of names of the cursors that are loaded by this command.

 Once a cursor has been loaded, it may be used with a widget by setting its name as the value of the -cursor widget option. For example, the commands:

 Cursor configure [Cursor add target] -outline blue -fill yellow
 $w set -cursor target

will load a cursor named target, configure its colors, and set it as the cursor for use with the widget whose path name is in the variable w.

25.5 delete

 The delete command is used to remove previously loaded cursors from the list of cursors available for use with widgets. The format of the delete command
is:

 Cursor delete cursor1 ... cursorn

where the cursors are the names of the cursors to delete. The cursors should have previously been loaded via the add command. If a cursor

 If no cursors are supplied, the list of available cursors is cleared.

is not currently loaded, the attempt to delete it has no effect.

25.6 list

 The format of the list command is:

 Cursor list cursor

where cursor is an optional name of the cursor to list. If no cursor is specified, the result of this command is a list of the names of the cursors currently
available for use. If a cursor is supplied, the result of the command is a list of the values of the configurable options of the specified cursor. If the specified
cursor is not loaded and available for use with widgets, the result of this command is an error message.

 For example, the command:

 Cursor list target

will result in the response:

 target 15 15 black white

where the numbers represent the x and y location of the cursor hot spot, black is the color of the outline, and white is the fill color.

25 Cursor - Manage User Defined Cursors

25.4 add 92

26 Debug - Set controls on debugging messages

 The Debug command can be used to limit the type of debug messages printed. Debug messages are normally only used during the development of new
widgets or when adding new featurs to the extension. Under normal circumstances, no debugging messages are printed and this command has no effect.

 The format of the Debug command is:

 Debug -file name -state boolean -pattern pattern -limit count -variable variable -exclude exclude

where the options have the following meanings:

 The file option is used to specify the name of a file to capture the debug messages. By default there is no file, and debug messages are sent to the current
interpreter console. If a file is specified, then subsequent messages are written to the file. If the name specified for the file option is an empty string, then
capture of messages to the current file is terminated. Note that when a file name is provided all messages in that file will be overwritten.

 The value of the state option will determine whether debug messages are printed. By default, the value of this option is true, and debug messages appear or
are captured according to the other option settings. If the value of the state option is false, printing or capture of messages is inhibited. The state option is
similar to the variable option in that, if specified, the value of the Tcl variable is checked for its boolean representation, and if the value of the variable is false,
then message printing is inhibited, while if it is true, messages are printed. This latter feature can be useful when debuging scripts. for example,

 set Messages 0
 Debug -variable Messages
 ...
 set Messages 1 ;# Debug messages are now printing
 ...
 set Messages 0 ;# Debug messages stop printing
 ...

 The limit option sets the maximum number of debug messages to print. By default, the value of this option is 0, and an unlimited number of debug messages
will be printed. Setting this value to any other positive number will cause the printing of debug messages to stop after that number of messages has been
printed.

 The pattern and exclude options can be used to filter the messages being printed. By default, these options are empty strings. The format of the patterns is a
string composed of substrings separated using the & character. For example, the command:

 Debug -pattern "Mouse&Keyboard"

would limit the printing of debug messages to those that contained the strings Mouse or Keyboard. Similarly, the exclude option will filter the debug messages
to those that do not contain the specified pattern. For example,

 Debug -exclude "Mouse&Keyboard"

would display debug messages that do not contain the strings Mouse or Keyboard.

26 Debug - Set controls on debugging messages 93

27 Destroy - Destroy one or more widgets

TheDestroy command is the usual method of destroying widgets managed by the Fltk extension. The format of the command is:

 Destroy name ?...?

where name is the path name of a widget to be destroyed. The command destroys all of the widgets specified on the command line.

 This command always returns the Tcl success indication. For widgets that don't exist, the command does nothing and remains
silent. Destroying a container widget will destroy all of the children of the container widget. A typical use of theDestroy command
is to get rid of all of the widgets in a tree by destroying the root widget. For example, if a widget has been created using the
command:

 Button t.t -text "Dismiss" -command Exit

then the command:

 Destroy t

will destroy the tree root named t and all of its children, which includes the Button named t.t. Note that use of the Destroy command
inside of widget command handlers can provoke a situation where the widget that initiated the command is destroyed before the
command actually returns from the handler code. This will cause a segmentation fault in the interpreter, causeing the application to
crash. If destruction is needed inside a command handler, use code such as:

 ...
 after 500 Destroy $w

Here, the widget $w is destroyed after a delay of 500 mulli-seconds, so the command handler will have completed before the
invoking widget is destroyed.

27 Destroy - Destroy one or more widgets 94

28 Dial - Create a dial widget

 A Dial is a widget that presents a circular object with an indicator that can be dragged about to change the value of the dial.

The format of the Dial command is:

 Dial path options

where path is the path name of the widget to be created and options is the list of option and value pairs that are used to configure the
widget. In addition to theset of standard options the Dial widget supports the following widget specific options:

value The current value of the dial

step The increment amount to use

min The minimum angle of the dial

max The maximum angle of the dial

dialstyle The style of the dial object

The dialstyle option can have the values normal, line and filled. By default, the dialstyle is normal and the dial looks like a circle
with a moveable dot that serves as the indicator. A line dial has a line as its indicator, and a filled dial uses a sector of the circle to
indicate its value.

 The range of the angles that the Dial can move through is set using the min and max options. By default the range is 45 to 315,
and the step is 1. These numbers are angles that define the limits of the Dial on a circle. By querying the value option an number
between 0 and 1.0 is returned that represents the position of the indicator on the Dial.

 Note that when using the step option, the step value refers to the amount of the range of the value returned by the Dial. Since this
range is from 0.0 through 1.0, the value of the step should normally be set to a value that is a small percentage of this range. The
default step value is 0.001.

 Here is a Dial that updates a Tcl variable:

 set d [Dial root.dial -variable MyDialVariable -variablecommand { puts $MyDialVariable }

The variablecommand option is adding a script to the widget event handler list that is executed whenever the Dial changes its value.
In this case, the script just prints the current value of the Dial. The variable option is being used to cause the current value of the
Dial to be loaded into the Tcl variable MyDialVariable. If MyDialVariable is changed by by the script, the position of the Dial is

28 Dial - Create a dial widget 95

automatically updated to reflect the new value.

 An alternative to the Dial widget is theKnob widget. The Knob widget is a Dial rendered using OpenGL.

28 Dial - Create a dial widget

28 Dial - Create a dial widget 96

29 Drawing - Create a Turtle Graphics drawing widget

 The Drawing command constructs a widget that can be used to draw diagrams using a version of the Turtle Graphics drawing
language. The format of the command is:

 Drawing path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the list ofstandard widget options , the widget supports the following widget specific option:

 value A Turtle Graphics drawing script.

 Drawings are done on the Drawing widget by setting the value option to a string that is a set of Turtle Graphics commands. When
a new value string is supplied, the widget parses the string and adds drawing elements to its list of drawing elements according to
the commands in the string. When the widget is rendered on the display it is done by processing the drawing list. This means that,
unless the widget receives a cs command to clear its drawing list, new command strings are appended to the current drawing.

29.1 The Turtle Graphics Drawing Language

 Historically, the Turtle Graphics drawing language was the implementation of a simplified series of commands that provided
control of a plotter pen simulation to draw diagrams on a canvas. The language consists of a string of blank separated command and
parameter tokens that are processed by an interpreter. The command tokens modify the position, color and state of a drawing pen,
while the parameters control how the state of the drawing engine should change. The turtle is the cursor, which, in some
implementations aimed at the pre-school market, was represented by a stylized drawing of a turtle that proceeded from location to
location across the drawing canvas, leaving a trail of marks as it moved along.

 The Turtle Graphics language is a low level language that is unforgiving of errors, but has a compact form that makes it useful for
drawing rather complex line drawings. As implemented in this widget, some useful enhancements have been added to the language
for drawing text and in order to make certain programming constructs a little easier to write.

 A command is a token of 2 characters that may be followed by any number of parameters, or no parameters, according to the
needs of the command. In the current implementation all of the commands are aliased to one or more command name aliases that
are easier to read and remember than the simple tokens. Command scripts may use any combination of the tokens or the full
command name aliases. In the following list of commands, the various aliases are separated by a colon character, so, for example,
the commands al, align and justify all mean the same thing. Here is a list of the commands:

29 Drawing - Create a Turtle Graphics drawing widget 97

al:align:justify Set the text alignment

ar:arc Draw an arc

bd:bounds Set the current bounding rectangle

bg:setbg:background Set the background color

bk:backward:- Move backwards

cr:circle Draw a circle

cs:clear:erase Erase the current drawing and reset the drawing engine

cl:clearscreen Erase the current drawing and set the background color of the widget

di:deleteitem:delete Delete an item from the display list

dl:drawline Draw a line

fd:forward:+ Move forwards

fl:fill Set the fill state

fs:fontsize Set the font size

ft:font Set the text font

hi:hide:hideitem Hide items with specified tags

hl:help:? Display some help information

hm:home:! Move the cursor to the home position

ht:hideturtle Don't display the current cursor position

im:image Draw an image at the current position

li:list:listitems List the current drawing list

ls:style Set the line style to use

lt:leftturn Change the current direction counterclockwise

pc:setpc:foreground Set the drawing color

pd:pendown Lower the pen (Marking will occur when it is down)

pp:pop:) Pop the current pen state

ps:push:(Push the current pen state

pu:penup Raise the pen (No marks appear when it is up)

pt:point Draw a point

rc:rect:rectangle Draw a rectangle

rp:repeat Repeat a set of commands

rt:rightturn Change the current direction clockwise

sh:h:seth Set the current direction

si:show:showitems Show hidden items with specified tags

sp:setpos:location:= Set the current cursor position

st:showturtle Display the current cursor position

29 Drawing - Create a Turtle Graphics drawing widget

29.1 The Turtle Graphics Drawing Language 98

sx:x:setx Set the horizontal position of the cursor

sy:y:sety Set the vertical position of the cursor

tg:tag:taglist Specify the tags for draw items

th:thickness Set the line thickness

tr:trace Set the command trace state

tx:text:write Set the text to display

//:/*:*/:#:rem Quote a comment

Here is a Turtle Graphics script that draws a circle:

 cs hm pc red th 2 pd cr 10

This script will draw a circle of radius 10 pixels using a double width line centered at the current home location of the drawing
widget.

29.2 Drawing Concepts

 When the drawing engine is initialized, either by constructing a new widget or by using the cs command, the drawing engine is
set to the state where the cursor is at the home location and the current direction is pointing up towards the top of the Drawing
widget. The home location is set to be the center of the Drawing widget, based on its current size. The line width is set to 1, the line
style is set to solid, the text font is set to helvetica with a point size of 10, and the drawing color is set to black. The background
color is, by default, clear, which means that whatever color the widget background has will be used as the drawing background
color.

 Each drawing command will, if the pen is down, cause a mark to be made in along the path of the cursor movement. For example,
the command:

 cs pd fd 20

would move the cursor along the current direction by 20 pixels, leaving a black mark on the Drawing widget's client area. After the
command has been executed, the current cursor location will be at the end of the newly drawn mark. The following command script
would draw a box:

 fd 20 rt 90 fd 20 rt 90 fd 20 rt 90 fd 20

or, more compactly,

 rp 4 "fd 20 rt 90"

In the latter case, the rp or repeat command is used to tell the drawing engine to execute the quoted command 4 times. At the end of
the above sequence of commands, the cursor will be back exactly where it started from, the initial home position.

 The fd command takes only 1 parameter, the number of pixels to move in the current direction. The rp command takes 2
parameters, the number of times to repeat the command set, and the command set itself. Tokens in the Turtle Graphics command
language can be either a string of characters delimited by spaces, or a character string in quotation marks that may contain blanks.

 Where parameters take numeric values, the parameters may be prefixed by a unary arithmetic operator that has the effect of
applying the numeric value of the parameter as a relative offset from the current value of the drawing engine state item. For
example, the command:

 sp 10 30

29 Drawing - Create a Turtle Graphics drawing widget

29.2 Drawing Concepts 99

will move the current location of the cursor to the window relative widget coordinate (10,30), while the command:

 sp +10 +30

will move the cursor to a location that is at relative offsets +10 and +30 from the current cursor location.

Commands, like the sp command, that position the drawing pen can take parameters that are keywords that refer to positions on
the drawing surface with respect to the current boundaries of that surface. The horizontal position of the pen can be specified as left,
right or centered, and the vertical position of the pen can be specified as either top, bottom or centered. The syntax:

sp center top

for example, will position the pen along the top boundary of the drawing surface at the center of the horizontal dimension.
Optionally, this syntax can include offsets from the specified location using commands of the form:

sp right-20 top+20

This latter command will put the pen at a position 20 pixels to the left of the right hand boundary and 20 pixels below the top
boundary of the drawing surface. There is an additional syntax that may be use to aid the layout of text in the drawing using the
positional keywords center, left, right, top and bottom. If the keyword x is added, the current vertical position of the turtle is
preserved and the remaining keywords is applied. Similarly, if the keyword y is added, the current horizontal position of the turtle is
preserved and the remaining keywords are applied. For example, the command:

 sy +10 al center,x tx "Some Text"

would center the text at the current vertical displacement..

29.3 Turtle Graphics Command Reference

29.3.1 al - Set the text alignment

 The al command can be used to specify an alignment for the text drawn in the Drawing widget. The use of the al command is
somewhat problematic in that it can defeat the basic concept of the Turtle Graphics language by manipulation of the pen position in
ways that make predicting the terminal location difficult. Nevertheless, the al command provides some convenience when placing
text in centered positions, or aligned in the corners of the widget.

 The al command takes 1 parameter that is a text alignment specification in the format supported by the extension package. For
example, the command:

 al centered,top

will cause text to be displayed centered horizontally at the top of the widget client area. By default, all text alignments imply the
inside property, so this command can not be used to put text outside of the widget client area. To turn off the current alignment, use:

 al none

It is a good idea to enclose aligned text in a push and pop command sequence to prevent alignment actions from leaving the current
cursor location in an unknown position. For example:

 (al bottom,right pc blue tx "I'm blue...o so blue...")

will leave the current pen position back where it was before the text was written.

29 Drawing - Create a Turtle Graphics drawing widget

29.3 Turtle Graphics Command Reference 100

29.3.2 ar - Draw an arc

 The ar command takes 3 parameters, the radius, the start angle in degrees and the end angle in degrees. The angles are relative to
a horizontal line proceeding to the right from the current cursor location. When the arc is drawn, if the state of fill is true a pie sector
will be drawn, filled with the current background color. Otherwise and arc is drawn using the current pen color and thickness.

 For example, the command:

 ar 10 0 180

will draw a semi-circular arc, or half of a pie, depending on the fill state.

29.3.3 bd - Set the current drawing window limits

 The bd command is used to specify the dimension of a rectangle that defines the current bounding rectangle of the drawing
window. By default, the bounding rectangle is set to the client region of the Drawing widget. Since the coordinates of the origin of
the drawing are set to the center of the widget, the bounding rectangle will be from (-ClientWidth()/2,-ClientHeight()/2) with
dimensions ClientWidth() by ClientHeight(). Using the bd command, the bounding rectangle can be set to a specified width and
height with its upper left hand corner at the current pen position. For example, the command:

 bd 20 30

would set the bounding rectangle to be from the current pen position with width 20 and height 30. For a specific bounding rectangle,
the text alignment specifications are applied with respect to that rectangle. This allows for convenient text positioning with
command sequences such as:

 (sp -10 -10 bd 20 30 al left tx "Hello" }

which would align the text at location (-10,5) in the drawing with respect to the drawing origin.

29.3.4 bg - Set the background color

 The bg command specifies the current background color. Any of the color format specifications supported by the Tcl/Fltk
extension package can be used. For example, the command:

 bg aquamarine

will set the current background color to aquamarine .

29.3.5 bk - Move backwards

 the bk command will move the cursor backwards along the current drawing direction by a specified number of pixels. If the pen is
down a mark is produced along the track of the motion. For example, the command:

 bk 40

will move the cursor backwards along the current drawing direction by 40 pixels.

29.3.6 cl - Clear the drawing and set the background color

 The cl command clears the current drawing list and fills the drawing surface with the specified background color. Its behaviour is
similar to the cs command except that a color can be specified. For example, the command:

 cl red

29 Drawing - Create a Turtle Graphics drawing widget

29.3.2 ar - Draw an arc 101

will empty the draw list, reset the drawing engine and paint the widget background red.

29.3.7 cr - Draw a circle

 The cr command will draw a circle centered at the current cursor position of the specified radius using the current pen color and
thickness. For example, the command:

 cr 20

draws a circle of radius 20 pixels. If the fill state is true then the circle will be filled with the current background color.

29.3.8 cs - Clear the drawing

 The cs command takes no parameters. It deletes all current drawing items and resets the drawing machine state to its default
initialization state. It is a good idea to use the cs command when updating the drawing on a widget. If the cs command is not used
and the value of the widget is changed, the new drawing ail be added to the existing drawing.

29.3.9 di - Delete items from the display list

 The di command can be used to remove items from the current display list. The format of the command is:

 di tag1,tag2,...

where the tags are elements of the tag list associated with the items to be removed. The current display list is searched for items with
matching tags, and the matches are removed from the list. This results in the display list being redrawn on the drawing window.

29.3.10 dl - Draw a line

 The dl command will draw a line, using the current pen color and pen width, from the current cursor position to the specified
location. The command takes 2 parameters, the target x and y locations. These locations can be relative offsets or absolute
coordinates of the end point of the line. For example, the command:

 dl +10 -4

will draw a mark from the current cursor location to a position at relative offset (+10,-4) with respect to the start of the line.

29.3.11 fd - Move forward

 The fd command is used to move the cursor position forward along the current drawing direction. If the pen is down a mark will
be drawn along the track of the motion using the current pen color and pen thickness. For example, the command:

 fd 45

would produce a mark 40 pixels long in the current drawing direction.

29.3.12 fl - Set the fill state

 The fl command turns on or off the fill state of the drawing engine. For fillable objects, such as circles , rectangles and pie
sectors, if the fill state is true then the object is filled with the current background color. If the fill state is false, then the object is not
filled. By default, the fill state is false and objects are not filled. The following command:

 fl on

29 Drawing - Create a Turtle Graphics drawing widget

29.3.6 cl - Clear the drawing and set the background color 102

will set the fill state to true. Any representation of a boolean value can be used to specify the fill state.

29.3.13 fs - set the size of the current font

 The fs command is used to specify the size of the current text font. By default, the text font is set to helvetica with a 10 point font.
The following command will change the font to size 14:

 fs 14

29.3.14 ft - Set the current text font

 The ft command is used to specify the current font for text items. By default, the font is set to helvetica with font size 10. The font
specification can be any specification supported by the extension package. or example, the command:

 ft helv,bold,italic

could be used to set the font to a bold and italic version of the helvetica font.

29.3.15 hi - Hide draw items

 The hi command is used to specify the set of draw items in the draw list to mark as hidden. The command takes as a parameter a
list of comma separated strings that are used to match the items in the draw list. If an item in the draw list has one of the strings as
one of its tags, the item is hidden: For example, the command:

 hi red,green,blue

would hide all items which had the tag red or green or blue.

29.3.16 hl - Display help information

 The hl command displays a list of the Turtle Graphics commands on the current command console. It takes no parameters.

29.3.17 hm - Move the cursor to the home position

 The hm command moves the cursor to the current home position. The home position is at the current center of the Drawing
widget's client area. On resize of the widget, the home position is adjusted and the drawing is redrawn. Care should be exercised
when using absolute locations in drawings in widgets that may be resized, as the results could be not what is expected.

29.3.18 ht - Hide the cursor

 If the cursor position is visible, it is hidden

29.3.19 im - Draw an image

 The im command can be used to place an image on the drawing. The image is positioned such that its upper left hand corner is at
the current pen position. For example, the command:

 im images/weather/Cloudy.bmp

would draw the image contained in the specified file at the current pen position. The current bounding rectangle will be used to clip
and justify the image according to the current alignment specification.

29 Drawing - Create a Turtle Graphics drawing widget

29.3.12 fl - Set the fill state 103

29.3.20 li - List the current draw list

 The draw list is the list of drawing objects that is used to create the current drawing. The li command will display the current
draw list on the current console. It takes as a parameter a comma separated list of the tags that are to be matched to identify the
items to be listed. For example, the command:

 li circle,line

will produce a list of the items in the draw list that have the tags circle or line. The special parameter all can be used to produce a
list of all items in the draw list.

 The output from this command describes the origin and type of each of the objects that is used to make up a drawing. Currently,
the types of objects defined for the draw list include the line, circle, arc, rectangle and text item.

29.3.21 ls - Set the current line style

 The ls command sets the current line style. By default the line style is solid. The following command:

 ls dashdot

would set the line style to dashdot. Any of the line style specifications supported by the Tcl/Fltk extension can be used to define the
type of line used to draw the objects in the draw list.

29.3.22 lt - Left turn

 The lt command changes the current drawing direction by a specified angle in the counterclockwise direction. For example, the
command:

 lt 45

will change the current drawing direction by 45 degrees in the counterclockwise sense.

29.3.23 pc - Set the pen color

 The pc command is used to specify the color of the pen used to draw things. By default, the pen color is black. The following
command:

 pc 0,0,255

will set the pen color to blue. Any color specification supported by the Tcl/Fltk extension package can be used.

29.3.24 pd - Pen down

 The pd command sets the pen state to down, meaning that the motion commands will cause a mark to be made using the current
pen color and thickness and line style. For example:

 pc red pd fd 20

will draw a red line of length 20 pixels from the current cursor location.

29.3.25 pp - Pop the drawing engine state

 The pp command will pop the state of the drawing engine from an internal state stack, if there is a previously pushed state in the
stack.

29 Drawing - Create a Turtle Graphics drawing widget

29.3.20 li - List the current draw list 104

29.3.26 ps - Push the drawing engine state

 The ps command will save the state of the drawing engine on an internal stack. The saved state includes the current cursor
location, the drawing direction, the pen state, pen color, pen width and line style. When popped, the drawing engine will resume the
pushed state.

 Pushing the state is a convenient method of building up complex diagrams. A segment of the diagram can be enclosed in brackets
as follows:

 (sp +20 -13 pc orange pd rt 30 fd 45)

which will leave the drawing machine state exactly as it was before the segment was drawn. Note that the open and close brackets
are command aliases for the push and pop operations respectively.

29.3.27 pt - Draw a point

 The pt command draws a single pixel point at the current location using the current pen color.

29.3.28 pu - Pen up

 The pu command places the pen in the up state, hence drawing will not occur when the cursor is moved during a drawing
operation. When the pen is up, no drawing objects are entered into the draw list.

29.3.29 rc - Draw a rectangle

 The rc command draws a rectangle using the current pen color, thickness and line style. The command takes 2 parameters, the
width and the height of the rectangle to draw. For example, the command:

 rc 40 20

will draw a rectangle of width 40 and height 20 with its upper left hand corner at the current cursor position. If the fill state is true,
the rectangle will be filled with the current background color. Note that the rectangle is not rotated to the current drawing direction.
It is always a simple box shape. Rotated rectangles can be drawn using the line and turn commands.

29.3.30 rp - Repeat a command block

 The rp command is used to cause a block of commands to be repeated a specified number of times. The rp command takes 2
parameters, the repeat count and the command block . The parser recognizes a command block by quoting the list of commands with
quotation marks. For example, the command:

 cs ht pc orangered3 rp 60 "fd 30 rt 90 fd 30 rt 90 fd 30 rt 90 fd 30 rt 6"

will draw an interesting rosette by repeating the drawing of a rectangle rotated about the current cursor location.

29.3.31 rt - Right turn

 The rt command will change the drawing direction in the clockwise sense. For example, the command:

 rt 30

would modify the current drawing direction by adjusting it clockwise by 30 degrees.

29 Drawing - Create a Turtle Graphics drawing widget

29.3.26 ps - Push the drawing engine state 105

29.3.32 sh - Set the drawing direction

 The sh command will set the current drawing direction. The single parameter is an angle in degrees to be used either as the new
drawing direction or as a relative offset, in degrees, from the current drawing direction. When used as a relative value, the sh
command is the equivalent of the rt or lt commands. For example, the command:

 sh 180

would set the drawing direction to downwards with respect to the Drawing widget.

29.3.33 si - Show hidden items

 The si command is used to cause hidden items in the draw list to be redisplayed. The command takes as a parameter a list of
comma separated strings that are used to identify the items to show. For example, the command:

 si red,green,blue

would cause all items with the tags red or green or blue to become visible, if they were previously hidden.

29.3.34 sp - Set the cursor position

 The sp command is used to set the cursor position. The specified values for the horizontal and vertical location may be either
absolute window relative locations or relative offsets from the current cursor position. For example, the command:

 sp +5 -8

will adjust the current cursor position by the offsets +5 in the horizontal direction and -8 in the vertical direction.

29.3.35 st - Show the cursor position

 The st command is used to show the current cursor position, if it is hidden.

29.3.36 sx - Set the horizontal position

 The sx command is used to set the horizontal offset of the cursor position to a specified value. The offset may be either an
absolute window relative location or a relative offset from the current cursor position. For example, the command:

 sx -30

will change the cursor position form its current location to a location offset by -30 pixels horizontally from the current location.

29.3.37 sy - Set the vertical position

 The sy command sets the vertical offset of the cursor position to the specified value. The offset may be either an absolute window
relative coordinate value or a relative offset from the current cursor position. For example, the command:

 sy +40

will set the vertical position of the cursor to a location offset 40 pixels in the y direction from its current location.

29 Drawing - Create a Turtle Graphics drawing widget

29.3.32 sh - Set the drawing direction 106

29.3.38 tg - Specify item tags

 The tg command is used to specify a list of comma separated strings that are applied to items as tags. The current tag list is
always applied to all new draw list items. By default, the current tag list is an empty string, so items have no tags. Each item gets an
automatic tag which is its sequence number in the draw list. For example, the command:

 tg red

would cause all items created after this command to have the tag red. Item tags can be used with the hi and si commands to control
the visibility of al items with a given tag. Setting the list of tags to an empty string will clear the current tag list. Subsequent items
will have no tag, other than their sequence number in the display list.

29.3.39 th - Set the line thickness

 The th command sets the current line thickness. By default the line thickness is 1. The command:

 th 4

would set the line thickness to 4. Line thickness does not apply to text items.

29.3.40 tr - Set the command trace state.

 The tr command sets the state of command tracing. By default, the state is off, and no tracing occurs. When set to on, a trace of
all commands executed by the drawing engine is displayed on the command console. This feature is sometimes helpful in debugging
long drawing scripts. For example, the command:

 tr on

will activate command tracing.

29.3.41 tx - Set the text

 The tx command specifies the text to be drawn using the current font, pen color, background color and font size. The text is drawn
at the current cursor position. For example, the command:

 tx "Hi, its me!"

will cause the greeting to appear at the current cursor location.

29.3.42 // - Comment

 The // token indicates the beginning of a comment block. Comment blocks are ignored, and the feature is provided to make
complex sets of commands more human readable. A comment block is terminated by another comment token. The set of comment
tokens will be familiar to users of many types of scripting and programming environments. Here is an example:

 pc green pd cr 20 /* A green circle */

29 Drawing - Create a Turtle Graphics drawing widget

29.3.38 tg - Specify item tags 107

29 Drawing - Create a Turtle Graphics drawing widget

29.3.42 // - Comment 108

30 Dummy - Do nothing

 The Dummy command just prints a message on the interactive console indicating that it was called. Its main use is developing
skeletons and testing them on phony commands.

30 Dummy - Do nothing 109

31 Exit - Terminate the current application

 The Exit command is identical to the standard Tcl exit command. It destroys the current interpreter and terminates the application.

31 Exit - Terminate the current application 110

32 Frame - Construct a frame widget

 The Frame command creates a container widget that draws a box or frame. It can be used to draw frames around groups of
widgets, or, using the event mechanism, it can be used to configure groups of widgets when mouse or keyboard events occur within
its boundaries. The Frame widget supports, along with the set of standard widget options, the following widget specific options:

auto Control the state of automatic layout

rows Set the number of widget rows to use

cols Set the number of widget columns to use

xpad Set the horizontal pad width

ypad Set the vertical pad width

xborder Set the horizontal border width

yborder Set the vertical border width

 The format of the Frame command is:

 Frame path ... options ...

where path is a valid path name for the Frame and options are option and value pairs that configure the widget.

 For example, the following command will create a Frame with raised relief:

 Frame t.f -relief raisedframe -w 200 -h 200 -x 20 -y 50

This Frame will be located at (20,50) relative to its parent container window and have dimensions of 200 x 200 pixels. Since the
relief specifies a raisedframe anything inside the Frame will not be affected by the drawing of the frame relief.

 The auto option is used to control the operation of some automatic child widget layout features of the frame widget. If the value
of the auto option is false, the Frame widget does not do any automatic geometry management of the children that it may contain.
The widget can then be used to create collections of widgets by arranging the children using their geometry management options,
such as x, y, w and h.

32 Frame - Construct a frame widget 111

 If the value of the auto option is true, the widget makes use of the values of the options rows, cols, xpad, ypad, xborder and
yborder to automatically layout the child widgets. The layout mechanism uses the values of xborder and yborder to position all of
the child widgets inside the specified border area, and the values of the xpad and ypad options to provide spacing between the
widgets. The values of the rows and cols options are used to compute a size for the child widgets based on the geometry of the
Frame itself. All of the children are then resized to fit inside the Frame and they are automatically arranged in the specified number
of rows and columns.

The automatic layout mechanism is useful for rapidly arranging groups of identical widgets, such as Button or Label widgets,
into an orderly array without having to resort to more complex arrangements of child widgets using the Package container. By
default, the value of auto is true, the value of rows is 7, cols is 2, xpad and ypad are both 0, and xborder and yborder are both 10.
This configuration provides for the layout of 14 widgets in a 7 by 2 array. Note that changing the geometry of the Frame itself
results in automatic resize of the array of child widgets.

Here is the code to make use of the automatic layout feature of the Frame widget:

Frame t.f

for { set i 0 } { $i < 14 } { incr i } {

 Button t.f.b$i -label "Button $i" -command { puts "Its me! Button %W" }

 }

Show t

Wm title t "Automatic Frame Layout"

32 Frame - Construct a frame widget

32 Frame - Construct a frame widget 112

33 Focus - Set or Query the input focus

 The Focus command can be used to either set the widget that has the current input focus or to determine which widget holds the
input focus. The widget that has input focus is the one that will receive input from the mouse or keyboard.

 The format of the command is:

 Focus path

where path is the path name of the widget to receive input focus. If path is not specified, then the command returns the path name of
the widget that currently holds input focus, if any.

 On success, the return value of this command is the path name of the widget that holds input focus.

33 Focus - Set or Query the input focus 113

34 GelTabs - Create a tabs widget using gel syyle tab labels

 The GelTabs widget is a container widget that presents a number of notebook style tabs that can be used to select the currently
active child widget. The format of the command is:

 GelTabs path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard set of widget options the Tabs widget supports the following option:

activetab Set the currently active tab

count Get the number of tabs in the widget

list Get the list of tab labels for the widget

activelabel Get the label of the currently active tab

The activetab option takes a value that is a number that ranges from 1 through the number of child widgets in the container.
Querying the activetab option will return the current tab ordinal. The number of available tabs in the widget can be determined by
querying the count option.

 The list option can be used to query the labels of the tabs in the widget. The activelabel option is used to query the label of the
currently active tab.

 The GelTabs container creates a tab for each child that is added to the container, and uses the label of the widget as the text
written on the tab. The default label for a widget is its path name, so it is usually a good idea to configure the child widgets to have
labels that are useful in identifying the contents of the child. All of the layout and features of the GelTabs widget are done
automatically, so some practice is needed to get something looking pleasant to the eye.

 Children are added to the widget simply by creating them. Fairly complex mega-widgets can be constructed by packing
interesting combinations of things into Package,Scroll,Group orTile containers and then arranging for these containers to
themselves be children of aGelTabs container.

34.1 Widget Commands

 In addition to the standard widget commands configure and cget, the GelTabs widget supports the following widget specific
commands:

whichtab Find the tab with a label that matches the specified string

label Get the label for a specified tab

 The format of the whichtab function command is:

 $w whichtab string1 ... string n

where $w is the path name of the GelTabs widget to use, and string1 through stringn are strings to use to examine the current set of
tab labels. The result returned by this command is the list of tab ordinals that have labels that match the specified strings.

 The format of the label finction command is:

 $w label ord1 ... ordn

where $w is the path name of the Tabs widget to use, and ord1 through ordn are the ordinals of the tabs to be queried. The result
returned by this command is a list of the labels of the specified tabs.

 Here is a an example of a GelTabs widget:

34 GelTabs - Create a tabs widget using gel syyle tab labels 114

This application shows both the use of GelTabs style tabs along the top of the application window and and the use of the standard Tabs widget along the
bottom of the application window. The behaviour of the 2 types of tab widget is similar, with only the style of the drawing of the tabs themselves changed.

34 GelTabs - Create a tabs widget using gel syyle tab labels

34.1 Widget Commands 115

35 GetInput - Get some input from the user

 The GetInput command will display an input widget that can accept some text input typed by the user.

The format of the command is:

 GetInput prompt default

where prompt is a text string to be used as a prompt and default is an optional default value for the input. At least a prompt must be
supplied.

 The value returned by this command is the input typed by the user, or an empty string if no default input is supplied.

35 GetInput - Get some input from the user 116

36 GetPassword - Get a password from the user

 The GetPassword command will display an input widget that can accept a password from the user.

This command hides the characters typed by the user. the format of the command is the same as that of the GetInput command. For
example:

 set pw [GetPassword "Enter a password" "Junk"]

The value returend is the the use input or the default value, if one is supplied.

36 GetPassword - Get a password from the user 117

37 GetFileName - Get a file name from the user

 The GetFileName command will display a file selection dialog box that allows the user to browse directories and to choose a file
name.

The format of the command is:

 GetFileName title pattern default

where title is the title for the file selection dialog box, pattern is a file selection pattern, and default is a default value for the file
name being selected. At least a title must be supplied.

 If no pattern is provided, the default pattern of "*" is used and all files are visible. Patterns can contain the usual wild card
specifications. If a pattern is specified, then a default file name may also be specified.

 Patterns can be formed as a list of wild card specifications separated by commas. For example, the following command will
display available files in the specified graphics formats:

 set name [GetFileName "Choose a graphics image file : " *.jpg,*.bmp,*.gif,*.png my_picture.gif]

Here the default selection is my_picture.gif. Imagefiles with the extensions jpg, bmp, gif, and png will be offered as alternatives.

 If the user chooses a file, then the value returned by this command is the chosen file name. If the user cancels the dialog, then an
empty string is returned.

37 GetFileName - Get a file name from the user 118

37 GetFileName - Get a file name from the user

37 GetFileName - Get a file name from the user 119

38 Group - Create a group container widget

 A Group is a container widget that is useful for collecting together a set of child widgets that can be subsequently moved about
by changing the location of the Group. Its appearance is similar to the GroupBox widgets that are part of the Microsoft Windows
GUI environment. Groups can also be used to collect together a set of widgets that are of similar dimensions, such as a collection of
Button widegets used to specify user options. The Group widget supports a limited form of automatic child widget placement that
makes the positioning of children convenient for some types of application, such as option interfaces. The format of the command
is:

 Group path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. The Group widget supports, in addition to the list of standard widget options, the following widget specific options:

xborder,yborderSpecify the widget margins

xpad,ypad Specify the horizontal and vertical pad widths

rows,cols Specify the layout geometry

auto Set the state of automatic layout

value Set or get the current group box lab

collapsable If the widget is collapsable

open If the widget is fully open

change Get the value of the widget height change

 The xborder and yborder options are used to specify the space between the edge of the client area of the Group widget and the edges of the child widgets in
the Group. By default, these values are set to 10.

 The xpad and ypad options are used to specify the pad width in the horizontal and vertical dimensions used to calculate the
position of child widgets added to the Group. By default, the value of the xpad option is 0, and the value of the ypad option is 0. The
pad values are the dimensions of the space left between adjacent widgets.

 The rows and cols values define the order of the array used for layout of the child widgets By default, the value of rows is 2 and
the value of cols is 7. This results in an array of 14 positions that are used to position child widgets. When automatic layout is used,
the child widgets are all resized to the same dimensions and then positioned according to the order of the layout array. The ultimate
size of the child widgets is determined by the geometry of the Group widget and the values of the border and pad options.

 The auto option is used to control the use of automatic child layout. By default, the value of auto is true and child widgets are
automatically positioned according to their order of creation. When auto is false, child widgets are position according to their
specified geometry.

 The value option sets or gets the label of the Group widget. This is a dummy option that is used for variable tracking. Using a
constructor of the form:

 Group t.g -variable GroupLabel

will allow the application to set the label text of the widget by changing the value of the variable GroupLabel.

 The collapsable option determines whether the Group is collapsable. A collapsable Group will collapse to a widget that shows
only the group box and the label, with all of the child widgets in the Group hidden. By default, the value of the collapsable option is
false, and the widget is not collapsable. When the value of collapsable is true, then when the mouse moves over the group box label,
the label will be highlighetd using the current value of the selectioncolor option. If the mouse is clicked when the label is
highlighted, the Group will be either collapsed or expanded.

 When a collapsed Group is expanded, the child widgets in the Group are made visible. The widget callback is invoked, so if there
is a value set for the command option, the command will be invoked. The value of the open option can be used to query the current
state of the widget. When the value of the open option is true, the Group is fully expanded, while when the value of the open option

38 Group - Create a group container widget 120

is false, the Group widget is fully collapsed.

 The open option can also be used to establish the current state of the Group widget. By setting the value of the open option to
true, the widget will, if necessary, be expanded. Similarly, setting the value of the open option to false will ensure that the widget is
collapsed. Note that it is not currently possible to create a collapsable Group in the collapsed state. For this reason, the open option
is not checked on initialization, and the widget is always created in the open state. If widgets are added to a collapsed Group, the
widgets will be visible, making for a messy appearance.

 To add widgets to a Group using manual layout, just create them as children of the Group. Here is an example:

 # Create a group with a label

 set g [Group root.g -x 20 -y 50 -width 200 -height 200 -label "My Group" -align top,left,inside]

 # Add a few widgets to the group

Scrollbar $g.sb1 -orientation horizontal -x 40 -y 40

Dial $g.d1 -x 40 -y 120 -dialstyle filled

The children can then be moved as follows:

 $g configure -x +40 -y +80

and all the children will maintain their layout inside the Group. The relief widget option can be used to configure various types of
frames that will surround the children in the Group.

 The change option is a read only value that will return the difference in the height of the Group widget following a resize
operation. Such an operation may occur when either an application specifically changes the Group widget, or when the widget is
resized because of the behaviour of a parent of the Group widget.

38.1 Automatic Child Widget Positioning

Automatic positioning of child widgets in a Group is accomplished by not supplying any child widget location information on
the constructor command for the child. For example, the following script will pack a number of LightButton widgets into a Group in
a manner useful for configuring user options.

#!/bin/sh
\
exec fltkwish "$0" ${1+"$@"}
#
--- group.tcl --- Test harness for the Group widget
#
Copyright(C) I.B.Findleton, 2003. All Rights Reserved
#
Destroy t
#
Configure the LightButton widgets
#
Option add Group.relief flat
Option add LightButton.selectioncolor red
Option add LightButton.relief flat
#
Pack the groups into a container
#
set f [Package t.all -orientation vertical]

Create a group widget to hold the buttons. Create 5 rows and 2 columns

38 Group - Create a group container widget

38.1 Automatic Child Widget Positioning 121

#
Group $f.g1 -r 5 -c 2 -label "A group of exclusive options"

Add the buttons. These are of the radio type, so all will be exclusive
within the group.

for { set i 0 } { $i < 10 } { incr i } {
 LightButton $f.g1.b$i -text "Option $i" -type radio
 }
#
Create a group of non-exclusive options
#
Group $f.g2 -r 5 -c 2 -label "A group of non-exclusive options"
#
Add some buttons of the toggle type for the options. These are non-
exclusive options, so many can be selected.
#
for { set i 10 } { $i < 20 } { incr i } {
 LightButton $f.g2.b$i -text "Option $i" -type toggle
 }

Show t

Wm title t "Group Widget Demonstration"

Here is the result of this script:

 Note that the label options of the Group widgets are used to set the group box titles. The group box titles can be positioned about
the top and bottom of the group frame using the available values for the align widget option. Label text can not be positioned along
the sides of the group frame, but may be either at the top or the bottom, and may be aligned left, centered or right. Note that the
inside keyword must be specified along with the desired alignment, otherwise, the label is written outside of the widget. For
example, the command:

 $w set -align bottom,right,inside

would place the group frame label at the bottom right of the group frame.

38 Group - Create a group container widget

38.1 Automatic Child Widget Positioning 122

38 Group - Create a group container widget

38.1 Automatic Child Widget Positioning 123

39 Help - Display help information

 The Help command is used to list the possible values of many of the configurable options. The format of the command is:

 Help -name

where name is the name of a configurable option. For example, to get a list of the available relief values, use the command:

 Help -relief

If no name is specified this command returns a list of the possible values for name.

39 Help - Display help information 124

40 HelpDialog - Display Help information

The HelpDialog command displays a dialog that can be used to page through text files in HTML format. The dialog supports basic
HTML markups but is not a full blown browser.

The format of the command is:

 HelpDialog file

where file is the name of the root file to be loaded. This command is a quick way of implementing help display dialogs. When
creating the HTML files to be used, links should be placed in the document to ease navigation throughout the help information. The
browsing widget does not support frames, but will do most of the non frames related things.

40 HelpDialog - Display Help information 125

41 HelpViewer - Create a HTML viewing widget

The HtmlViewer widget is a widget that can be loaded with a block of data in HTML format. The widget supports many of the
capabilities of the HTML 2.0 standard. The format of the the command line is:

 HtmlViewer path options

where path is the path name of the widget and options is the list o option and value pairs that is used to configure the widget. In
addition to the list ofstandard widget options, the widget supports the following widget specific options:

value The contents of the widget, which is a block of HTML data.•
texttcolor The foreground color of the HTML text•
textfont The font to use for display of text•
textsize The size of the font to use•
length The size, in pixels, of the text•
doctitle The current document title•
directory The current directory•
filename The complete path name of the current file•
topline The current top line in the widget•
linkproc The URL handler•
url The url to use•

41.1 Loading HTML Data

The HtmlViewer widget is designed to process HTML format text files, although the value option can be used to load a block of
formatted data directly into the widget, or to retrieve the currently loaded block of data. For the purpose of loading data from a file
in HTML format, the widget supports the load command. The format of the command is:

 $w load file

where w is the token that represents the widget command for the HtmlViewer widget and file is either the path name to a file or a
Universal Resource locator (URL).

The HtmlViewer widget itself cannot resolve URL references and does not include the communications support to directly access
web servers connected via a network interface. Where the HtmlWidget recognizes a URL reference, it calls a function that must
invoke the required communications functionality, download the requested data to a local file, and return the name of the file to the
widget. The linkproc option is provided so that a script can be specified that will perform the required functions.

41.2 value

The value option can be used to get or set the data block that is the HTML data currently displayed in the widget. Typically the data
would have been loaded from an HTML format text file, but, the following command could be used to set the data:

 $w configure -value $data

where $w is the token that represents the widget command and $data is a reference to a variable containing a block of text in HTML
format.

41.3 textcolor,textfont, and textsize

The textcolor, textfont and textsize options are used to set the default characteristics of the data displayed in the HtmlViewer widget.
Text files in HTML format typically contain formatting information that will override the default specifications provided by these
options. Where the HTML text does not provide any specific font and color information, the current values of these options are used

41 HelpViewer - Create a HTML viewing widget 126

to draw the text.

41.4 length

The length option is a read only option that returns the size in pixels of the block of HTML data in the widget buffer.

41.5 doctitle

The doctitle option can be used to query the title of the currently displayed document.

41.6 directory and filename

When a file is loaded into the HtmlViewer widget, these 2 options are available for query. The value of the filename option is the
full path name to the file that contains the HTML format data currently being displayed by the widget, and the value of the directory
option is the directory path to the HTML data being displayed. When links in the displayed text are activated, the values of filename
and directory will change to reflect the file location of the HTML page being displayed.

41.7 topline

The topline option can be used to query or set the number of the top line being displayed in the widget. If used to set the top line,
the value specified needs to be within the range of line numbers in the text data.

41.8 linkproc

The linkproc option is used to specify the Tcl script that is responsible for resolving URL references by downloading the requested
HTML data into a local file. The value specified for the linkproc option should be a Tcl script that returns a result that is the name of
the local file that contains the requested data.

By default, the value of the linkproc option is an empty string, and URL references that are not local file names will result in
nothing being displayed in the HtmlViewer widget. If a script is provided as a value for the linkproc option, it is first expanded to
replace embedded keywords, then it is evaluated. The keywords that are recognized are:

%u The URL to be resolved•
%w The name of the widget making the request•
%% A percent sign•

Typically, the script will parse the URL to determine the location of the requested data, contact a server and download the data to a
local file, and return the name of the local file.

Here is an example of a Tcl procedure that will get pages from the World Wide Web:

 package require http 2.1

 # Load a URL into a local file

 proc UrlProc { url } {

 global env

 puts "Converting $url"

 set fd [open [set name $env(PWD)/url_temp.html] w]

 ::http::geturl $url -channel $fd -blocksize 4096

 close $fd

41 HelpViewer - Create a HTML viewing widget

41.3 textcolor,textfont, and textsize 127

 return $name
 }

An HtmlViewer widget created with the following command would call the above procedure to resolve the passed URL references,
download the HTML data to a file named url_temp.html, then display the data in the widget:

 HtmlWidget t.h -linkproc { UrlProc %u }

Note that the http package is part of the standard Tcl distribution.

41.9 url

The url option can be used to specify the file or URL to be loaded either during the construction of the HtmlViewer widget or with
the use of the widget command. Here is an example:

 $w configure -url url_temp.html

where $w is the token that represents the widget command and url_temp.html is a local file name.

41 HelpViewer - Create a HTML viewing widget

41.8 linkproc 128

42 HtmlWidget - Construct an HTML Display Widget

The HtmlWidget is a mega-widget that adds navigation and font control features to anHtmlViewer widget. This widget provides the
functionality of the HelpDialog widget as a normal, non dialog, embedable widget. It is useful for the inclusion of an HTML display
widget directly into a GUI which has some navigation capabilities of its own.

The above image is an example of an HtmlWidget displaying a URL from the internet. The page displayed is
http://pages.infinit.net/cclients/software.htm, the main download page for the Fltk extension.

The format of the the widget command is:

 HtmlWidget path options

where path is the path name of the widget to be constructed and options is the list of option and value pairs that is used to configure
the widget. In addition to the list of standard widget options, the HtmlWidget also supports all of the widget specific options of the
HtmlViewer widget, and these additional widget specific options:

htmlrelief The relief of the HTML sub window•
configuration Configuration options for the widget•
labelfont The font for the decorations•
labelcolor The foreground color for the decorations•
labelsize The font size for the decorations•

The htmlrelief option is used to set the relief that the sub widget that displays the HTML text uses. By default this relief is flat.

The configuration option is used to specify which decorations the widget implements. The decorations are buttons and labels that
implement navigation, font control and display document titles when they are present. The default value of the configuration option
is default, and the resulting widget has a title widget and 4 button widgets that are displayed along with the widget that displays the
HTML text.

The configuration of the widget is specified as a series of comma separated strings that specify which decorations to implement.
The list of supported configuration strings is:

title Creates a title bar that displays document titles•
navigation Creates the forward and back navigation buttons•
font Creates the larger and smaller font size control buttons.•
default Creates all available decorations•

42 HtmlWidget - Construct an HTML Display Widget 129

http://pages.infinit.net/cclients/software.htm

Here is an example of a basic HtmlWidget that has only the HTML window:

 HtmlWidget t.h -configuration ""

whereas the following command will create a widget with a title and navigation buttons but no font control:

 HtmlWidget t.h -configuration "title,navigtion"

Note that the configuration option is somewhat unusual in the Fltk extension package in that it can only be used with effect when
the widget is constructed. If you want to change the configuration of the widget, you must first use theDestroy command to get rid
of the existing widget and then create a new one with the desired configuration.

42.1 Widget Specific Commands

In addition to the standard cget and configure commands, the HtmlWidget supports the following widget specific commands:

load Load a file name•
page Show a page in the page stack•
font Manage the displayed font•

42.1.1 load

The load command has the following format:

 $w load url

where $w is the token that represents the widget command and url is either a local file name or a Universal Resource Locator (URL)
that can be used to download the data to a local file. If a URL is supplied, the widget must have a valid script as its linkproc. The
script must resolve any URLs , download the data to a local file, and return the name of the local file. See the example script
described for the HtmlViewer widget.

42.1.2 page

The page command is used to display a page in the page stack or to query the widget about the pages in the page stack. The format
of the command is:

 $w page action

where $w is the token that represents the widget command and action is the action to take. If no action is specified then the result of
the command is the current index of the page being displayed in the widget. An index value of -1 indicates that there is no page in
the page stack.

The values that action may have are:

back Display the previous page in the stack•
clear Empty the page stack•
count Return the number of pages in the page stack•
forward Display the next page in the stack•
home Display the first page in the stack•
list Return a list of the pages in the stack•

The value of action may also be an integet in the range from 0 through the number of pages currently loaded. If the value of action
is a valid page number then the corresponding page will be loaded.

42 HtmlWidget - Construct an HTML Display Widget

42.1 Widget Specific Commands 130

42.1.3 font

The format of the font command is:

 $w font action

where $w is the token that represents the widget command and action is either larger or smaller or not specified. The font size will
be changed according to the action with the range of font sizes supported by the current font. The command has no effect if the
current font size is at the end of its range, and will not change the size of font specifications embedded in the HTML data itself.

The value returned by this command is the current font size. If the action is not specified, then the value returned is the current font
size.

42 HtmlWidget - Construct an HTML Display Widget

42.1.3 font 131

43 Hide - Make one or more windows invisible

 The Hide command can be used to make one or more visible windows invisible. If a window is made invisible, all of the children
of the window are also made invisible.

 The format of the command is:

 Hide path names

where path names is a list of one or more valid widget path names. If a window does not exist, the path name is ignored. Hidden
widgets can be made visible using the Show command.

 When widgets are first constructed, they are hidden. In order for widgets to be visible, the Show command must be invoked on
the root widget of a widget tree.

43 Hide - Make one or more windows invisible 132

44 Image - Construct an image widget

 TheImage command creates a widget that displays a picture. The source of the picture can be a file in one of the image formats
that is supported by the Fltk extension package.

 The format of the command is:

 Image path options

where path is the path name of the image widget to be created and options are the option and value pairs that are used to configure
the widget. In addition to the set ofstandard widget options, the image widget supports the following widget specific options:

centered If the image is centered in the widget. Default is true

file Name of the image file to use

flip If the image should be flipped vertically. Default is false.

imagedepth Color depth of the image in bit planes per pixel. May be either 1 for monochrome or 3 for RGB

imageheight Height of the image in pixels

imagewidth Width of the image in pixels

imagex Horizontal location of the image in the widget

imagey Vertical location of the image in the widget

mirror If the image should be flipped horizontally

monochrome If the image is displayed as a monochrome image. Default is false.

shrinkwrap If the image is shrink-wrapped. Default is false.

nodisabledimageIf a disabled image should not be generated. Default is false.

By default, the image will be displayed centered in the widget. If the image is larger than the widget, the center of the image will be
at the center of the widget.

44.1 Supported File Formats

 The file used to load the image can be in one of the following file formats:

44 Image - Construct an image widget 133

bmp Windows format device independent bitmaps

gif Graphics Interchange Format

jpeg Independent JPEG format

tiff Tag image file format

png Portable network graphics format

ico Windows icon file format

raw A rectangular array of pixel intensities

xbm X Windows Bitmap

xpm X Windows Pixmap

Most image formats will automatically set the imageheight, imagewidth and imagedepth properties when the image is loaded. The
raw format, however, has no header in the image file, so loading this type of image requires that the image dimensions and color
depth be set so that the image will load correctly.

44.2 Configuration Options

 The imagedepth option can be either 3 for full RGB format colors, or 1 for 8 bit intensity images. By default, imagedepth is 3.
Note that with the exception of the raw format images, the imagedepth value is used only for the display of the image, not for the
loading of the image. It can not be used to specify color space reduction operations on images during loading.

 The imagex and imagey values are by default set to 0. This causes the image to be placed at the upper left hand corner of the
widget, unless the valued of the centered option is true. By manipulation of the imagex and imagey values, the image can be moved
about the client area of the widget.

 By default, the flip and mirror options are false. Some images may need to be flipped or mirrored when loaded to get them to
display correctly, particularly if the coordinate system used by the application that created the image files is different from that
being used by the Fltk tool kit.

 The centered option is set to true by default. This causes the loaded images to be centered in the widget.

 The shrinkwrap option is false by default. Setting shrinkwrap to true will cause the widget to resize itself around the image. The
standard widget options padx, pady and borderwidth can be used to adjust the space surrounding the image if so desired.

 The nodisabledimage option is used to specify whether a disabled form of an image should be generated. By default, the value of
this option is false, and when an image is loaded its disabled form is automatically generated. When set to true this option prevents
generation and display of a disabled format of the image. When loading very large images, suppression of the disabled format of the
image can speed up image display.

 For large images, placing the Image widget inside of aScroll widget will generate automatic scroll bars that can be used to pan
across large images. Alternatively, the application can use one of the other input widgets, such as the Scrollbar, Roller, Slider or
Adjuster to change the values of the imagex and imagey option values to implement a panning feature.

44.3 Image Markup

 Images can be marked up using a set of drawing primitives and a set of pre-defined symbols. Image marks are kept in a list that is
displayed after the image itself is drawn in the widget window. The following drawing primitives are available for marking up
images:

line Draw a line between 2 points

44 Image - Construct an image widget

44.1 Supported File Formats 134

circle Draw a circle at a specified point

arc Draw an arc

rectangle Draw a rectangle

text Draw text

polyline Draw a line through a set of vertices

polygon Draw a polygon

bezier Draw a bezier curve

In addition to the drawing primitives, the following pre-defined marks can be used:

plus Draw a plus sign

cross Draw an x symbol

position Draw a circular position mark

box Draw a small rectangle

low Draw a low symbol

high Draw a high symbol

A special mark, called adrawing, can also be specified. The drawing mark is used to create compound line drawings that behave
like any of the other marks for the purpose of location. Drawings make use of a small drawing language that resembles the old
Logo Turtle Graphics language.

The set of marks defined above are useful when marking up weather maps, and may be useful for marking up other types of
technical drawings.

44.4 Mark Attributes

 A mark is a geometrical object that has a set of attributes that are used to control the location and appearance of the mark.
Configuring a mark depends on the particular geometry of the mark. For example, a circle is configured by specifying its center,
radius, color and fill attributes, while a rectangle requires 2 pairs of coordinates that specify the location of the upper left hand
corner and the height and width of the rectangle. All of the marks supported by the Image widget are configured using a selection of
the following list of attribute names:

at A pair of coordinates to specify a location for the object

to A pair of coordinates to specify a destination location

color The name of a color to use in drawing the object

fill A boolean value specifying whether the object should be filled

width A value that is used as a horizontal extent

size A value that is used to specify the size of an object, such as the radius of a circle

fillcolor The color to use to fill an object

foreground The foreground color of text

background The background color of text

font A font description for a text font

points A list of point coordinates as comma separated x and y pairs

start A starting angle in degrees

44 Image - Construct an image widget

44.3 Image Markup 135

end An ending angle in degrees

bbox A bounding box in the form x,y,w,h

rounded A boolean value specifying whether the object is rounded

text A string to be used as the text to display

name The name of the object

tags A command separated list of tags for the object

borderwidth The width of the border around an object

bordercolor The color to use when drawing a border

state The state of the object determines its visibility. Visible if on, invisible if off

penstyle The type of pen used to draw the object. Pens are solid, dash, dashdot, etc.

x,y The location of the object

data A text string that can hold user data or adrawing specification.

 Marks are drawn by using the add widget command to add new marks to the image mark list. Other widget commands allow for
the management of the mark list and the management of the values of the attributes of the marks.

44.5 Widget Commands

 In addition to the standard cget and configure commands, the Image widget supports the following widget specific commands:

add Add a mark to the mark list

clear Clear the list of marks

closest Get the closest mark to a location

getpixel Get the color of a pixel

hide Hide items in the mark list

list List the items in the mark list

listtags List the tags of items in the mark list

location Convert from window relative to image relative coordinates

itemcget Get the attributes of a mark

itemconfigure Set the attributes of a mark

setpixel Set the color of a pixel in the image

save Save the image to a file

show Show items in the mark list

xlocation Convert a window horizontal location to the image relative value

ylocation Convert a window vertical location to the image relative value

44.5.1 add Add a mark to the mark list

 The add command creates a new mark and adds it to the mark list. The format of the add command is:

 $w add mark options

44 Image - Construct an image widget

44.4 Mark Attributes 136

where $w is the path name of theImage widget, mark is the name of the mark to be drawn, and options is the list of option and value
pairs that are needed to define the mark. For example, the command:

 $w add line -at 10,30 -to 100,120 -color red -penstyle dash

will draw a red line from image location 10,30 to image location 100,120. The line will be drawn as a series of dashes.

 The value returned by the add command is a token that can be used to identify the item in the mark list. This token can be used to
manage the values of mark attributes using the itemconfigure and itemcget widget commands.

44.5.2 clear Clear the mark list

 The clear command is used to remove items from the mark list. The format of the command is:

 $w clear mark mark ...

where $w is the path name of the Image widget and the marks are an optional list of mark identifiers that are to be deleted from the
list. If no marks are specified, the entire list is cleared.

 The clear command does not return a value.

44.5.3 closest Get the closest mark to a location

 The closest command takes a set of one or more coordinate pairs and returns the list of marks that are those closest to the
coordinates specified. The format of the command is:

 $w closest x1,y1 x2,y2 ...

where $w is the path name of the widget to use and the x,y pairs are the locations to use. The value returned by this command is a
list of the tokens of the marks that correspond to the coordinate pairs. If there are no marks in the list, the result of this command is
an empty list.

 The coordinates supplied should be widget relative values that represent actual locations in the image. Other values, such as
window relative coordinates, will not necessarily find the intended targets.

44.5.4 getpixel Get the color of a pixel

 The getpixel command is used to get the color of pixels in the image displayed by the widget. The format of the command is:

 $w getpixel x1,y1 x2,y2 ...

where $w is the path name of the widget to use and the x,y pairs are image locations to query. The result of this command is a list of
elements each of which is a list of 3 numbers that represent the red, green and blue components of the color of the image at the
corresponding location. Coordinate locations that are not within the displayed image bounds result in an error message.

44.5.5 Hide Hide items in the mark list

 The hide command is used to mark items in the current mark list as hidden. When hidden, items are not draw on the image. The format of the hide

command is:

 $w hide item item ...

where $w is the path name of the Image widget and the items are an optional list of item identifiers that should be marked as hidden. If no items are specified,
then the entire mark list is hidden. Hidden items can be made visible again with the show command.

44 Image - Construct an image widget

44.5.1 add Add a mark to the mark list 137

44.5.6 List List the items in the mark list

 The list command is used to display the current list of items in the mark list. The format of the list command is:

 $w list

where $w is the path name of the Image widget. The result of this command is a list of the current mark list item identifiers for the current mark list.

44.5.7 ListTags List the tags associated with the items in the mark list

 The listtags command is used to produce a list of the items in the mark list along with the list of tags associated with the item. The format of the command
is:

 $w listags

where $w is the path name of the Image widget. The result of this command is a list that contains elements that themselves consist of an item identifier tag and
the list of tags associated with the item. Tags can be used to process subsets of items in the mark list.

44.5.8 Location Convert from window coordinates to image coordinates

 The location command is used to convert a location in window relatve coordinates to a location in image relative coordinates. Event handlers, such as a
handler for mouse motion, receive the location of the event in window relative coordinates, where the window in question is the immediate parent of the Image
widget in use. The location command has the form:

 $w location x y

where $w is the path name of the Image widget and x and y are the window relative coordinates to be converted. The value returned by this command is an
empty string if the specified window location is outside of the area covered by the current image displayed by the Image widget. If the location is inside the
current image, then the value returned by this command is a list of 2 values that represent the location of the point in image relative coordinates. Image relative
coordinates will be in the range (0,0) through (width,height), where width and height are the dimensions of the current image.

 In a similar manner, the commands xlocation and ylocation can be used to convert either the x or the y coordinate of an event to its image relative location.
If the specified window relative coordinate is inside the relevant range of the image, then the value returned by these commands will be the image relative
value, otherwise, the value returned is an empty string. For example, the command:

 $w xlocation 25

would return a value that is the image relative value of the window relative x coordinate 25.

44.5.9 itemcget Query the attributes of a mark

 The itemcget command is used to query the current values of mark attributes. The format of the command is:

 $w itemcget mark list

where $w is the path name of the widget, mark is the token identifier of the mark to query, and list is the list of mark attributes to
query. The result of this command is a list of the current values of the queried attributes. For example, the command:

 $w itemcget $id -at -to -color -penstyle

could be used to determine the current values of the attributes of a line mark whose identifier is represented by $id.

44.5.10 itemconfigure Configure mark attributes

 The itemconfigure command is used to set the values of mark attributes for marks already in the mark list. The format of the
command is:

 $w itemconfigure mark options

44 Image - Construct an image widget

44.5.6 List List the items in the mark list 138

where $w is the path name of the widget to use, mark is the token identifier of the mark to manage, and options is the list of option
and value pairs that defines the new values of the mark attributes to be set. For example, the command:

 $w itemconfigure $circle -at 120,40

could be used to move a circle center from its current location to 120,40. Here the token for the circle is represented by the $circle
reference.

44.5.11 setpixel Set the color of a pixel

 The setpixel command can set one or more pixels of an image to a specified color. The format of the command is:

 $w setpixel x1,y1 color1 x2,y2 color2 ...

where $w is the path name of the widget, the x,y pairs are pixel coordinates in the image, and the colors are color specifications for
the new pixel colors. There must be a coordinate pair and a color specification for each pixel to be set.

 The color specification can be any of the valid color descriptions supported by the extension package. For example, the
command:

 $w setpixel 100,100 pink 140,20 128,30,45 35,50 192

sets the pixel at 100,100 to pink while the pixel at 140,20 will be set to the color whose red, green and blue components are 128, 30
and 45 respectively. The last pixel at 35,50 will be set to a red, green and blue color value of 192, 192 and 192.

44.5.12 save Save the image to a file

The save command will write the current image to a file. The format of the command is:

 $w save -file name -depth bits

where $w is the path name of the widget to use, name is the name of the file to use, and depth is an optional specification of the
color depth, in bits per pixel, to use.

 The format of the file is determined by the file name extension that is employed in the file name. Any of the file formats
supported by the extension package can be used. The specification of a bit depth can result in automatic color space reduction,
which may result in degradation of picture quality.

44.5.13 Show Show hidden items

 The show command is used to cause items in the mark list that are hidden to be displayed. The format of the show command is:

 $w show item item

where $w is the path name of the Image widget and the items are optional mark list item identifiers. If no items are specified, all of
the items in the list are displayed. If items are specified, the mark list items associated with the specified identifiers are displayed.
The hide command can be used to mark items in the mark list as hidden.

44.6 Drawings

 A drawing is a mark that is created by the specification of a series of pen actions using a drawing specification language. The
drawing specification language uses a syntax that has the form of a list of blank separated tokens which are drawing commands and
their parameters. The drawing language drives a drawing engine that can produce 3 types of drawing element, the line, the circle and
the text item.

44 Image - Construct an image widget

44.5.10 itemconfigure Configure mark attributes 139

 A new drawing is created with a command of the form:

 $w add drawing options

where $w is the path name of theImage widget being used and options is the list of option and value pairs that is used to configure
the drawing. The drawing has the same list of options that are recognized by the other marks available for the Image widget,
however, only the data and the at, x and y options are generally useful. The data option contains a text string that describes the
actual drawing to be done, while the location values set the origin of the drawing in coordinates of the image being displayed.

 The drawing engine has a pen that draws things which can have a color, a width and a style. The pen may be either up, in which
case no drawing will occur, or it can be down, in which case drawing will occur.The text string that defines the drawing contains a
list of drawing primitives that conform loosely to the original Trutle Graphics drawing language. This drawing language is a
simplified set of commands for operating a device that resembles a pen plotter. For a detailed description of the Turtle Graphics
command set supported by this extension package see the chapter on the Drawing widget.

 The drawing description is a string with blank separated commands and parameters that the drawing engine will interpret. When a
drawing is created the initial pen location is at the specified origin and the initial drawing direction is vertical toward the top of the
Image widget. The fd, bk and tx commands will leave the current position of the pen at the end of the line or text block being drawn.
The default color for the pen is black, with thickness of 1 and a line style of solid. Here is an example of a drawing the will produce
a blue box:

 $w add drawing -at 100,100 -data { cs hm pc blue pd rp 4 "fd 40 rt 90" }

Here the blue square will begin at location 100,100, then, using a blue pen will draw the 4 sides using the rp command. Aside from
the sp command, which takes 2 parameters, one for each dimension of the image, and the rp command which takes a repeat count
and a command string, the other commands take either 1 parameter or no parameters. The parameter values can have a sign prefix
that is interpreted as an adjustment to the current value. For example, the string:

 sp +20 -14

means change the current value of the horizontal position by adding 20, and the current value of the vertical position bu decreasing
it by 14. If the sign prefix is not present, the actual value of the parameter becomes the new value of the item.

 Note that the elements of a drawing will not be cleared unless a cs command is encountered. Drawings can, therefore, be built up
by using successive instances of the itemconfigure command of the Image widget to append new elements to the current drawing.

44 Image - Construct an image widget

44.6 Drawings 140

45 ImageButton - Construct an image button widget

 The ImageButton command creates a button that is drawn using images instead of the text format typical of the otherButton
widgets in the package.

 The format of the command is:

 ImageButton path options

where path is the path name of the widget to be created and options are the option and value pairs that are used to configure the
widget. In addition to thestandard set of widget options, the ImageButton widget supports the following widget specific options:

upimage Image to use for the unpressed state

downimage Image to use for the pressed state

onvalue String to return as the button on value

offvalue String to return as the button off value

downrelief Button relief when pressed

value Value of the button

type Type of the button

monochrome If the image is displayed as gray scale

imagex Horizontal location of the image

imagey Vertical location of the image

imageheight Height in pixels of the image

imagewidth Width in pixels of the image

imagedepth Color depth of the image

centered If the image is centered

shrinkwrap If the image is shrink-wrapped

state The state of the button

All of the options have default values, so the button can be created without any options and then configured later using the widget
configure function.

45 ImageButton - Construct an image button widget 141

 The upimage and downimage options take the name of a file that is in one of the file formats supported by theImage widget. If
only an upimage is supplied, it will be used for both the pressed and not pressed states of the button. If the button is in the disabled
state, a modified rendering of the upimage is used to draw the button.

 The onvalue and offvalue options default to the strings "1" and "0". These are the values of the button that will be returned if the
widget is queried, or if the button is attached to a Tcl variable using the variable option.

 The downrelief option is by default a sunkenframe relief. This relief is used when the button is in the pressed state.

 The value option is used to set the initial value of the button. This option takes a boolean name to indicate whether the value
should be the onvalue or the offvalue.

 The type option can be invariant, toggle or radio. The default type is toggle, so each time the button is pressed and released it
changes its value from on to off and back. An invariant button does not change its value, while a radio button changes its value
when pressed and remains in the new state until changed using the widget configure function.

 The state option can have the values normal or disabled. When disabled the button will not process any mouse or keyboard input.
By default, the state is normal.

 The remainder of the widget specific options implement features of the image display functionality of the extension package.
These options have the same meaning as those described for theImage widget.

45 ImageButton - Construct an image button widget

45 ImageButton - Construct an image button widget 142

46 Input - Create an input widget

 An Input is a widget that can accept user input via the keyboard. It may be single line or multi-line in form.

The format of the command is:

 Input path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, theInput widget supports the following widget specific options:

value The contents of the widget

color The color of the text

textfont The font in use

textsize The size of the text font

length Query or limit the amount of text in the widget

format The type of the input widget

mark Location of the current mark

position Location of the current input position

The value option is used to either get or set the contents of theInput widget. A string with embedded newline characters is either the
result of a query or the way to set the contents of the widget.

 The color, textfont and textsize options can be used to configure the display of the text in the widget. Only a single rendering
specification can be applied to the entire widget.

 The length option can be queried to discover the number of characters in the widget or to limit the number of characters that can
be entered into the widget. By default, the value of the length opetion is set to 0, and there is no limit to the amount of text that can
be entered. If the value of the length option is specified to be other than 0, then the value specified is the maximum number of
characters that may be entered into the widget..

 The mark and position options can be set or queried to move about the mark and the input location pointer respectively. The
relationship between the mark and the position values is that the characters between these two values are considered to be the
selection range for editing operations.

 The format option can have the following values:

normal Standard single line input

float Input of a floating point number

integer Input of an integer

multi-line Multi-line text input box

secret A password entry input box

The default format is normal. The other formats affect the justification of the displayed input values.

46 Input - Create an input widget 143

46.1 Using Input Widgets

 TheInput widget is used to allow the application user to enter information that can be used by the application for some purpose.
Typically anInput widget is bound to a Tcl variable that is to receive the user input. Optionally, theInput widget can also have a
command that is executed when the user presses the Enter key. For example, the command:

 Input t.t -variable MyTclVariable -command { HandleInput %W }

will create anInput widget bound to the variable MyTclVariable. If the contents of the widget are changed by user keyboard
activity, then the Tcl procedure HandleInput is executed when the user presses the Enter key. The input handler function might look
like this:

 proc HandleInput { w } {

 global MyTclVariable

 puts "The user entered $MyTclVariable"

 set MyTclVariable ""

 }

Here, the handler will print out the contents of the information entered by the user and then clear theInput widget. By initializing
the contents of MyTclVariable to some value, theInput widget will display this initial value when it first appears. If MyTclVariable
does not exist when theInput widget is created, then the variable will be created within the scope of the widget constructor
command and initialized to the value 0.

46.2 Input Widget Commands

 In addition to the standard widget commands configure and cget, theInput widget supports the following widget specific
commands:

insert Insert text into the widget

cut Cut the selection from the widget to the clipboard

copy Copy the selection to the clipboard

replace Replace the selection with other text

copycuts Copy cuts from the undo stack

undo Undo previous operations

load Load text from a file

position Set or get the input position

mark Set or get the mark

46 Input - Create an input widget

46.1 Using Input Widgets 144

46.2.1 The insert command

 The insert function command inserts text into the widget at the current insertion position. The format of the command is:

 $w insert text

where $w is the path name of theInput widget to use and text is the text to insert.

46.2.2 The cut command

 The cut function cuts the currently selected text from the widget and places it on the clipboard. The cut function command has the
following format:

 $w cut from to

where $w is the path name of theInput widget to use, from is the starting location and to is the ending location of the text to cut. The
location values are zero based character indices into the data contained in the widget.

46.2.3 The copy command

 The copy function will copy text from the widget to the clipboard. The format of the function command is:

 $w copy

This command transfers the contents of the current selection to the clipboard.

46.2.4 The replace command

 The replace function will replace the text in the widget with new text. The format of the function command is:

 $w replace from to with

where $w is the path name of the widget to use, from is the starting location, to is the ending location and with is the text to be used
as a replacement.

46.2.5 The copycuts command

 The copycuts function copies previous cuts in the undo stack back into the widget. The format of the function command is:

 $w copycuts

where $w is the widget to use.

46.2.6 The undo command

 This command will undo the results of previous editing operations. The format of the command is:

 $w undo

where $w is the path name of the widget.

46 Input - Create an input widget

46.2.1 The insert command 145

46.2.7 The load command

 The load function can be used to initialize anInput widget with the contents of a text file. The format of the command is:

 $w load filename

where $w is the path name of the widget to be used and filename is the name of the text file to load. The contents of the file are read
into the widget.

46.2.8 The mark command

 This function is used to set the mark location in the widget. The format of the command is:

 $w mark location

where $w is the path name of the widget to use and location is the place to put the mark. If location is not specified the current mark
location is returned.

46.2.9 The position command

 The position function is used to set the current input location pointer. The format of the command is:

 $w position location

where $w is the path name of the widget to use and location is the location in the widget text to put the location pointer. If location

is not specified then the current value of the input location pointer is returned.

46 Input - Create an input widget

46.2.7 The load command 146

47 Iterator - Construct a list iterator button

 The Iterator is button that iterates through the elements of a Tcl list as it is pressed. This widget looks identical to a normal Button
widget and implements some additional internal functionality that makes list iteration convenient. An Iterator can be configured to
automatically cycle through a Tcl list, issuing associated widget command scripts at a programmable delay rate. Because the
Iterator is a button widget, it is a member of theButton class.

 The format of the command line that constructs an Iterator is:

 Iterator path options

where path is the path name of the widget to be constructed, and options is the list of option and value pairs that is used to configure
the widget. In addition to the list of standard widget options, the Iterator widget supports the following widget specific options:

value The current element of the list

forward If the iteration is in the forward direction

increment The stride to use when iterating

first The first element to start the iteration with

list The name of the Tcl list to iterate over

length The length of the Tcl list

rate The auto repeat delay in milli-second

type The type of the button

indicator If the repeat indicator is shown

autorepeatIf auto repeat is active

autostop If iterator stops at the end of a list

 The value option can be used to specify the current position of the iterator or to retrieve the current element of the list. When used to set the current element,
the value option takes a string that must match an element in the list.

 The forward option is a boolean value that determines whether the Iterator proceeds forward over the list or backwards over the
list. By default, the value of the forward option is true, and the iteration proceeds in the direction of ascending list indices. By
setting the forward option to false, the iteration will proceed in the direction of descending list indices.

 The increment option is used to define Iterator increment value. By default the value of the increment option is 1. The value of the
increment option must be less than the length of the list.

 The first option is used to specify the starting element in the list for iteration. By default the value of the first option is 0 and the
iteration begins at th first element of the list.

 The list option is used to specify the name of a Tcl variable that contains the list over which to iterate. By default the value of list is
an empty string and no iteration occurs.

 The length option is used to query the length of the list in use.

 The rate option is used to specify the delay, in milli-seconds, for the repeat of a command in auto-repeat mode If there is no
command associated with the Iterator widget, this option has no effect. The default value of the rate option is 0, and, when in
auto-repeat mode, commands are repeated as fast as the command script can be evaluated.

47 Iterator - Construct a list iterator button 147

 The type option is used to specify the type of the button. Buttons can be of type invariant or toggle, depending on the desired
behaviour of the value of the widget when the button is pressed. The default type is toggle, and each time the Iterator is pressed, the
value of the value option changes between 0 and 1.

 The indicator option, when true, causes an indicator to be drawn on the button that will flash when in auto-repeat mode. By
default, the value of the indicator option is false, and no indicator is drawn.

 The autorepeat option is used to invoke the auto-repeat mode of the the Iterator. In auto-repeat mode, pressing the button will
cause the command associated with the Iterator to be invoked at an interval specified by the current value of the rate option. This is
useful when, for example, building an image animation application that will loop continuously through a set of images. When the
value of autorepeat is true, pressing the Iterator will cause the associated command to be invoked repeatedly until the button is
pressed a second time. By default, the value of the autorepeat option is false.

 The autostop option is used to automatically stop an iterator that is in autorepeat mode at the ends of a list of items. When the
autostop option is set to true, and when the iterator is traversing a list in autorepeat mode, the iterator will stop when it comes to
either end of the list of items. By default, the value of the autostop option is false, and the iterator will loop over the list until it is
stopped. The autostop option has no effect if the value of the autorepeat option is false.

 Here is an example of an Iterator widget:

 set list [glob *]

 Iterator t.i -w 300 -list list -command "%W set -label %value" -bg tan

 Show t

 Wm title t "Iterator demonstration"

Assuming that there are files in the current directory, pressing the Iterator button will cause each of the file names in the directory to
be displayed, in turn, in the widget.

47.1 Widget Specific Commands

 In addition to the standard configure and cget widget commands, the Iterator widget supports the following widget specific
commands:

next Move the next item in the list

previous Move to the previous item in the list

start Start an auto-repeat cycle

stop Stop an auto-repeat cycle

position Get or set the current loop position

current Move to the current item in the list

 The next command will cause the Iterator widget to set its position in the current list to the one following the current position. The widget command, if any,
will be invoked. If the current position is the end of the list, then the command will position to the beginning of the list. The amount of motion in the list is
defined by the current value of the increment option. The format of the next command is:

 $w next

where $w is the path name of the Iterator widget. The value returned by this command is the current position of the Iterator in the current list.

 The previous command will cause the Iterator widget to set its position in the current list to the one previous to the current position. The widget command, if
any, will be invoked. If the current position is the beginning of the list, then the command will position to the end of the list. The amount of motion is
determined by the current value of the increment option. The format of the previous command is:

 $w previous

47 Iterator - Construct a list iterator button

47.1 Widget Specific Commands 148

where $w is the path name of the Iterator widget. The value returned by this command is the current position of the Iterator in the current list.

 The start command will start an auto-repeat cycle. The stop command will stop an auto-repeat cycle. When the Iterator widget is in auto-repeat mode,
pressing the widget or invoking the start, next or previous commands will begin an automatic repeat cycle that continuously invokes the widget command at a
delay rate specified by the current value of the rate option. The auto-repeat cycle will proceed through the list in increments specified by the current value of
the increment option in the appropriate direction. Invoking the stop command will arrest the auto-repeat cycle. The format of the stop command is:

 $w stop

where $w is the path name of the Iterator widget. The value returned by the stop command is the current position of the Iterator in the current list.

 The position command will either set or get the current position of the Iterator in the current list. The format of the position command is:

 $w position value

where $w is the path name of the Iterator widget and value is an optional value that must be within the range of 0 through the length of the list minus 1. If
value is specified, the current position of the Iterator is set to the specified value. If no value is specified, the command returns the current position.

 The current command is similar to that of the position command. The current position in the list is set to the index of the matching entry. Any any command
scripts are executed and any variables are updated. The format of the current command is:

 $w current value

where $w is the path name of the Iterator widget and value is the index that is to be used. If the value is within the valid range for the list, it is set as the current
position for the Iterator and returned. If the value is not within the valid range, an error message is returned. This command is useful for setting the initial
position in the list being iterated over. The position command will set the list item position, but will not execute any scripts or update any variables.

47.2 Grouping Iterators

 An application, such as an image animation script, would typically make use of several Iterators to control the operation of the application. An animation
application would, for example, use an Iterator to move forward, another to move in reverse, another to step forward, and a fourth to step backwards through a
list of image files. A simple method of ensuring that all 4 Iterators are always synchronized on the same image is to set their variable options to the same
global variable. For example:

 Option add Iterator.variable position

will set the value of the variable option for Iterators to position. The TCL variable position will then always contain the current position of all of the Iterators
in the application. This will automatically ensure that all the Iterators are synchronized on the same element of the list over which they are iterating. The
Iterators themselves then might appear in the script as:

 Iterator $f.reverse -list $imagelist -forward false -autorepeat true -autostop true
 Iterator $f.back -list $imagelist -forward false
 Iterator $f.fwd -list $imagelist
 Iterator $f.ahead -list $imagelist -autorepeat true -autostop true

See the imageloop.tcl script in the distribution for the details of this type of implementation.

47 Iterator - Construct a list iterator button

47.2 Grouping Iterators 149

48 Knob - Create a knob widget

 The Knob command creates a widget that looks like a knob. This OpenGL based widget can be manipulated by turning it with the
mouse to change its value. Several types of scales are supported.

The format of the Knob command is:

 Knob path options

Where path is the path name of the widget to be created and options are the name and value pairs that are used to configure the
widget.

 In addition to the set ofstandard widget options, the Knob supports the following widget specific options:

value Set or get the current value of the knob

step The value of the step

min The minimum angle

max The maximum angle

knobstyle The style of the knob

ticks Number of ticks to draw

scale Range of the scale to use

zero Zero value

The value of the widget is the value represented by the current position of the knob indicator. The step value is the amount the value
of the Knob will change when it is turned. By adjusting the step, the sensitivity of the Knob is changed.

 The min and max values are angles, specified in degrees, that indicate the indicator position at which the value of the Knob will
be minimum and maximum respectively. By default these values are 45 and 315 degrees. You can turn the Knob between these two
positions.

 The knobstyle specifies the type of knob indicator (dot or line) and the type of scale to be used for the knob (linear or
logarithmic). By default, the knobstyle is set to use a dot for the indicator and a linear scale for the variation of the value. Knobstyle
is specified by a list of comma separated elements that specify the style in the following format:

 indicator,scale,range

48 Knob - Create a knob widget 150

where indicator can be dot or line, scale can be linear or logarithmic, and range is an optional value that is used to specify the range
of the logarithmic scale. For example, the specification:

 -knobstyle line,log,3

would produce a knob with a line indicator and a triple logarithmic scale.

 The tick option specifies the number of tick marks to draw around the knob. By default this value is 10.

 The scale value is the range of values that span the range that the Knob can cover. By default, the value of scale is 100. The zero
value specifies the value of the Knob at the zero position of the indicator. By default, the value of zero is 0. Here is a Knob that uses
a linear scale to cover the range -50 to 50:

 Knob root.knob -zero -50

48 Knob - Create a knob widget

48 Knob - Create a knob widget 151

49 Label - Create a label widget

 TheLabel widget is a simple rectangular widget that displays some text.

The format of the command is:

 Label path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. The widget supports the set ofstandard widget options.

 Here is an example of a Label widget:

 Label root.label -x 20 -y 100 -text "This is a label" -width 150 -background yellow -relief raised

In this case, the default value of the align widget option is centered, and the value of the widget relief is raised, so the resulting
widget will look like a button but without adding some other functionality, the widget will not react to mouse events. A more typical
use for aLabel widget is demonstrated by the following command:

 set p [Package root.pack -orientation horizontal -height 20]

 Label $p.label -text "Current Value" -relief flat -align left,inside

 Output $p.output -relief sunken -variable MyOutputVariable
 set MyOutputVariable 20

ThisLabel will have the text left aligned inside of the widget and have no evident relief. It looks just like a text string. It is
positioned to the left of theOutput widget that is monitoring the Tcl variable MyOutputVariable. The two widgets in thePackage
combine to make a mega-widget that has a text label and a widget with a sunken relief that displays the current value of the
MyOutputVariable variable.

See also theLabeledText widget, which is a compound widget that does the same sort of thing as this example.

49 Label - Create a label widget 152

50 LabeledCounter - Construct a labeled counter widget

 The LabeledCounter widget contains a Label widget and a Counter widget. The counter widget can be used to adjust the values
of a Tcl variable.

 The format of the command line is:

 LabeledCounter path options

where path is the path name of the widget and options are the option name and value pairs that are used to configure the widget. In
addition to the set of standard widget options, the LabeledCounter widget supports the following list of widget specific option:

countertextforeground Color of the counter text♦
countertextbackground Background color of the counter♦
countertextfont The counter font♦
countertextsize Size of the counter text♦
countertextrelief Relief of the counter ♦
countertextjustify How to justify the counter value♦
counterstyle Type of counter♦
orientation Orientation of the widget stack♦
order Order of drawing the label and the counter♦
ratio Amount of the widget window used for the counter♦
pad Padding between the label and the counter♦
labelrelief Relief of the label component♦
step Increment value♦
min Minimum value♦
max Maximum value♦
faststep Increment to use with the fast buttons♦
value Query or set the current value of the counter♦

 The LabeledCounter widget can be constructed using an orientation that is either vertical or horizontal. The default orientation is
horizontal, so the components of the widget are side by side. The order option deternimes which of the widgets is drawn first, and is
by default, label,value. This combination of default values results in a widget that has the label on the left of the counter. By default
the value of ratio is .5, so both widgets have the same size. Changing the orientation parameter to vertical would cause the label
component to appear above the counter component.

 Changing the order option to value,label will cause the counter to be drawn before the label component. In the horizontal
orientation, this results in the counter being drawn to the left of the label. In the vertical orientation, this results in the label being
drawn under the counter component.

 Note that when using the vertical orientation, the default widget height should be adjusted to accomodate the two widgets. By
default, the value of the widget height is the standard height of a Label widget.

 The pad option can be used to insert some padding between the label and the counter omponents. By default, the value of pad is
0, so the widgets are places adjacent to each other.

 The counter appearance can be controlled using the countertextforeground, countertextbackground, countertextfont,
countertextsize, countertextrelief, and countertextjustify options. The counterstyle option can be simple or normal. A simple style
has only the single set of increment controls, whereas the normal style has additional controls for fast changing the value. The

50 LabeledCounter - Construct a labeled counter widget 153

default style is simple.

 The behaviour of the counter is defined by the step, min, max and faststep options. These options have default values of 1, 0, 100
and 10 respectively.

 The value option may be used to set the current value of the counter or to query the current value. The value supplied when
setting the counter must lie within the current valid range defined by the min and max values.

50 LabeledCounter - Construct a labeled counter widget

50 LabeledCounter - Construct a labeled counter widget 154

51 LabeledInput - Create an input box with a configurable label

 The LabeledInput widget is a compound widget that displays a label and an input box. The input box is typically used to get
some value that may become the contents of a bound Tcl variable. The label of the widget can be configured as to its justification,
font, size, foreground and background color and relative position with respect to the input box.

The format of the command is:

 LabeledInput path options

where path is the path name of the widget to be constructed and options is the list of option and value pairs that is used to configure
the widget.

 In addition to the list ofstandard widget options, the LabeledInput widget supports the following list of widget specific
options:

value The current value of the text box

textforeground The foreground color of the input box

textsize The size of the font used for the input box

textfont The font used for the input box

textbackgroundThe background color used by the input box

textrelief The relief of the input box

orientation How the widget is oriented

spacing The spacing between components

order How the components are ordered

ratio The relative sizes of the components

labelrelief The relief of the label component

length Query or limit the amount of text in the input widget

format Query or set the format of the input to the widget

The label component of the widget will inherit its text display characteristics from the parent widget that wraps the label and input
components. The text attributes, with the exception of the relief of the label component, are configured using the standard widget
options. For example, the command:

 LabeledInput t.t -text Hello -foreground red -background blue -value world

would create a widget with the label Hello and the value world. The label would be displayed in red on blue.

51.1 Input Box Configuration

 The input box component is configured with the relevant options described above. By default, the input box is created with a
sunken relief using the default font characteristics and text is always left justified in the input box. Here is an example of a widget
command that would modify the relief to raised:

51 LabeledInput - Create an input box with a configurable label 155

 $w config -textrelief raised

 The length and the format options behave the same way as the equivalent options for the Input widget. They can be used to limit
the amount of text entered into the input widget and to fix the format of the input.

51.2 Widget Configuration Options

 The LabeledInput widget can be laid out according to the values of the orientation, order and spacing options. The default
orientation is horizontal, the default order is label,input, and the default spacing is 2. This results in a widget with the label to the
left of the input box and a 2 pixel spacing between the components.

 The order option determines which of the components is laid out first. By changing the order to input,label, the input box
will appear to the left of the label.

 The orientation option can be set to vertical as opposed to the default value of horizontal. This will cause the widget to be
laid out with the label and input components stacked on top of each other. The default order will result in a widget with the label
above the input box, while setting the order to text,label will result in a widget with the input box on top of the label.

 Here is an example of a LabeledInput widget configured to put the label on top of the input box:

 LabeledInput t.t -h 40 -w 100 -orientation vertical -justify centered -label Hello -value world

 A final option of interest is the ratio value. By default, the ratio value is 0.5, which means that the relative dimensions of the
two widget components are equal. The ratio value actually specifies the proportion of the widget, along its orientation dimension,
that is assigned to the input box. The value of the ratio can range from 0.0 to 1.0, however, the extremes do not produce useful
widgets.

51 LabeledInput - Create an input box with a configurable label

51.1 Input Box Configuration 156

52 LabeledText - Create a text box with a configurable label

 The LabeledText widget is a compound widget that displays a label and a text box. The text box is typically used to display
some value that may be the contents of a bound Tcl variable. The label of the widget can be configured as to its justification, font,
size, foreground and background color and relative position with respect to the text box.

The format of the command is:

 LabeledText path options

where path is the path name of the widget to be constructed and options is the list of option and value pairs that is used to configure
the widget.

 In addition to the list ofstandard widget options, the LabeledText widget supports the following list of widget specific
options:

value The current value of the text box

textforeground The foreground color of the text box

textsize The size of the font used for the text box

textfont The font used for the text box

textbackground
The background color used by the text
box

textrelief The relief of the test box

textjustify The justification used for the text box

orientation How the widget is oriented

spacing The spacing between components

order How the components are ordered

ratio The relative sizes of the components

labelrelief The relief of the label component

format
The format statement that is used to display the
output

conversion The type of conversion applied to the input value

The label component of the widget will inherit its text display characteristics from the parent widget that wraps the label and text
components. The text attributes, with the exception of the relief of the label component, are configured using the standard widget
options. For example, the command:

 LabeledText t.t -text Hello -foreground red -background blue -value world

would create a widget with the label Hello and the value world. The label would be displayed in red on blue.

52 LabeledText - Create a text box with a configurable label 157

The format option can be used to specify a format string that is applied to the current value of the text to be displayed in the widget.
The default format string is %s, and the value is displayed as is, without conversion. For numeric values, the conversion option can
be used to specify a conversion of the internal, string oriented, value of the text to a numberic value that can be used with a format
string. For example, the following command:

 %w set -format "%8.2f" -conversion float

could be used to limit the number of decimal places of a floating point value to 2 and to specify a field width of 8 character positions
for the displayed value. See the description of the Value widget for a list of the available conversions. The default value of the
conversion option is string.

52.1 Text Box Configuration

 The text box component is configured with the relevant options described above. By default, the text box is created with a
sunken relief using the default font characteristics and text is centered in the text box. Here is an example of a widget command that
would right align the contents of the text box and modify the relief to raised:

 $w config -textrelief raised -textjustify right,inside

Note that since the text box is a standard widget, the contents can be displayed outside the text box, but for this particular widget
such a usage is not suggested.

52.2 Widget Configuration Options

 The LabeledText widget can be laid out according to the values of the orientation, order and spacing options. The default
orientation is horizontal, the default order is label,text, and the default spacing is 2. This results in a widget with the label to the left
of the text box and a 2 pixel spacing between the components.

 The order option determines which of the components is laid out first. By changing the order to text,label, the text box will
appear to the left of the label.

 The orientation option can be set to vertical as opposed to the default value of horizontal. This will cause the widget to be
laid out with the label and text components stacked on top of each other. The default order will result in a widget with the label
above the text box, while setting the order to text,label will result in a widget with the text box on top of the label.

 Here is an example of a LabeledText widget configured to put the label on top of the text box:

 LabeledText t.t -h 40 -w 100 -orientation vertical -justify centered -label Hello -value world

 A final option of interest is the ratio value. By default, the ratio value is 0.5, which means that the relative dimensions of the
two widget components are equal. The ratio value actually specifies the proportion of the widget, along its orientation dimension,
that is assigned to the text box. The value of the ratio can range from 0.0 to 1.0, however, the extremes do not produce useful
widgets.

52 LabeledText - Create a text box with a configurable label

52.1 Text Box Configuration 158

53 Lcd - Create a Liquid Crystal Display Widget

 The Lcd widget has the appearance of a seven segment digit display gadget. It is typically used to display the value of some
integer variable in an eye catching manner.

 The format of the command that constructs the Lcd widget is:

 Lcd path options

where path is the path name of the widget to be constructed, and options is the list of option name and value pairs that is used to
configure the widget.

 In addition to the list of standard widget options, the Lcd widget supports the following widget specific options:

value The value to display

lcdcolor The color of the digit segments

decimalpoint The position of the decimal point

barwidth The width of the segment lines

characters The number of characters to display after the decimal point

grid If the background grid is to be displayed

gridcolor The color for the background grid

 The value option is used to set the string of characters to be displayed or to get the current string being displayed.

 The lcdcolor option is, by default, black. Setting this options will cause the color of the bars used to create the display digets to
change to the specified color.

 The decimalpoint option is a boolean value that specifies whether or not a decimal point is to be shown. By default, the value of
the decimalpoint option is false.

 The barwidth option is, by default, 3. This value is the number of pixels wide the bars are drawn.

 The chracters option is used to specify the number of decimal position that are shown. By default, the value of this option is auto,
and the number is determined by the input value. The decimalpoint and characters options are depreciated as this version of the
widget displays whatever characters are found in the value string, regardless of whether they are numeric or not.

 The grid option is a boolean value that determines whether the background grid is drawn. Drawing the background grid has the
effect of making the elements of the liquid crystal visible. By default, the value of this option is true.

 The gridcolor option is used to set the color used for drawing the background grid. By default, this color is gray80.

 Here is an example of the construction of the Lcd widget:

 Lcd t.l -value 1024 -lcdcolor orangered3
 Show t

53 Lcd - Create a Liquid Crystal Display Widget 159

53 Lcd - Create a Liquid Crystal Display Widget

53 Lcd - Create a Liquid Crystal Display Widget 160

54 Library - Manage the library search list

 The Library command is used to maintain the list of binary library files that contain script modules and
procedures. The format of the Library command is:

 Library function file1 file2 ... filen

where the files are the names of library files and function is one of the following:

add - Add files to the library list•
clear - Clear the library list•
delete - Delete files from the library list•
list - Get the current library list•
modules - List the modules in a library file•
procedures - List the procedures in a library file•
provides - Find a procedure or module•
source - Find the source of a procedure or module•

 The library list is a list of library files that will be searched by the Call command for script modules and
procedures that are being executed. By default, the library list is empty.

 When a library file is added to the library list, the index table for the library is constructed and added to the
list of index tables for other libraries in the library list. When a procedure or a script module is called using the
Call command, it is loaded from the library file and evaluated. The first time a script module or procedure is
called, there is an overhead associated with loading the module or procedure and evaluating it. On subsequent
calls, the module need not be reloaded ad the interpreter will have compiled its contents in the memory
resident byte code representation.

54.1 Add Library Files

 The format of the add function command is:

 Library add file1 ... filen

where the files are the path names of the library files to be added. The current contents of the library list are
extended to include the list of specified files. This command will return an error if any of the specified files
can not be found, or if the file format is incorrect, such as when the file is not a valid library file.

54.2 Clear the Library List

 The clear function command removes all of the files in the current library list from the list. The format of
the command is:

 Library clear

54 Library - Manage the library search list 161

54.3 Delete Files from the Library List

 The delete function command can be used to remove library files from the library list. The format of the
command is:

 Library delete file1 ... filen

where the files are the names of library files in the library list to be deleted. This command will remove any of
the specified files from the current library list. If a specified file is not in the list, it is ignored.

54.4 List the Contents of the Library List

 The list function command is used to display the list of library files currently in the library list. The
format of the command is:

 Library list file1 ... filen

where the files are optional library file names. If no file names are specified, the value returned by this
command is a list that contains the names of all of the library files in the current library list. If file names are
specified, the value returned by this command is the list of all of the specified files that are in the current
library list.

54.5 List the Modules in the Library List

 The modules function command is used to list the names of the script modules in the current library list.
The format of the command is:

 Library modules file1 ... filen

where the files are an optional list of library file names. If no files are specified, the result of this command is
a list of all of the module names in the library files in the current library list. If files are specified, the result of
this command is a list of all of the module names in the library files that are specified in the list of files which
are in the current library list.

54.6 List the Procedures in the Library List

 The procedures function command is used to list the names of procedures that can be found in the libraries
in the current library list. The format of the command is:

 Library procedures file1 ... filen

where the files are an optional list of library file names. If no files are specified, then the result of this
command is a list of lists of all of the module names and the procedures that they contain in the the library
files in the current library list.The elements of the list consist of the module name and the list of procedure
names that the modules define.

54 Library - Manage the library search list

54.3 Delete Files from the Library List 162

 If files are specified, then the result of the command is a list of lists of the module names and the procedures
that they define for the library files that are specfied which are found in the current library list.

54.7 Locate a Procedure or Module

 The provides function command is used to determine the name of the library file that contains a procedure
or module. The format of the command is:

 Library provides name1 ... namen

where the names are the name of procedures of script modules. If the procedure or script module is in one of
the libraries in the current library list, then the result of this command will be the name of the library file that
contains the procedure or script module. If the name is not found in the files of the current library list, the
result of this command is an empty string.

54.8 Locate the Source of a Procedure or Module

 The source function command can be used to locate the source of a procedure or module. The format of the
command is:

 Library source name1 ... namen

where the names are the names of the procedures or modules to be located. The result of this command is a
list of the original source file path names used to build the library files that contain the procedures or modules.
The format of the list is a list of 2 element lists. Each element contains the library file name and a list that
contains the details of the original file name used to include the specified module or procedure in the library.

54 Library - Manage the library search list

54.6 List the Procedures in the Library List 163

55 Listbox - Create a listbox widget

 The Listbox widget creates an object that can be used to present selections of a list of objects. The particular widget implemented
in this package has a number of additional features that make possible its use for multi-column list presentation and provides for
some interesting text formatting options for the list elements. Read the Fltk tool kit documentation if you want to make use of the
advanced features of the widget.

 The format of the command is:

 Listbox path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the
widget. In addition to the set ofstandard widget options, the Listbox supports the following widget specific options:

columnchar The column separator character

columnwidths Width of the columns

formatchar The formatting escape character

size Query the number of lines in the widget

separator Characters to use for splitting items and data

topline The display line at the top of the list

value The currently selected item value

textcolor Color for the text

textfont Font for the text

textsize Size of the font

autoscroll If automatic scrolling is active

items Query the length of the list of items in the listbox

selection Set or get the current selection

separator Character to use to separate labels from data

scrollbars The scrollbar usage

The columnchar option gets or sets the current column separation character, which is by default the tab character. The
columnwidths option gets or sets the width of the columns. It is a list of pixel widths for the columns separated by commas. For
example, the following command:

 Listbox t.t -w 600 -h 400 -columnwidths 300,300

could be used to set up aListboxwith 2 columns eaxh of which is 300 pixels wide. Elements can then be added using a command of
the form:

55 Listbox - Create a listbox widget 164

 t.t add "Left Item\tRight Item"

Note the tab (\t) character that is used to specify the start of an item in a column.

 The formatchar is a character that can be used to signal embedded formatting. The default formatchar is the @ symbol. It is
important to remember that when using embedded formatting characters with the contents of the Listbox widget that these
formatting characters are embedded in the actual strings, so they have to be considered when doing things like searching for specific
elements. Embedded format specifiers can be used to modify how the text for an element is displayed. For example, the command:

 t.t add "@cCentered\t@rRight"

could be used to center the text in the first column and right justify the text in the second column of the Listbox. Other format
controls are:

@. Print rest of line, don't look for more '@' signs

@@ Print rest of line starting with '@'

@l Use a large (24 point) font

@m Use a medium large (18 point) font

@s Use a small (11 point) font

@b Use a bold font (adds FL_BOLD to font)

@i Use an italic font (adds FL_ITALIC to font)

@f Use a fixed-pitch font (sets font to FL_COURIER)

@c Center the line horizontally

@r Right-justify the text

@Bn Fill the backgound with fl_color(n)

@Cn Use fl_color(n) to draw the text

@Fn Use fl_font(n) to draw the text

@Sn Use point size n to draw the text

@u Underline the text

@- Draw an engraved line through the middle.

Multiple format codes can be used on the same element to produce various color, font and character size effects. Elements without
embedded format specifiers inherit the font, color and size characteristics specified for the container widget itself.

 Some typically used color values are:

Black 56 Selection Color 15

Red 88 Dark Red 72

Green 63 Dark Green 60

Yellow 95 Dark Yellow 76

Blue 216 Dark Blue 136

Magenta 248 Dark Magenta 152

Cyan 223 Dark Cyan 140

Gray 49 Dark Gray 45

White 255 Light Gray 52

So a rendition with a red background using yellow characters can be specified as:

 t.t add "@B88@C95Color Element"

55 Listbox - Create a listbox widget

55 Listbox - Create a listbox widget 165

The size option is used to query the number of lines in theListbox The topline option can be used to set or get the ordinal of the
line in the Listbox that is currently at the top of the displayed subset of list elements. The Listbox features automatic scrollbar
management. Adjusting the topline value will cause the selected line to appear at the top of the displayed lines and to adjust the
scroll position, if active, appropriately.

The separator option is used to set the string of characters that are used to split items and their associated data. By default, the
value of this option is the equal sign (=). A string of the form item=data will be split at the equal sign into the item name and data
components.. See the add function command for an example of how this is used.

The value option will return the current text of the selection when queried. The selection is a zero based index into the list of
items in the Listbox. By setting the value you are also setting the current selection. By default, the value of value is the entry in the
listbox whose index is 0. When the value option is used to set the current selection, the Listbox is searched for an entry that matches
the supplied option value. If such a matching entry is found, it is made to be the current selection, otherwise, the current selection
remains unchanged.

 If the variable option is specified for a Listbox, changing the selection with the mouse will cause the Tcl variable being used to be
modified to contain the text of the new selection.

The textcolor, textfont and textsize options control the color of the displayed text, the font and the size of the font used. By
default, the text is displayed in black using the helvetica font with size 10 characters.

The autoscroll option in a boolean value that determines whether theListbox is automatically scrolled when a new item is added

to the list. By default, the value of the autoscroll option is true, and the result of adding an item to aListbox will cause the widget
to scroll so that the item is visible.

The selection option is used to set or query the current selection. Only a single item can be selected using this option. When used
to set the current selection, the value specified is a zero based index into the list of items in theListbox. When used to query the

selection, the value returned is a zero based index into the list of items in theListbox.

The items option is a read only option that returns the current number of items in theListbox

The separator option is used to set or query the character that is used as a separator when specifying Listbox entries that consis
of both a label and data components. The default value of the separator option is the = symbol.

The scrollbars option is used to set or query the scrollbar usage. TheListbox widget can display horizontal and vertical
scrollbars, or display no scrollbars. By default, the value of the scrollbars option is both, meaning that both horizontal and vertical
scrollbars are displayed when necessary. Other possible options for the scrollbars option are:

none Never display scrollbars. Use the mouse to drag scroll the contents

horizontal Automatic display of the horizontal scrollbar only

vertical Automatic display of the vertical scrollbar only

both Automatic display of both scrollbars

alwayshorizontal Always show the horizontal scrollbar

alwaysvertical Always display the vertical scrollbar

alwaysboth Always display both scrollbars

55.1 Using Listbox Widgets

 The Listbox widget can serve many purposes, common applications being the presentation of a list of items that allows the
application user to select an item from the list, and the simple presentation of lines of text from a file just to allow the user to read
the information using the automatic scrollbar management features of the widget.

55 Listbox - Create a listbox widget

55.1 Using Listbox Widgets 166

 Where the application is using a Listbox to present a choice to the user, it is typically bound to a Tcl variable that is to receive the
currently chosen item. Optionally, the widget can also have a command that is executed each time a selection is made. For example,
the command:

 Listbox t.t -variable Choice -command { HandleChoice %W }

will construct a widget that is bound to the Tcl variable Choice. Each time the user clicks on an item in the Listbox, the value of
Choice will be updated to reflect the current selection, and the Tcl procedure HandleChoice will be invoked. Here is a simple
version of the HandleChoice procedure:

 proc HandleChoice { w } {

 global Choice

 puts "$Choice has been chosen!"

 }

This procedure will just print the current choice. If the variable Choice does not exist when the Listbox is created, it will be
automatically created within the scope of the widget constructor command and initialized to 0. It is a good idea to make a global
variable declaration and to initialize it to an empty string when using these features of the Listbox widget.

55.2 Listbox Widget Commands

 In addition to the standard widget commands cget and configure, the Listbox widget supports the following widget specific
commands:

add Add items to the listbox

clear Empty the listbox

contains Find an item in the listbox

count Get the number of items in the listbox

data Specify item data

delete Delete an item from the listbox

deselect Deselect items

hide Hide items

insert Insert an item into the list

load Load the widget from a file

move Move items in the widget

position Set the current position

remove Remove items from the widget

select Select items in the widget

selected Get the selected items

scroll Scroll the widget

show Show an item

text Set the text for an item

visible Test the visibility of an item

 A possibly useful feature of the Listbox is the ability to associate user data with the items of the Listbox. In this manner, the

55 Listbox - Create a listbox widget

55.2 Listbox Widget Commands 167

Listbox can be set up to select from a collection of items based on some text labels that have no particular relationship with the data
items other than to label them. What the user sees in the Listbox is the labels, not the data itself. The widget commands provide for
the setting and retrieving data items by item index. In the implementation employed for the Fltk extension, the data items are Tcl
objects of any type.

55.2.1 The Listbox add function command

 This command adds items to the Listbox at the current insertion position. Typically the position will point to the end of the
current contents of the Listbox. The format of the command is:

 $w add item=data

where $w is the widget to use, item is a string that describes the item, and data is the actual data associated with the item. Supplying
the data parameter is optional. The format of the parameter for the add function determines the contents of the Listbox. By default,
the equal sign (=) is used to indicate that an item has an associated data element. By using the separator option, the default indicator
can be changed according to application requirements. For example, the command:

$w add -separator : item:data

uses the colon (:) as an indicator.

The result returned by this command is the ordinal of the item in the Listbox list. For example, the command:

 $w add "Item 1"="Data for Item 1"

will add the item at the current position and return the value of the 0 if this is the first item in the Listbox.

Any number of parameter may be specified on the command line. A Listbox can be loaded from a Tcl list of items using the
following syntax:

eval { $w add } list

where list is a Tcl list that contains the elements to be added. Simple items contain no associated data, so a command of the form:

$w add item1 item2 item3 ... itemn

can be used to initialize the contents of the listbox.

55.2.2 The Listbox clear function command

 The clear function command empties the Listbox. The format of the command is:

 $w clear

where $w is the path name of the Listbox to clear.

55.2.3 The Listbox contains function command

The contains function command is used to determine the indices of items in the Listbox that contain text that matches the specified
parameters on the command line. The format of the command is:

$w contains string

where string is the string to search for. The value returned by this function is a list of indices of the items in the Listbox that match
the string. For example, the command:

55 Listbox - Create a listbox widget

55.2.1 The Listbox add function command 168

$w contains help

would return the list of items in the Listbox that contain the string help. Items have indices that range from 1 through the number of
items in the widget.

55.2.4 The Listbox count function command

The count function command returns the number of items in theListbox . The format of the command is:

$w count

55.2.5 The Listbox data function command

 The data function command can be used to set or to get the data associated with an item in the list. The format of the command is:

 $w data location data

where $w is the path name of the Listbox to use, location is the ordinal of the item in the Listbox, and data is the data to associate
with the item.

 If data is not supplied, then the current data associated with the item is returned. The value of location must be in the range of 1
through the number of items in the Listbox.

55.2.6 The Listbox delete function command

 The delete function command is used to remove an item from theListbox The item that is removed is identified by the text string that is displayed in the

Listbox The format of the delete command is:

 $w delete string

where string is the string to be deleted. TheListbox is searched for the specified string. If it is found in theListbox the item is deleted.

55.2.7 The Listbox deselect function command

 The deselect function command is used to clear any selection in the Listbox. The command has no parameters and has the
following form:

 $w deselect

where $w is the path name of the Listbox to use.

55.2.8 The Listbox hide function command

 The items in a Listbox can be either visible or invisible. By default the items are visible. The hide function can be used to hide
items in the Listbox. The form of the command is:

 $w hide location ...

where $w is the path name of the Listbox to use and location is the ordinal of an item in the Listbox list. Any number of locations
can be supplied on the command line. The values of the locations must be within the range valid for the contents of the Listbox.
Once hidden, items can be made visible again using the show command.

55 Listbox - Create a listbox widget

55.2.3 The Listbox contains function command 169

55.2.9 The Listbox insert function command

 The insert function command will insert a new item into the Listbox at a specified location. The format of the command is:

 $w insert location item data

where $w is the path name of the Listbox to use, location is the ordinal at which to insert the item, item is the string that describes
the item and data is the item data. The data argument is optional.

55.2.10 The Listbox load function command

 The load function command will read a file and insert each line of the file into the Listbox as an item. The format of the command
is:

 $w load filename

where $w is the path name of the Listbox to use and filename is the name of the text file to load. The text file can contain
multi-column data and embedded formatting information. Each line is added to the Listbox as an item.

55.2.11 The Listbox move function command

 The move function command is used to change the location of items in the Listbox. The format of the command is:

 $w move from to

where $w is the path name of the Listbox to be used, from is the current location of the item and to is the new location of the item.
The from and to arguments must be within the valid range of locations for the current contents of the Listbox.

55.2.12 The Listbox position function command

 The position function command gets or sets the current position marker in the Listbox. The format of the command is:

 $w position location

where $w is the path name of the Listbox and location is the location to set the position marker. If the location argument is not
specified this command returns the current location of the marker.

55.2.13 The Listbox remove function command

 The remove function command is used to remove items from the Listbox list. The format of the command is:

 $w remove location ...

where $w is the path name of the Listbox and location is one or more item ordinals to be removed. As many locations as desired can
be supplied. The location values must be within the valid range of locations for the current contents of the widget. Practically this
last statement means that if more than one location is supplied, the locations must be in descending numerical order. For example:

 $w remove 20 14 7 2

will work as expected, while

 $w remove 2 7 14 20

55 Listbox - Create a listbox widget

55.2.9 The Listbox insert function command 170

would actually remove items 2 6 12 and 17 from the Listbox. Only really confident script writers should use this latter approach.

55.2.14 The Listbox scroll function command

 The scroll function command is used to cause the listboz to scroll so that a specified index is displayed. The format of the command is:

 $w scroll location

where $w is the path name of the Listbox, and location is the location to scroll to.

55.2.15 The Listbox select function command

 The select function command is used to mark an item or items in the Listbox as being selected. The format of the command is:

 $w select location count

where $w is the path name of the Listbox to use and location is the ordinal of the item to be marked selected. If the count parameter
is supplied it represents the number of adjacent lines to select. By default, only 1 line is selected. The Listbox supports multiple
selections.

55.2.16 The Listbox selected function command

 The selected function command is used to check if an item in the Listbox is currently selected. The format of the command is:

 $w selected location

where $w is the path name of the Listbox to use and location is the ordinal of the item to be tested. The value returned by this
command is 1 if the item is selected and 0 if it is not selected.

55.2.17 The Listbox show function command

 The show function command is used to make hidden items visible. The format of the command is:

 $w show location ...

where $w is the path name of the Listbox to use and the locations are the ordinals of the items to be made visible. As many locations

as desired can be supplied, however, the values must be within the valid range for the current contents of the Listbox.

55.2.18 The Listbox text function command

 The text function command is used to replace the text and data of an item in the Listbox. The format of the command is:

 $w text location item data

where $w is the path name of the Listbox to use, location is the ordinal of the item to use, item is the new string that describes the
item, and data is an optional data item to be associated with the item.

 The location must be within the valid range for the current Listbox contents.

55.2.19 The Listbox visible function command

 The visible function command is used to determine if a particular item is currently visible to the user. The format of the command
is:

55 Listbox - Create a listbox widget

55.2.13 The Listbox remove function command 171

 $w visible location

where $w is the path name of the Listbox to use and location is the ordinal of the item to query. If the item can be seen by the user
the value returned is 1, otherwise the value returned is 0.

55 Listbox - Create a listbox widget

55.2.19 The Listbox visible function command 172

56 Menu - Create a Menu

 A Menu is an association of labels with commands. Menus are of three types, a menu, a button or a menubar. The menu is a
widget that when activated presents a list of choices. A button is a menu that can exist outside of any specific window. It is also
known as a popup menu. A menubar is a menu that arranges and manages other menus. It is a container menu.

 The format of the Menu command is:

 Menu path options

where path is the path name of the widget to be created and options is the list of option and value pairs that are used to configure the
widget. Menus are somewhat different from the other widgets in the Fltk tool kit in that they can be both children and top level
windows. For this reason, while the path name of a menu follows the same format and structure as that of other widgets, it does not
necessarily imply any parent and child relationship to the higher level components of its path.

 In addition to the list of standard widget options, the Menu widget supports the following widget specific options:

disabledforegroundForeground color when disabled

takefocus If the menu takes the focus on activation

postcommand Script to execute when activates

type The type of the menu widget

 The default type is menubar, and can take the alternate values button and menu. The postcommand option specifies a script to be
executed when the menu is invoked. Note that for a menubar, since this is a container for other menu items, the postcommand script
has no meaning since you can not select a menubar itself. The disabledforeground option specifies the color of the text in the menu
when the menu is disabled. By default, the disabledforeground color is gray. The takefocus option is a boolean value that specifies
whether the menu takes the focus when it is activated.

 Here is an example of a standard menubar with a few items that implement some standard types of things:

 Toplevel root -title "Menu Demonstration" -autosize false

 # Create a menu that looks like a typical application menu

 set Data(Menu) [set m [Menu root.menu]]

 # The File menu. Note the use of the "terminator" menu item which is used

 # to signal the end of a cascaded sub menu. The & signs generate the usual

 # underlined letter form of a shortcut hint, along with the keyboard shortcut.

 $m add cascade -label &File

 $m add command -label &New -command { FileNew }

 $m add command -label &Open -command { FileOpen }

 $m add command -label &Save -state inactive -command { FileSave }

 $m add command -label Save&As -state inactive -command { FileSaveAs }

 $m add separator

 $m add command -label E&xit -command { exit }

 $m add terminator

 # The Edit menu

 $m add cascade -label &Edit

 $m add command -label &Copy -command { MenuProc %W }

56 Menu - Create a Menu 173

 $m add command -label Cu&t -command { MenuProc %W }

 $m add command -label &Paste -command { MenuProc %W }

 $m add terminator

 # A Help button

 $m add command -label &Help -command { MenuProc %W }

 # Display the main window

 Show root

The above code is taken from the demonstration script menu.tcl. The result is a window with a standard style of menu bar across the
top. The various command scripts invoke functions that are defined in the demonstration script.

56.1 Types of Menu Widgets

 A menubar is a horizontal bar that appears at the top of its parent window and is a container for menu items. Each menu item is
possibly a container for other menu items, or is a single entity which may have some associated command that is invoked when the
item is selected. The standard menubar that appears at the top of main UI based applications has items with labels such as File, Edit
and Help, each of which will drop down additional menu items that implement the functionality of the menu.

 A button is a menu container that will drop down a set of menu items when it is pressed. Buttons are typically used as popup style
menus, but can be used in any context. Here is an example of a menu widget that appears as a button:

 set m [Menu float.menu -type button -w 100 -h 20 -label "Floating Menu" postcommand { puts "Floating %W menu
activated" }

 $m add command -label &Continue

 $m add command -label E&xit -command Exit

 $m post

The above script will cause a button to appear. When the button is pressed, the drop down menu will contain 2 items, labeled
Continue and Exit. The Continue item will will do nothing, while the Exit item will cause the application running the script to
terminate.

 A menu is a container that will drop down a set of menu items when it is selected. As with a button, it is typically used as either a
popup menu or as an embedded menu in a GUI independent of the standard type of menubar at the top of the main window of the
application.

56.2 Menu Widget Commands

 In addition to the standard widget commands cget andconfigure, the Menu widget supports the following widget specific
commands:

activate Activate the menu

add Add an item to the menu

clone Duplicate an item

delete Delete an item

entrycget Query a menu entry

entryconfigure Configure a menu entry

56 Menu - Create a Menu

56.1 Types of Menu Widgets 174

index Get the index for a menu entry

insert Insert a menu item

invoke Invoke a menu item

listitems Get a list of the items in a menu

post Post a menu

postcascade Post a cascaded menu

type Get the menu type

unpost Unpost a menu

yposition Get the vertical location of a menu item

Script Expansion

 When the script associated with a menu item is invoked, the script is first scanned for substitutable keywords that are replaced
with the current values of the configurable menu item properties. The list of keywords supported is:

%W The name of the menu entry

%E The menu entry identifier

%s The state of the menu entry

%v The value of the entry

%P The path name of the menu

%T The type of the menu entry

%% Expands to a % sign

56.3 Initialization of Menus

 Because menus and menu entries are a just specialized type of widget, the configurable properties of the menus and the menu
entries can be initialized from the Option Database in the same fashion as is done for regular widgets. The class option defines the
class or classes associated with the menu or entry being configured.

56.3.1 The Menu activate function command

 This command will activate a menu item. The format of the command is:

 $m activate index

where $m is the token that represents the menu widget command and index is the menu item to activate. If no index is specified the
current active item is deactivated, otherwise the item specified by index is activated. If index is invalid then an error message is the
result.

56.3.2 The Menu delete function command

 The delete function command is used to delete a menu item from a menu. The format of the command is:

 $m delete index

where $m is the token that represents the menu command and index is the identifier of the menu item to delete. If the index value is
valid for the menu, the matching menu item is removed from the menu. An invalid index results in an error message.

56 Menu - Create a Menu

56.2 Menu Widget Commands 175

56.3.3 The Menu index function command

 The index function command will search a menu for one or more text strings and return the corresponding list of menu item
indices for the items that match the text strings. The indices are useful with other menu function commands, such as the post
function and the invoke function.

 The format of the command line is:

 $m index str ...

where $m is a token that represents a menu widget command and str is a list of one or more strings that are to be located in the
menu. The strings are the text that the user sees when the menu items are visible, as set by the label option. The result of this
command is a list of menu item indices that match the strings. If there is a string in the list that is not in the menu, the result of this
command is an error message.

 Menu item label strings can contain the ampersand (&) character that is used to specify keyboard shortcuts. When searching
menus for indices do not include the ampersands in the search strings. Here is an example of how to find the index of the Edit sub
menu in the main menubar of an application:

 set idx [root.menu index Edit]

Here, the main menu is a widget named root.menu

56.3.4 The Menu invoke function command

 The invoke function command causes the action of a menu item to be invoked. Typically the menu item will be of type command
and the result of this function command would be the execution of the associated command script. The format of the command is:

 $m invoke index

where $m is the token that identifies the menu widget command and index is the index of the menu item in the menu. The result of
this function command is the result of the evaluation of the associated command script, or an error message if there is an error in the
command format or parameters.

56.3.5 The Menu listitems function command

 The listitems function command is used to create a list of the items in a menu or a sub menu. The format of the command is:

 $m listitems option parameters

where $m is the token that represents the widget command for the menu, option specifies the type of list being requested, and the
parameters are values that may be required for a specific option. The value of option can be -all, -index or -items.

 The -all option results in a list of all of the items in the menu. The list elements contain the names and characteristics of the items
in the menu. The format of the names includes the widget name and the menu index value. Each element of the list describes one
menu item.

 The -index option can be used to list the items in a sub menu whose indices are specified as the parameters. The format of the
resulting list is the same as that for the -all option but the list will only include the items in the sub menu matching the specified
indices. For example, the command:

 $m listitems -index 2 5 7

will produce a list of elements that describes the current configuration of menu items 2, 5 and 7. If an index is specified that is not
valid for the menu then an error message is produced.

56 Menu - Create a Menu

56.3.3 The Menu index function command 176

 The -items option is used to produce a list of all of the items in a menu. Only the menu item names are returned in the list.

56.3.6 The Menu add function command

 The add function command is used to add an item to a menu. The format of the command is:

 $w add type options

where $w is the path name of the menu to use, type is the type of menu item to add and options is the list of option and value pairs
used to configure the menu item.

 The type parameter can have the following values:

cascade Add a cascaded menu

checkbutton Add a checkbutton menu entry

command Add a command menu entry

radiobutton Add a radiobutton menu entry

separator Add a separator menu entry

spacer Add a spacer menu entry

terminator Add a terminator menu entry

invisible Add an invisible menu

56.3.6.1 Cascade Items

 A cascade menu item is the root of a sub menu that, when selected, will post the sub menu cascaded from the location of the item.
Cascade entries are familiar from the standard menu bar that appears along the top of many GUI based application main windows.
A standard cascade menu item in a menu bar is the File menu item.

56.3.6.2 Checkbutton Items

 A checkbutton menu item appears as a text label with a checkbox that is alternatively checked or unchecked when the menu item
is posted. Typically this item is associated with a Tcl variable that contains a boolean value. If the value is non zero, the item is
checked, otherwise the item is unchecked.

56.3.6.3 Command Items

 A command item has a script associated with it which will be executed when the item is selected. Command scripts are first
expanded to substitute any embedded key symbols, then are evaluated. A typical command item is the Help menu entry, which
usually invokes a script that displays help information about the application.

56.3.6.4 Radiobutton Items

 A radiobutton item has an indicator that shows whether the state specific to the item is selected or not. Typically a menu will
have 2 or more radio buttons. Selecting one button will cancel the selection on all of the other buttons in the menu.

56.3.6.5 Separator Items

 The separator item is a spacing item. It creates a horizontal line between adjacent menu items. Separator items can not be
selected. They are just a visual aid for grouping menu items.

56 Menu - Create a Menu

56.3.5 The Menu listitems function command 177

56.3.6.6 Spacer Items

 The spacer item is an inactive item that can be inserted into a menu to spread out the menu items. Typically the spacer item is
used in horizontal menubars to put some distance between groups of unrelated menu items.

56.3.6.7 Terminator Items

 The terminator item is used to indicate that a sub menu is to be terminated. When creating a menu hierarchy, the terminator item
acts like a close brace and pops the current menu context up one level. The last sub menu in a hierarchy is automatically terminated,
but good form dictates that terminator items should always be used.

56.3.6.8 Invisible Items

 The invisible item is used to hide an item from the user. The invisibility of items can be changed at any time, so menus can be
reconfigured to respond to application requirements.

56.3.7 Configuration of Menu Items

The menu entries in a menu can be configured using the itemconfigure function of the widget command. The format of the command is:

 $w itemconfigure index options

where the path name of the Menu widget is contained in the variable w, index is the index that identifies the menu item to be configured, and options is the list
of option and value pairs that are being used to configure the menu item. The index of a menu item is determined by the order in which the item was
constructed, and ranges from 0 through the number of items in the menu. The listitems function of the Menu widget can be used to obtain a list of the menu
items in a Menu widget.

 Menu items can be configured using the following list of options:

activebackgroundBackground color when active

activeforeground Foreground color when active

accelerator Accelerator key

background Background color

bitmap Image to use

class Class name of the item

command Script to use when selected

font Font to use

fontstype Style of the font

fontsize Size of the font

foreground Foreground color

hidemargin If margins suppressed

image An image to use

indicatoron If the indicator is on

label Text to display

menu Menu identifier

offvalue Off value

onvalue On value

56 Menu - Create a Menu

56.3.6 The Menu add function command 178

option Option value

selectcolor Selection color

selectimage Selection image

state State of the menu item

type Type of the menu item

underline If text is underlined

value Value of the item

variable The variable associated with a menu item

width Width of the item

 Not all of the options are supported by all of the menu item types. As a general rule, menu items will inherit their characteristics
from the menu widget container. For example, if the relief of the parent widget is raised, then the menu items will also display using
the raised relief.

 The itemcget function can be used to query the state of any of the configurable options of a menu item. The format of the
command is:

 $w itemcget index options

where w is the Tcl variable that contains the path name of the Menu widget, index is the index of the item to be queried, and options
is the list of option names that are to be queried.

 When menu items are constructed, the result returned by their constructor commands, if successful, is the name of a command
that can also be used to configure the menu item. For example, the commands:

 Menu t.m
 set item [t.m add command]

will result in the Tcl variable item containing the command t.m:0, which is the command that represents the interface to item 0 of
the Menu whose path name is t.m. The item command can be used to configure the item using the standard configure and cget
commands typical of other widgets. For example, the background color of the above created menu item could be set with a
command of the form:

 $item set -background green

56.3.8 The variable option

 Menu items such as checkbuttons and radiobuttons can be bound to Tcl variables using the variable option. By default, a menu
item will not have a variable binding. When a variable is specified, the Tcl variable should contain a value that corresponds to either
the onvalue or the offvalue specified for the menu item. By default, onvalue is 1 and offvalue is 0.

 When a checkbutton or a radiobutton item is selected, its indicator will change state between being logically on and logically off,
depending on its state before selection. If a variable has been specified then the contents of the associated Tcl variable will be
changed to reflect the state of the indicator.

 For menu items that are not checkbutton or radiobutton types have no effect on their bound variables.

56 Menu - Create a Menu

56.3.7 Configuration of Menu Items 179

57 Message - Display a message

 The Message command can be used to display a message box to the user. This command is used to present information messages
which the user can acknowledge by pressing a button.

The format of the command is:

 Message message

where message is a string to be used as the message. For example,

 Message "Hello, world!"

is a way of implementing a very traditional demonstration application in a single command.

57 Message - Display a message 180

58 Output - Create a text output widget

 The Output widget is used to display one or more lines of text. The contents of the widget can not be changed using editing
operations.

 The format of the command is:

 Output path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the following widget specific options are supported:

value The text in the widget

textfont The font to use

textsize The size of the font

length Query the amount of text in the widget

 The Output widget is typically used to present the user with some multi-line text that has informative value but which the user is
not expected to change. The widget can be initialized by sending a string of characters with embedded newline characters. For
example:

 Output root.o1 -value "Hello\nWorld!\n"

will produce two lines of text in the widget.

 Another common use of the Output widget is to monitor the contents of a Tcl variable. The command:

 Output root.o2 -variable MyOutputVar

will display whatever happens to be in the Tcl variable MyOutputVar.

58 Output - Create a text output widget 181

59 Option - Manage the contents of the option database

 The Option command is used to manage option values in the option database. The functions available through this command are:

add Add an option string to the database

clear Remove option strings from the database

get Get option values from the database

list List options in the database

readfile Load options from a file

writefile Write options to a file

The option database consists of entries that have the form:

 pattern.name value

where pattern is a hierarchical pattern that is used to describe how an option is to be applied, name is the name of a configurable
widget option, and value is the value to be used for the configurable widget option.

The pattern can be a widget path name, a widget class name, a global reference, or an application reference, or a combination of any
of these elements. For example, an entry in the option database like:

 Button.relief flat

means that all widgets of classButton should have a relief of flat.. When widgets of classButton are created, the option database is
read and the above entry would be applied to the new widget before the options of the widget command are processed. If the option
database has an entry:

 button4.relief raised

and a widget gets created with the name button4, its relief will be set to raised, even although its class isButton. This is because the
name of the widget is a more restrictive description than the class name, and the most restrictive description is used to initialize the
default values for the applicable widgets. Where an application name is being used by setting the appropriate value as part of the
application data, then the application name can be an element of the pattern. For example, the entry:

 MyApplication.Button.relief ridge

will apply the ridge relief to all widgets of theButton class within a script that has set the application name to MyApplication.

 The entries in the option database are applied using a scheme that proceeds from the global to the specific. The most specific
formulation is the entry that gets applied to the widget. After all of the relevant options in the database have been applied, the
options on the widget command line are applied.

59.1 Adding Option Database Entries

 The format of the add function command is:

 Option add key value priority

59 Option - Manage the contents of the option database 182

where key is the key string, or pattern and name string, for the option to be added, and value is the associated value expression. A
priority value may be specified that will be used to determine the precedence of the specified value when more than one
initialization possibility exists. See the discussion on the option database to understand the implications of the priority value.

59.2 Removing Option Database Entries

 The format of the clear function command is:

 Option clear -exact pattern ...

where the parameters are all optional. If no parameters are supplied, the contents of the option database is cleared. Any number of
pattern strings may be supplied. If the -exact switch has been supplied then any options in the database whose keys exactly match
the pattern will be removed. If the -exact option is not specified, then wild card matching is used to identify keys for deletion.

59.3 Retrieving Option Values

 The format of the get function command is:

 Option get pattern name

or

 Option get pattern name

where the pattern values are key string patterns and the name is the name of the option value to retrieve.

This command concatenates the patterns and name into a key using the current database key separator character which is, by default,
the period. The reason for the two forms of the command is to allow the use of more exotic key formats, such as keys of the form:

 Class*root.button*name

as opposed to the blander default version of:

 Class.root.button.name

59.4 Listing the contents of the option database

 The format of the option list function is:

 Option list key ...

where zero or more key strings can be specified. If no key strings are supplied, the result of this command is a list of all of the
records in the option database. If key strings are supplied, the result of this command is a list of the values of the database records

59 Option - Manage the contents of the option database

59.1 Adding Option Database Entries 183

that match the keys.

59.5 Loading the option database from a file

 The readfile function command has the format:

 Option readfile path priority

where path is the name of the file to be read and priority is an optional priority value that can be assigned to the options loaded from
the file.

 This function reads a file of option key and value pairs and inserts them into the database. If a priority value is specified, the
added options are given the specified priority. Otherwise, the priority assigned is the same as if the options had been loaded from a
script. Usually, the default priority is the one you want.

 Files suitable for use with the readfile function can be created using the writefile function. They are text files, so you can create
them by hand if you so desire.

59.6 Creating an Option File

 The format of the writefile function command is:

 Option writefile path mode

where path is the name of the file to be used and mode is an optional file mode specification. By default, if no mode is specified the
output file overwrites any existing file, otherwise, if a mode is specified, the output is appended to any existing file.

 The files created by this function have a format that includes a comment line, identified by the presence of a # sign in the first
column of each line, and blank separated key and value pairs, one to each line. The standard comment generated contains
information about when the file was generated. Files created using the writefile function can be read using the readfile function.

59 Option - Manage the contents of the option database

59.4 Listing the contents of the option database 184

60 Package - Manage the geometry of widgets

 ThePackage command is used to create a container widget that is helpful in the layout of collections of widgets. APackage is a
widget that wraps a list of child widgets into a bundle, resizing the children so that they all have the same size in one of the specified
dimensions, and optionally expanding the other dimension so that thePackage is completely filled by the widgets.

 A Package will automatically resize itself when new widgets are added. Packages come in 2 flavours, horizontal and vertical. A
horizontal package packs children side by side, while a vertical package packs children one on top of the other.

 The format of thePackage command is:

 Package path options

where path is the path name of thePackage to be created and options are the option and value pairs used to configure the widget. In
addition to the set of standard widget options, thePackage command supports the following widget specific options:

orientation How to layout the children

padding How much padding between the widgets

fill How to fill the package

limit Smallest dimension of a widget being used to fill

 The orientation is by default horizontal, so child widgets will be resized to the height of the package widget and packed side by
side horizontally. By default the padding value is zero, so no additional space is inserted between the widgets.

 The fill value specifies how a package should be filled when the child widgets are positioned in the container. The Package
container can resize the child widgets it holds to fill out the client area of the container in various ways. The possible values for the
fill option are:

none Use the default Package resize algorithm

equal Make the size of all child widgets equal

left,top Fill using the leftmost or topmost child

right,bottom Fill using the rightmost or bottommost child

When the fill option is employed to automatically pad outPackage widgets, those child widgets at the extrema of thePackagewill

be resized to the available space. Where thePackageis being shrunk by a resize operation, the value of the limit option is used to
prevent the child being used for filling from being reduced to a dimension smaller than the limit value. The effect of this is that child
widgets may extend beyond the relevant dimension of thePackageif it is shrunk below the size necessary for full display of the
children.

 A Package is used to layout a set of widgets by first packing the widgets, then either packing thePackage into anotherPackage,
or by using the geometry configuration options for thePackage to put the packed widgets in the desired position. For example, the
following code shows how to pack a list of buttons into a package horizontally:

 # Create a top level widget

 set root [Toplevel root]

 # Create a package to hold the buttons.

 Package $root.p -width 400 -height 20

60 Package - Manage the geometry of widgets 185

 # Create child buttons. They are automatically packed horizontally

Button $root.p.b1; Button $root.p.b2; Button $root.p.b3

 # Place the package in the root window

 $root.p configure -x 20 -y 30

Alternatively, anotherPackage with a vertical orientation could have been used to pack thePackage into a collection of
Packages stacked on top of the other.

Package widgets automatically adjust their size according to the dimensions of the child widgets that are created for the container.

By default, the dimensions of aPackage are a height of 20 and a width of 100 pixels. If the dimensions of the child widgets created

inside thePackage exceed these default values, the thePackage will automatically adjust its dimensions to include the area covered

by the child. On the other hand, should the children all lie within the default dimensions of thePackage it will not be reduced in

size. For this reason, when creatingPackage will small child widgets, the dimensions of thePackage should be set smaller than
those of the children to get the usually desired effect of having the container wrap the children. For example, here is a script that will
pack children into aPackagewhich contains anotherPackage

 # The first package will wrap all of the widgets

 Package t.all -w 120 -orientation vertical

 # The Label will have its width set to that of the Package

 Label t.all.label -text Label

 # The second package must have its width set as well

 Package t.all.group -w 120 -orientation horizontal

 # This is a long narrow widget

 Thermometer t.all.group.tt

 Thermometer t.all.group.td

 Show t

In this case, setting the dimensions of the containers is important to archive the correct result.

60 Package - Manage the geometry of widgets

60 Package - Manage the geometry of widgets 186

61 Popup - Construct a pop up menu

 The Popup command is used to construct a special menu window that can appear anywhere on the screen. The format of the Popup

command is:

 Popup path options

where path is the path name of the widget to create and options is the list of option and value pairs that is used to configure the widget. The Popup widget is
not a standard type of widget, so it does not support the list of standard widget options. The Popup widget is not a standard widget in that it may only be
displayed is there is an existing top level window
that is visible. For example, the command:

 set m [Popup m.popup]

does result in the construction of a parent widget command named m, if such a widget command does not already exist, as would be the case with a standard
widget, and in the construction of a widget command named m.popup. Before the Popup can be displayed, m must be made visible, through, for instance,
using the Show command. In fact, if there are any visible top level windows, the Popup may be displayed, and the widget m may remain hidden. The Popup is
not a strict child of its parent, but it does need a context in which it may be displayed.

 The list of widget specific options supported by the Popup widget is:

Option Meaning

x Horizontal location of the upper left hand corner of the Popup menu

y Vertical location of the upper left hand corner of the Popup menu

title An optional title string for the Popup menu

foreground The color of text

font The font used for text

fontsize The font size used for text

fontstyle The style of the font

data Application specific data

The x and y options are used to specify the location that the Popup menu should appear. Typically, applications will want to specify these values using
window relative values produced from the location of the cursor when the menu is invoked. The title option is, by default, an empty string, and no title
appears. If a value is specified for the title, then it appears at the top of the Popup.

 The foreground option specifies the color of the text that is used for the Popup title. The default value is black. The values of font,fontsize and fontstyle can
be used to specify the rendering of the text used for the Popup menu. By default, the menu items of a Popup inherit the foreground and font characteristics of
the parent widget. The data option can be used to provide application specific data.

61.1 Menu Items

 A Popup menu consists of a number of items that implement the functionality of the Popup menu. Popup menus support the following list of menu item
types:

Item Type Function

command When selected, executes a command script

radiobutton When selected, executes a script, and has the behaviour of a radio button

checkbutton When selected, executes a script and has the behaviour of a check button

terminator Ends a menu or sub-menu

61 Popup - Construct a pop up menu 187

submenu Defines the start of a sub-menu that cascades when selected.

 Menu items are added to a Popup menu using the add function command of the Popup menu widget. The format of the command is:

 $m add type options

where type is the type of the menu item to add, and options is the list of option and value pairs that is used to configure the menu item. Menu items support the
following list of configurable items:

Option Name Function

title Specifies the title of the menu item

foreground Specifies the color of the text used to draw the title text

fontsize Specifies the size of the font used for the title text

fontstyle Specifies the style of the font used to draw the title text

command Specifies a script to execute when the menu item is selected

variable Specifies a variable to synchronize with the value of a menu item

onvalue Specifies the on value

offvalue Specifies the off value

value Specifies the value of the menu item

visible Determines if the menu item is visible

enabled Determines if the menu item is enabled

flags Specifies option flags for the menu item

data Specifies optional user data associated with the menu item

 The value returned by the add function command is the ordinal of the item in the menu. Item ordinals are used to identify the menu items for the purposes of
other widget commands, such as the itemconfigure command, or the itemcget command. These widget commands can be used to reconfigure menu items after
they have been created.

 A menu item can have associated with it some flags that determine how the item is displayed. Currently, 2 flags can be used, the separator flag and the
horizontal flag. The separator flag, when set, will draw a horizontal line below the menu item, providing the visual effect of a partition of the menu into
sections. The horizontal flag, when set, causes menus to cascade horizontally rather than vertically.

 A menu item can hold arbitrary user data through the use of the data option. This option is sometimes a convenient way of associating application
parameters with a menu item.

 By default, menu items are created with the options visible and enabled set to true. By setting the value of enabled to false, menu items will appear, but will
not receive selection input. By setting the value of visible to false, menu items are hidden when the menu is posted.

 If a command script is specified, when the menu item is selected the script is first expanded to substitute replaceable keywords, then evaluated. Replaceable
keywords are recognized as string tokens that begin with a percent sign. The list of replaceable keywords for menu scripts is as follows:

Keyword Meaning

%% An escape that allows the use of % in the script

%d Expands to the user data currently held in the menu item, if any

%D Expands to the user data held in the menu, if any

%i Expands to the menu item identifier of the item

%W or %w Expands to the path name of the menu item

%x Expands to the horizontal location of the menu item

%y Expands to the vertical location of the menu on the screen

%v Expands to the current value of the menu item

 Here is an example of the construction of a Popup menu:

 set m [Popup m.marks]
 $m add command -label Low -command "DrawMark low %x %y"
 $m add command -label High -command "DrawMark high %x %y" -flags separator

61 Popup - Construct a pop up menu

61.1 Menu Items 188

 $m add command -label Cancel -command ""

This Popup has 3 menu items, the first 2 of which invoke a command script that, presumably, will draw something. The last menu item does nothing, but when
selected, will close the Popup.

61.2 Widget Commands

 In addition to the set set of standard widget commands cget and configure, the Popup widget supports the following widget specific commands:

Command Function

add Adds a menu item to the menu

itemcget Gets the values of configurable options of menu items

itemconfigure Sets the values of the configurable options of menu items

list Lists the identifiers of menu items in a menu

popup Invokes, or posts a Popup menu

61.2.1 The add command

 The add command is used to add menu items to a Popup menu.The format of the add command is:

 $m add type options

where $m is the path name of the Popup menu to use, type is one of the menu item types supported and options is the list of option and value pairs that is used
to configure the menu item. The value returned by the add command is the menu item identifier that can be used with other function commands to query or set
the values of the configurable options.

61.2.2 The itemcget command

 The itemcget command is used to query the value of the configurable options of a menu item in a Popup menu. The format of the command is:

 $m itemcget id options

where $m is the path name of the Popup menu to use, id is the menu item identifier or the menu item to query, and options is a list of the configurable options
of the menu item to be queried. The value returned by this command is a list of the values of the options specified. for example, the command:

 $m itemcget 0 -title -foreground

will return the title and foreground color of the first item in a Popup menu.

61.2.3 The itemconfigure command

 The itemconfigure command is used to set the values of the configurable options of a menu item. The format of the command is:

 $m itemconfigure id options

where $m is the path name of the Popup widget to use, id is the menu item identifier of the menu item to be configured, and options is the list of option and
value pairs that is used to configure the menu item. for example, the command:

 $m itemconfigure 2 -enabled false

would disable input to the third menu item of the Popup menu.

61 Popup - Construct a pop up menu

61.2 Widget Commands 189

61.2.4 The list command

 The list command is used to obtain a list of all of the menu items in a Popup menu, along with the values of the configurable options of the menu items. The
format of the list command is:

 $m list item1 ... item n

where $m is the path name of the Popup widget to use and the items are the menu item identifiers of the menu items to be listed. If no items are specified, the
value returned by this command is a list whose elements are list that have the current values of the all of the menu items in the Popup menu. If items are
specified, the value returned by this command is a list with the current values of the configurable items for the specified menu items.

 The list returned by this command is a list of lists, one list for each menu item that is listed. The first item of each of the sub-lists is the name of the menu
item. The subsequent entries in the sub-list consist of pairs of option name and option value. The name entries have the form:

 { item id }

where id is the menu item identifier. The remaining entries of the sub-list have the form:

 { name value }

where name is the name of the option and value is the current value of the option.

61.2.5 The popup command

 The popup command is used to invoke a Popup menu. When invoked, the Popup menu will appear on the display screen. When the user completes selection
of a menu item, the Popup menu will disappear. The Popup menu is not destroyed, it is only hidden. To destroy a Popup menu, the Destroy command must be
used.

 The format of the popup command is:

 $m popup options

where $m is the path name of the Popup menu to use and options is a list of option name and value pairs that specifies how to display the Popup menu. The list
of widget specific options can be specified on the popup command line. Typically, a command of the following form is used:

 $m popup -x $x -y $y

where $x and $y represent the position of the upper left hand corner of the Popup menu when it appears. For example, the following code could be used to
invoke a Popup menu when a button is pressed in a widget client area:

 Bind $w <ButtonPress> "$m popup -x %x -y %y"

Here the upper left hand corner of the Popup menu whose path name is represented by $m will appear at the location of the mouse cursor when the button was
pressed.

61 Popup - Construct a pop up menu

61.2.4 The list command 190

62 ProgressBar - Create a progress bar widget

 The ProgressBar is a widget that is used to display the progress of some activity.

The format of the command is:

 ProgressBar path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set of standard widget options, the ProgressBar supports the following widget specific options:

value The current value of the widget

indicator The color of the indicator

troughcolor The color of the trough

limit The upper limit on progress

percent If the current progress value should be displayed.

minimum Minimum value of the progress range

gradient If the trough color is a gradient range

primary The primary color for a gradient

secondary The secondary color for a gradient

orientation Specify the orientation of the progress bar

filled If the trough is filled or marked

method The method of computing the gradient color

phase The phase angle for gradient computations

period The period of the gradient cycle

 The usual case is that the value is initialized to 0 and that the limit is 100. The ProgressBar is updated to show the progress by
setting the value to the current amount of progress. The indicator is gray by default, and the troughcolor is green by default. The
percent option is a binary value that determines whether the current percentage of progress is displayed. By default the value of the
percent option is true.

 The value of the minimum option specifies the lower bound on the values that are displayed by the progress bar. By default, the
value of the minimum option is 0.

 The value of the filled option determines whether the indicator is a small slider or is represented by filling the trough to the
current progress value. By default, the value of the filled option is true, and the trough is filled.

 The trough can be filled with either an indicator whose value is determined by a color gradient color determined by the
relationship of the current value to the range of the possible values of progress, or the trough can be filled using a gradient fill, again
based on the value of the progress. If the gradient option is false, the color of the indicator or the trough fill is solid and based on the
current value of the selectioncolor option. If the gradient option is true, then the fill color is determined by the value of the progress
according to the scheme specified using the method option.

 The method option specifies how the indicator color is computed. The widget recognizes the following values for the method
option:

62 ProgressBar - Create a progress bar widget 191

linear Use a linear interpolation over the range of possible values

sine Use a sine wave function to interpolate the color value

cosine Use a cosine wave function to interpolate the color value

By default, the value of the method option is linear, and the indicator color is determined by the blend of primary and secondary
colors determined by the ratio of the current value divided by the current range of the widget. If the method is either sine or cosine,
then the indicator color is determined by the mathematical values of the sine or cosine functions applied to a wave of the specified
phase angle and period imposed on the range of possible progress values.

 Where the sine or cosine methods are used, the value of the phase option is the angle, specified in degrees, to be used as a phase
angle, and the value of the period option is a multiplier that determines the number of full wave lengths of the wave over the range
of the widget. By default, the value of the phase option is 0 and the value of the period option is 0.5. These values result in a half
wave function over the range of the widget, so, for the sine function, the indicator will be the color of the primary color at the center
of the widget, while at the extremes it will be the secondary color.

 Here is a progress bar that automatically updates itself based on the contents of a Tcl variable called MyProgress:

 ProgressBar -x 20 -y 50 -variable MyProgress

When the variable changes in the range 0 through 100, the ProgressBar shows what is happening.

62 ProgressBar - Create a progress bar widget

62 ProgressBar - Create a progress bar widget 192

63 RadialPlot - Create a widget to plot radial diagrams

 The RadialPlot widget is a widget that is used to display data that is to be ploted in a polar coordinate representation. The widget displays a graph in the
form of a circle on which values are represented in the form of radial spikes.

 The format of the command that constructs the RadialPlot widget is:

 RadialPlot path options

where path is the path name of the widget and options is the list of keyword and value pairs that is used to configure the widget. In
addition to the set of standard widget options, the RadialPlot widget supports the following widget specific options:

auto If automatic angle assignment is active

autoscale If automatic range normalization is active

drawing The drawing script to use

grid If the background grid is plotted

gridbackground If the grid background is drawn

gridcolor The color of the background grid

gridlines If the grid lines are drawn

gridlinecolor Color for the grid lines

gridradii If the grid radii are drawn

logscale If the scale is logarithmic

max The largest value to use for range normalization

min The lowest value to use for range normalization

plotcolor The color of the plotted radii

sticky If range normalization is sticky

style The style of the lines used for the plot

value The value of the currently selected point

highlightcommand Command script executed when a mouse selection occurs

motionselection If mouse motion can invoke selection of a value spoke

fadevalue If the peak values should show sticky fade behaviour

63 RadialPlot - Create a widget to plot radial diagrams 193

linewidth Set the width of radial lines on the plot

63.1 Automatic Plotting

 The auto and autoscale options control the behaviour of the widget when automatic plotting is being used. By default, the values
of these 2 options are true, and a series of points added to the widget will be automatically assigned an angle based on the number of
points plotted, and the lengths of the plotted radii will be automatically scaled to the size of the widget's display area. When the auto
option is false, points must be supplied with both an angle and a value to be plotted. When the autoscale option is false, the lengths
of the plotted radii are scaled using the current values of the max and min options.

 Note that setting either the max or the min option will also automatically set the autoscale option to false.

 The sticky option controls the behaviour of the automatic range normalization function. By default, the value of the sticky option
is true and as points are added to the widget, the values of the max and min options are automatically changed upwards and
downwards, respectively, according to the limits of the values of the points plottted. This has the effect of maintaining a range
normalization that always covers the range from the highest to the lowest values of all of the points entered for plotting.

 If the sticky option is false, then the range for normalization is computed from the list of points currently being plotted, without
regard for the values of any points that may have previously been plotted but which are not longer in the list of plotted points. In this
mode, the length of the plotted radii will vary according to the range of values displayed in the widget.

 Note that if the value of the autoscale option is false, the setting of the sticky option has no effect.

 The logscale option is by default false. Setting this option to true causes the plotting of the base 10 logarithm of the plotted values
instead of the values themselves.

63.2 The Background Grid

 The value of the grid option controls whether or not a background grid is plotted by the widget. By default the value of the grid
option is true, and a background grid is plotted according to the value of the other grid related options. If the value of the grid option
is false, no background grid is plotted.

 The background grid is a filled circle drawn using the value of the gridcolor option. Whether or not this filled circle is drawn is
controlled by the gridbackground option. By default, the value of the gridcolor option is darkolivegreen, and the value of the
gridbackground option is true.

 The grid may optionally have a set of circular grid range lines and radial sector marks plotted. These features are controlled by
the values of the gridlines, gridradii and gridlinecolor options. By default, the value of the gridlinestrue, and the default
gridlinecolor value is gray. The default value of the gridradii option is 8, which produces a grid with the octants of the circle
delimited by radii. This choice of options produces something like a view of a radar screen. By setting the value of the gridlines
option to false, drawing of the gridlines is suppressed. The value of the gridradii option may be set to any integer that defines the
desired partition of the circle of the grid.

63.3 Adding Annotations

 The drawing option has a default value of "ht". The value of the drawing option can be set to any value that represents a Turtle Graphics script. This feature can be used to add annotations
to the plot.

63.4 Displayed Values

 The plotcolor option has the default value orangered3. This is the color used to display the radii on the plot that represent the values of the plotted points.

 The style option can be used to set the style of the line used to draw the radii. By default, the value of style is solid.

63 RadialPlot - Create a widget to plot radial diagrams

63.1 Automatic Plotting 194

 The linewidth option can be used to specify a width in pixels for the radial line used to display point values on the plot. By default, the value of the linewidth option is 0, and the system
defined line drawing width is used. This value is not identical to specifying a value of 1, but will typically draw a single pixel width line, depending on the operating system in use and the
characteristics of the display in use. The maximum linewidth value supported is 6 pixels.

 For linewidth values greater than 1 which are odd numbers, the line is rendered using a midly enhanced technique that has the effect of aiding discrimination of the individual lines on
dense plots. If the linewidth value is greater than 1 and is even, then a simple drawing technique that results in a fat line is used. On low density plots this latter option may be useful.
Typically plots with up to 18 points can be considered as low density plots. With more than 18 points, use of fat lines results in a lot of smearing.

 Note that is the value of the linewidth is set when there are already plotted values in the point list for the widget, all of the line width for the points in the point list will be set to the new
value specified.

63.5 Selections

 A single selection can be made from the currently ploted list of points in the widget. The selected point is shown as a radial spike plotted in the current selectioncolor. The selection can be
made by using the widget select command or by clicking the left mouse button over a radial spoke on the plot. In this latter case, the closest visible spoke will be selected and any other
selection will be cleared. The value of the value option is the value of the selected point. The value option is a read-only option, and setting the value of this option has no effect.

 The motionselection option controls the behaviour of the widget when a mouse pointer moves over the radial spikes of a plot. If the value of the motionselection option is true, then moving
the mouse over a radial spike will cause it to become the current widget selection. If a script has be defined as a selection command, the script will be invoked. If the value of the
motionselection option is false, selection will not occur when the mouse pointer moves over a spike. By default the value of the motionselection option is false.

When the mouse moves over a radial spike on the plot, it will be highlighted. If the value of the highlightcommand option is not empty, then the specified script will be expanded and
evaluated. Expansion of highlightcommand scripts replaces the following tokens:

%a The angle of the spoke

%t The tag list for the spoke

%v The current value of the spoke

%w The path name of the widget window

The percent sign (%) can be used as an escape, so, a token beginning with 2 percent signs expands to a single percent sign. Here is an example of how the highlightcommand option can be
used to identify the radial spoke that is under the current mouse position:

 RadialPlot t.t -highlightcommand { puts "%w %t %v"

For points plotted in this widget, when the mouse moves over a spoke the widget path name, the tag list for the spoke and the value of the spoke will be printed.

The fadevalue option is used to determine the behaviour of the widget when the value of a plotted spike changes. If the value of the fadevalue option is true, then when the new value of the
plotted point is lower than the old value of the plotted point, the preceeding higher value will be displayed in a feded rendition. This behaviour imparts a stickyness to the local peak value of
the plotted point, similar to what can be seen on the dynamic displays of some makes of audio apparatus. By default, the value of the fadevalue option is false, and the value of a point is the
only visible part of the spike used to represent it.

63.6 Widget Specific Commands

 In addition to the standard widget commands configure and cget, the RadialPlot widget supports the following widget specific commands:

add Add a point to the widget

clear Clear all points from the widget

color Set the color of points in the widget

count Get the number of points in the widget

delete Delete a point from the plot

hide Hide selected points in the widget

list List points in the widge

replace Replace the value and attributes of a point in the widget

select Get or set the currently selected point

show Show hidden points

statistics Get some statistics on point values

63 RadialPlot - Create a widget to plot radial diagrams

63.4 Displayed Values 195

63.6.1 Point Attributes

 A point plotted in the RadialPlot widget has attributes which determine its location and appearance when plotted. Each point has the following attributes:

angle The angle at which it is plotted

color The color used to draw the point

style The style of the line used to draw the point

tags The list of tags associated with the point

value The value of the point

visible If the point is visible

linewidth Width of the line used to draw the plot

 The angle and value attributes define the location that a point occupies on the plot. The angle is specified in degrees and can have a value between 0.0 and
359.0 degrees. The value attribute can be any real number. To cause a plot to appear in the widget, the value and the angle must be specified. When automatic
angle assignment is active, the angle is computed according to the order that the point is entered into the widget. The angle is computed using the formula:

 angle = order * 360.0 / points

where points is the number of points in the widget point list. Order is just the ordinal of the arrival of the point in the point list.

 The color attribute is a color used to plot the point. Its default value is the color that is the current value of the widget's plotcolor option. The style is the
style of the line used to plot the point. By default, the value of style is the same as the current value of the widget's style option.

 If the value of the visible attribute is false, the point will not appear on the plot. By default, the value of the visible attribute is true.

 The tags attribute is a list of comma separated strings that are associated with a point. All points automatically acquire a tag that is the string representation
of their value attribute. Additional tags can be assigned when points are inserted into the plot widget. Tags can be useful in searching and selecting specific
points within the list of points.

 The linewidth value can be used to set the width of the line used to draw the radial spoke that is used to display the point on the plot. By default, this value is
inherited from the global value set for the widget using the linewidth option on the widget command. If a value for linewidth is specified for a point
description, then that value is used for that specific point.

63.6.2 add - Add a point to the widget

 The add widget command is used to add points to the widget point list. The format of the add command is:

 $w add -value value -angle angle -color color -style style -tags taglist -visible boolean -linewidth value

where $w is the widget path name to the RadialPlot widget, value is the value of the point, angle is the angle at which to plot the point, color is the color to use
when drawing the point, style is the line style to use for the point, taglist is a list of comma separated strings to add to the point tag list, linewidth is the width
to use when drawing the line, and boolean the name of a boolean value that determines whether the point will be in the visible state.

 For example, the command:

 $w add -value 100.0 -color blue -angle 45.0

will add a point with the value 100.0 which will be plotted at 45.0 degrees using the color blue.

63.6.3 clear - Clear the point list

 The clear command empties the current list of points. This will also clear the widget display. For example, the command:

 $w clear

empties the current point list for the RadialPlot widget whose path name is in the variable $w

63 RadialPlot - Create a widget to plot radial diagrams

63.6.1 Point Attributes 196

63.6.4 color - Set the color of points

 The color command can be used to set the color used to plot points in the point list. The general form of the color

 $w color -color color options

where $w is the path name of the RadialPlot widget to use, color is the new color to be set for the affected points, and options are optional keyword and value
pairs that can be specified to select from the list of points those to be affected.

 If no options are specified, all of the points in the point list will be set to use the specified color. Alternatively, the command may specify the -tags option
followed by a comma separated list of strings that are used to identify points in the point list with matching tags. The -unique option may also be specified to
cause the selection of points to stop at the first match it finds.

63.6.5 count - Get the count of points in the point list

 The count command returns the number of points currently in the point list. For example,

 $w count

will return the point count for a widget whose path name is in the variable $w.

63.6.6 delete - Delete points from the plot

 The delete command removes points with matching tags from the plot. The format of the command is:

 $w delete tags

where tags is a comma separated list of tags that are to be used to identify the point or points to delete. The list of points
in the RadialPlot is searched for matching tags, and any points found are deleted from the plot.

63.6.7 hide - Hide points in the point list

 The hide command is used to slecetively hide points in the current list of plotted points. The format of the command is:

 $w hide taglist

where $w is the path name of the RadialPlot widget to use and taglist is a comma separated list of strings that specify the tags to use in searching for points to
hide. The list of points in the RadialPlot widget is searched for points which have tags that match one of the strings in the taglist. Points with a matching tag
are marked hidden and they are not displayed on the widget plot.

 The value of taglist may be all, in which case all of the points in the point list are hidden.

63.6.8 list - List points in the point list

 The list command is used to display the attributes of points in the point list. The format of the command is:

 $w list

where $w is the path name of the RadialPlot widget to use. The result of this command is list whose elements are lists of the attributes of the points in the
point list.

63 RadialPlot - Create a widget to plot radial diagrams

63.6.4 color - Set the color of points 197

63.6.9 replace - Replace points in the point list

 The replace command is used to replace the attributes of a point in the point list with a new set of attributes. The point to be replaced is identified by either a
matching tag list or by a matching angle, if no tag list is specified. If no matching point is found in the point list, a new point is added to the list with the
specified attributes.

 The format of the replace command is:

 $w replace -value value -angle angle -color color -style style -visible boolean -tags taglist -linewidth value

where $w is the path name of the widget, value is the new value for the point, angle, if specified, is the angle of the point to be replaced, style is the new style
for the line used to plot the point, color is the new color for the line used to plot the point, boolean determines the state of visibility of the point, linewidth is
the width to be used to draw the line, and taglist, if specified, is the list of comma separated strings used to identify the point t o be replaced.

 Either an angle or a taglist must be specified, along with a value, for the command to be successful. If a taglist is specified, the angle is ignored.

63.6.10 select - Select a point in the point list

 The select command is used to set the selection of the RadialPlot widget. One or more of the points in the point list may be selected, in which case they will
be displayed using the current value of the selectioncolor. The format of the command is:

 $w select taglist

where $w is the path name of the widget and taglist is an optional list of comma separated strings that is used to identify the point or points to be selected.

 If no taglist is specified, the result of the command is the tag list of the currently selected point or points. If a taglist is specified, then all points with
matching tags will be selected and the remaining points marked not selected.

63.6.11 show - Show hidden points in the point list

 The show command is used to make hidden points in the point list visible. The format of the command is:

 $w show taglist

where $w is the path name of the widget, and taglist is the list of comma separated strings that are used to identify the points to be made visible on the basis of matching tags. The value of
taglist may be all, in which case all of the points in the point list are made visible.

63.6.12 statistics - Get basic statistics on point values

 The statistics command is used to retrieve some basic statistics on the list of values plotted in the RadialPlot widget. The widget computes in real time both global and tag specific statistics
using the values plotted in the widget. The global statistics refer to all of the points plotted, whereas the tag related statistics will typically refer to a series of values plotted with the same tag
list.

 The format of the command is:

 $w statistics tags ...

where $w is the path name of the widget to use. If optional tags arguments are present, the statistics for points matching the tags specified are displayed. If no tags are specified, global
statisticts for the widget are displayed.

 For the global widget statistics, the result of this command is a list of elements in the form of keyword=value that hold the basic statistics of the list of values of the plotted points. The list
of keywords returned is:

Count The number of points in the list

Min The lowest value in the list

Max The highest value in the list

Total The sum of all the values in the list

Mean The average value of all the values in the list

Variance The variance of values in the list

63 RadialPlot - Create a widget to plot radial diagrams

63.6.9 replace - Replace points in the point list 198

 Where optional tags are specified, a set of values similar values for points matching the tags is returned.

63 RadialPlot - Create a widget to plot radial diagrams

63.6.12 statistics - Get basic statistics on point values 199

64 Region - Create a region widget

 The Region widget is an invisible widget used to manage events. The Region widget is typically constructed to cover the same
area as some other widget. Events are then bound to the Region widget. The events are only delivered to the user script if they occur
within one of the defined regions of the Region widget.

 The Region widget supports all of thestandard widget options and has no widget specific options. The format of the command is:

 Region path options

Where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the
widget.

 The Region widget maintains a list of regions that define the areas of the widget for which events are to be allowed. The regions
can be of the following types:

box A rectangular area

circle A circular area.

 The management of the list of regions is effected using the following widget specific commands:

add Add a region to the region list

delete Remove one or more regions from the list

itemcget Retrieve the properties of a region in the list

itemconfigure Modify the properties of a region in the region list

list List the regions in the region list.

64.1 The Add Function

 New regions are addred to the region list using a command of the form:

 $w add type options

where $w is the path name of the Region to use, type is one of the valid region types, and options is the list of option and value pairs
used to configure the region. The following option names are supported:

x Horizontal location of the origin

y Vertical location of the origin

width Horizontal extent

height Vertical extent

radius Radius of a circle

The default values of all of these properties is 0. The value returned by the add function is a token which can be used to identify the
region for the purposes of the other functions supported by the widget commands.

64 Region - Create a region widget 200

64.2 The Delete Function

 The delete function will remove one or more regions from the region list. The format of the command is:

 $w delete name ...

where $w is the path name of the Region to use and the name parameters are the names of the regions in the region list to delete. If
no names are supplied, all of the regions in the list are deleted.

64.3 The ItemCGet Function

 The itemcget function is used to query the properties of a region in the region list. The format of the command is:

 $w itemcget name options

where $w is the path name of the Region to use, name is the token that identifies the region in the region list to be queried, and
options is a list of the properties of the reqion to query. The value returned by this function is a list of elements that are the current
values of the properties that have been queried.

64.4 The ItemConfigure Function

 The itemconfigure function is used to set the values of the properties of regions in the region list. The format of the command is:

 $w itemconfigure name options

where $w is the path name of the Region to use, name is the token that identifies the region to be configured, and options is a list of
option and value pairs used to configure the region.

64.5 The List Function

 The list function is used to produce a list of the regions that are in the region list. The format of the command is:

 $w list

where $w is the path name of the Region to be used. The result of this function is a list of the tokens that identify the regions in the
region list.

64.6 Box Regions

 A box region is a rectangular area defined by its origin and extent. The following example shows how to create a box region:

 $w add box -x 50 -y 50 -width 100 -height 30

which will create a region at (50,50) of dimensions 100 x 30. Events which occur insize this box will result in the invocation of any
event bindings for the Region widget identified by the path name $w.

64.7 Circle Regions

 A circle region is a circular area defined by an origin and a radius. The following command will add a circle region to the region
list:

 $w add circle -x 100 -y 100 -radius 25

64 Region - Create a region widget

64.2 The Delete Function 201

which will create a circular region at (100,100) of radius 25. When the mouse is inside this area and an event occurs, any event
handlers bound to the Region with the path name $w will be invoked.

64 Region - Create a region widget

64.7 Circle Regions 202

65 Roller - Create a roller widget

 A Roller is a widget that can be used to adjust a value using a widget that looks like a thumb wheel.

The format of the command is:

 Roller path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options the Roller supports the following widget specific options:

value The current value of the widget

step The increment value

min The minimum value

max The maximum value

orientation The orientation of the widget

The orientation can be horizontal or vertical. By default the orientation is horizontal. The value range of the Roller is set using the
min and max options and is by default the range from 0 to 100. The step option sets the amount of change that is made to the value
when the Roller is moved. By default this value is 1.

 Here is an example of a Roller that does fine adjustments to the value of a Tcl variable named MyRollerVar:

 Roller root.roller -variable MyRollerVar -min -1.0 -max 1.0 -step 0.001 -orientation vertical

This is a very slow moving Roller.

65 Roller - Create a roller widget 203

66 RollerInput - Create a roller input widget

 A RollerInput is a Roller with a text box widget that displays the current value of the Roller.

The command format is:

 RollerInput path options

where path is the path name of the widget to be created and options is the list of option and value pairs that are used to configure the
widget. The RollerInput widget supports the set ofstandard widget options, the widget specific options that apply to a Roller, and
the following additional widget specific options:

valuecolor The color of the value text

textfont The font used to display the value

textsize The size of the display font

textbackgroundThe background color for the text display

textformat The format string to use

textrelief The relief to use for the text display

proportion A ratio used for computing the step value

order How the components are arranged

The proportion option is an advanced feature that allows refinement of the step value for cases where very precise stepping is
required. Usually using the step option is sufficient.

 The remaining options are used to configure how the value is displayed. The values of these options are similar to those used by
other widgets to display text. All these values have reasonable defaults which you may want to change for specific applications.

 The order option controls the layout of the components of the widget. By default, the value of the order option is roller,value.
This order produces a widget that, when the orientation is horizontal, has the roller to the left of the text box. If the order is set to
value,roller, the text box will appear to the right of the roller. Where the orientation is vertical, the default order places the roller on
top of the text box, otherwise the roller will be below the text box.

 Here is an example of a RollerInput widget that has the text box to the left of the roller widget:

 RollerInput t.r -order value,roller -min 0 -max 200 -step 2 -textbackground yellow -width 200 -proportion .8

Here the values will range from 0 through 200 and change in a step of 2. The value will be in a box with sunken relief displayed in
black on yellow.

66 RollerInput - Create a roller input widget 204

67 Run - Run a binary module

 The Run command is used to load and evaluate a file that contains a binary module created from a Tcl script file. Binary modules
are created by encoding a script file using a special encoding program. Modules in binary format can not be read or modified using a
standard text editor. Binary modules are typically used to create applications that are to be distributed into user environments where
it is not desirable that the users modify the code.

 The format of the Run command is:

 Run file options -- user options

where file is the name of a file containing a binary module, options is the list of option and value pairs that is used to configure the
decoding algorithm used to decode the binary module, and user options is the list of option and value pairs that is to be passed to the
binary module. Note the presence of the -- in the command line. This marks the end of the option list for the decoder and the start of
the option list for user options. When the command executes, the decoder options are processed to configure the decoder, and the
user options are passed to the script module in the standard Tcl argv array. When execution of the module terminates, the user
options are optionally stripped from the standard Tcl argv list.

 The fltkwish interpreter uses a default file name extension of .fltk for binary modules. If the file parameter is specified without a
file name extension, the Run command will add the extension when looking for the file in the specified file path.

 The value returned by the Run command, if it executes successfully, is the value returned by the module when it returns. The
return value will be an error message if there is an error found in the options specified for the decoder. If there are no problems with
the options, then the result return is the result returned by the binary module. Here is a shell script that will execute a binary module
using the interpreter:

 #!/bin/sh
 #
 # --- start.sh --- Execute a binary module
 #
 echo Run $0 -exit true -- ${1+"$@"} | fltkwish

This script can be renamed to the application name, and then executed as a command line. The shell will pass the appropriate
parameters from the command line to the script.

67.1 Decoder Options

 The Run command uses a decoder that can be configured using the following options:

deleteparms - Specifies whether to delete the user parameters on module return♦
displacement - Specifies the key offset to use when decoding files♦
file - Specifies the file name to load♦
key - Specifies the key string to use♦
keyfile - Specifies a file whose contents are to be used as a key♦
mode - Specify the handling of user options♦
source - Specifies whether the input file is encoded.♦

 The deleteparms option is a boolean value that determines how the list of user options is handled. By default, the value of the
deleteparms option is true, and the specified user options are removed from the argv array when the binary module returns. By
setting the deleteparms option to false, the list of user options supplied is added to the standard argv list and these options remain
following the return of the module.

 The displacement option is used to specify an initial inset into the key string that is being used to decode the binary module. The default value is 0, and the
first character of the key string or key file is used. The value of the displacementoption can be set to any positive integer. The displacement is useful when the
same key is used repeatedly. Using different values of the displacement results in different decoding of the binary data.

 The file option specifies the name of the file that contains the binary module. This option has no default, and a file name must be specified for the Run
command to execute successfully. The file name may also be specified as the first parameter of the command line that does not begin with a minus sign (-).

67 Run - Run a binary module 205

For example, the following commands are equivalent:

 Run mymodule.fltk
and
 Run -file mymodule.fltk ...

Only one of these forms should normally be used to specify the module file name. The second form is useful where the module needs to know the name of the
module file.

 The key option is used to specify the key string to be used to decode the binary module. The key string must match the one used to encode the module. If
neither the key nor the keyfile option is specified, the decoder will use the default key string that was used to build the interpreter.

 The keyfile option is used to specify the name of a file whose contents are to be used to decode the binary module. This mechanism provides a means for
distributing modules that are readable by only those who have access to the key file used to encode the module.

 The mode option is used to specify how the user options, if any, are handled. By default, the value of the mode option is append and any user options are
appened to the current argv list. If the value of the mode option is set to push, then the user options completely replace the standard argv list while the module
is running. When the module returns, the standard options are restored.

 The source option is a binary value that specifies whether the module file should be decoded, or processed directly. By default, the value of the source
option is false, and the module file will be decoded. By setting the value of the source to true, the Run command can be used to load and evaluate normal Tcl
script files. This will make the Run command identical to the Tcl source command, with the additional feature of being able to specify user parameters when
the script is invoked. Here is an example:

 Run myfile.tcl -source true -- -p1 myvalue1 ...

Here, the script myfile.tcl is an un-encoded Tcl script file which can access the user parameter list.

67.2 Encoding Binary Module Files

 The distribution contains 2 programs, key and encode. The key program can be used to generate keys and key files of arbitrary
length using a command of the form:

 key 1024 >mykey.txt

This command will produce a 1024 byte key string and write it to the file mykey.txt. The default key length is 256 bytes.

 A Tcl script file can be encoded using the command:

 cat script.tcl | encode -key KEY -c 1 >mymodule.fltk

where script.tcl is the Tcl script file to encode, KEY is the key to use, and mymodule.fltk is the resulting binary module file. The -c
option indicates that the encoding program should generate an embedded check sum value. This value is required when using
encoded files with the Run command.

 Note that the use of binary modules will not protect source code from undesired use. The encoding mechanism is designed to
simply make it inconvenient to modify applications by users. The nature of the design of the Tcl interpreter, and its extensive
introspection tools, means that the source is easily available to knowledgeable users. The encoding mechanism used for this
implementation is not a serious encryption technique, and should not be relied upon for the safeguard of sensitive information.

67 Run - Run a binary module

67.1 Decoder Options 206

68 Scalebar - Create a scroll bar widget

 The Scalebar command creates a standard scrollbar widget with an adjustable slider. The slider will change size based on the range
of the values handled by the widget, or, conversely, by changing the size of the slider, the range of values handled by the widget can
be adjusted. Using this widget one can construct mega-widgets that have scrollable client areas, however, the typical use is to adjust
the value of a Tcl variable.

The format of the command is:

 Scalebar path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the Scalebar supports the following set of widget specific options:

value Specify the current value of the widget

step Specify the step increment

min Specify the minimum value

max Specify the maximum value

orientation Specify the orientation of the widget

sliderstyle Specify the style of the slider

size Specify the size of the widget

sliderrelief Specify the relief of the slider

The value is the current position of the slider in relation to the min and max values. The step value is the size of the change caused
by pressing the buttons at the end of the scrollbar, as opposed to dragging the slider. By default the min and max values are 0 and
100, and the step value is 5. Floating point values can be specified for the range and the step.

 The orientation can be vertical or horizontal. The default is horizontal.

 The sliderstyle option can be normal, filled or nice. The default is normal. The different styles present some fancy visual effects.

 The sliderrelief is the relief used for the slider when it is active. Any relief can be specified. The size option specifies the pixel
size of the slider along the specified orientation.

 Scalebars are usually needed to adjust values, and are typically tied to some Tcl variable. Here is a command that creates a slider
that will change the contents of the variable myvar:

 Scalebar root.sb1 -variable myvar -min 0.1 -max 1.0 -step 0.05 -value 0.5

If you want to scroll some other widget or collection of widgets, use theScroll container instead of building your own facility.

68 Scalebar - Create a scroll bar widget 207

69 Scheme - Specify the widget rendering scheme

 The rendering scheme for the widgets can be set to one of the supported schemes. For the current release of the package, the
following schemes are provided:

normal Standard Fltk widget rendering scheme

shiny A rendering scheme based on OpenGL

gradient A rendering scheme that uses various color gradient effects.

image A scheme that uses an image for widget backgrounds

plastic A scheme that provides a modern plastic look to widgets

modern A scheme that is similar to the plastic scheme without a background image pattern

skins A scheme that applies patterns as skins to widgets

 The default scheme is normal, and widgets are rendered in a manner that gives them a traditional look, similar to the widgets that
appear as part of, for example, the Windows operating system. The shiny scheme uses OpenGL to produce widgets that have the
appearance of being rendered in a shiny chrome material. It is visually interesting, but can be slower in its responsiveness. The
gradient scheme implements a number of shading methods to produce a variety of visual effects. The image scheme makes use of a
background image, which may be tiled, to render the backgrounds of all of the widgets in use. The plastic scheme is part of the
standard Fltk release package and delivers a novel appearance to widgets. The skins scheme uses pattern generation to produce a
wide variety of different widget appearances.

 The desired scheme can also be specified using the FLTK_SCHEME environment variable. This variable can be set to the name
of one of the provided schemes and that scheme will be invoked with default parameter settings. After the scheme is invoked,
adjustments can be made within scripts by using the configure sub-command. Note that the image scheme requires the specification
of a background image, and there is no default image.

 The format of the command is:

 Scheme scheme options

where scheme is the name of a scheme and options are scheme specific options that can be used to configure the scheme. The
following options are supported by all schemes is:

foreground The foreground color

background The background color

selectioncolor The selection color

name The name of the scheme

 When the Scheme command is used to establish the current rendering scheme, all widgets will automatically inherit the scheme
properties. Generally speaking, the scheme should be set before the first widget is created. Individual widgets can then be
configured according to taste afterwards using the widget configure function. If the scheme is set after widgets are created, any
widget specific configuration done on existing widgets will be lost and the properties specified for the scheme will be propagated to
the widgets.

 The background color specified for a scheme is used to control the rendering of widgets. If a widget background color matches
the scheme background color, the scheme is used to render the widget. Otherwise, the widget is rendered according to its configured
properties. This allows applications to suppress scheme rendering for individual widgets by simply specifying a different
background color for the widget. For example,

69 Scheme - Specify the widget rendering scheme 208

 Scheme gradient -bg blue

 Label t.label -bg green
 Label t.another

 Show t

This set of commands will cause the widget t.label to be displayed using the normal scheme with a green background, while the
widget t.another will inherit the scheme properties.

69.1 The normal scheme

 The normal scheme will also process the borderwidth option, however, the effect of this option is to
change the style of the raised and sunken relief on widgets. The default borderwidth is 2. A value of 3
will result in the original FLTK widget look, while a value of 1 will produce an effect similar to using
thin relief styles.

69.2 The shiny scheme

 The shiny scheme is used to produce widgets that are rendered using OpenGL. In addition to the
standard scheme options, the shiny scheme supports the borderwidth option. By default the borderwidth
option has a value of 2. Widgets rendered using the shiny scheme have the appearance of polished
metal.

69.3 The gradient scheme

The gradient scheme uses a number of algortihms to blend 2 colors to create the background for
widgets. In addition to the standard list of scheme parameters, the gradient scheme supports the
following options:

borderwidth Sets the width of the border

primary The primary color to use

secondary The secondary color to use

type The type of gradient function to use

scatter A boolean value indicating whether random scattering should be used

ratio A scale factor

69 Scheme - Specify the widget rendering scheme

69.1 The normal scheme 209

 The default borderwidth is 2. The gradient scheme works by drawing a widget background by blending the primary and
secondary colors of the scheme according to some function of the location of a pixel in the widget. The type of function is specified
by the type parameter. The scatter and ratio parameters control how random purturbations are applied to the blending function

 For most widgets, the value of the primary color is determined by the widget's background color. A default value of gray is
provided for widgets that do not use the background option of thestandard set of widget options. The default value of the secondary
color is white.

 By default, the value of scatter is false, and the computed blending factor is not scattered by applying a random purturbation. If
the value of scatter is true, the blending factor is purturbed. By default, the value of ratio is 0.1. The ratio parameter specifies the
percentage of the range of a value that should be used for purturbations. Depending on the operation applied to compute the
blending factor, the value that is scaled by the ratio parameter will be distance, color separation or some other suitable value.

 The type value specifies the type of function applied to compute the blending factor. Here is a list of the currently available type
names:

diagonal Square law from top left to bottom right

slope Square law from bottom left to top right

down Linear from top to bottom

up Linear from bottom to top

left Linear from left to right

right Linear from right to left

random Completely random noise

convex Downward bleeding effect

concave Upward bleeding effect

inside Quadratic

outside Quadratic

mound Radial square law yielding a raised impression

pothole Radial square law yielding a sunken impression

walk Random walk between colors

marble Simulated marble surface effect

The default value of the type parameter is convex. This scheme will produce an appearance of a convex surface on a CRT, while
producing the appearance of fine quality note paper on a flat panel display.

69.4 The skins scheme

 The skins scheme is similar to the gradient scheme but is implemented by generating an image of the gradient pattern to be used
and then applying it to the widgets in the same fashion as the image scheme works. This scheme can be somewhat faster in
rendering the display on slower computers as the pattern is computed only once and then reused for each widget.

 The skins scheme takes the same parametes as does the gradient scheme, and also supports the mode parameter used by the image
scheme to determine how the generated image is applied to widgets.

69 Scheme - Specify the widget rendering scheme

69.3 The gradient scheme 210

 Here is an example of the skins scheme being used to produce an effect that looks like the widgets are
made of marble. The nature of the marble effect can be controlled through the use of the thump and
scatter scheme parameters. Different marble effects can be achieved through the appropriate selection
of the primary and secondary colors used.

69.5 The image scheme

 The image scheme makes use of an image as the background for the widgets in a widget tree. In
addition to the standard list of scheme parameters, the image scheme supports the following options:

file The file name of the image to use

borderwidth The width of the border to use

mode The mode of the scheme

x_inset,y_insetThe insets into the image to use.

The file can have an image in any of the file formats supported by the extension package.

If no file name is specified, the image scheme will produce widgets that have a background according to the color specified for
the background of the widgets in question. If a file is specified, the area of the image that covers the area of a widget will be used to
draw the background of the widget. This causes the appearance of widgets to be as if the image was wallpapered over them.

 The application of the image to the widgets can be done in one of two ways as determined by the setting of the mode parameter.
By default the mode parameter is widget, and the image is applied to each widget independantly. If the mode is set to window, then
the image is applied such that the area of the image that corresponds to the area of the widget within its containing window is used.
The window mode is suitable for GUIs that are
not built up inside of Scrolls. The widget mode is suitable for GUIs that are built up inside of a Scroll.

 By default, the value of the borderwidth is 2.

 The x_inset and y_inset options can be used to select the origin in the image to use when drawing the widget backgrounds. By
default, the values of the x_inset and y_inset options are 0, and the upper left hand corner of the image is used as the origin. It may
be useful to adjust the values of the x_inset and y_inset options when centering a portion of the image inside a widget.

69.6 The plastic and modern schemes

 The plastic scheme is a scheme that is provided as part of the Fltk 1.1.x release. It delivers a modern
look to the widgets that is somewhat reminiscent of plastic objects. It has no scheme specific
configurable parameters. The modern scheme is a slightly modified version of the plastic scheme which
renders a little faster as it does not use a background pattern image. Both schemes have the plastic
widget rendering theme..

69.7 Configuration of schemes

 The Scheme command supports the following additional functions:

69 Scheme - Specify the widget rendering scheme

69.4 The skins scheme 211

configure Used to set scheme properties

cget Used to query scheme properties

set Used to change the scheme.

The format of these commands is:

 Scheme function options

where function is one of the functions, and options is either a list of option and value pairs to be set, or a list of option names to be
queried.The configure and cget function commands can be used to change the configurable options of the currently installed
scheme. When the options for an installed scheme are changed, all of the currently displayed widgets will change to reflece the new
configuration. The set function command is used to change the current scheme. For example, the type of gradient scheme could be
changed using a command like:

Scheme configure -type diagonal -primary red -secondary blue

while the current type of gradient scheme can be discovers using a command of the form:

Scheme cget -type

If the FLTK_SCHEME environment variable has been set, then the specified scheme could be loaded using a command of the form:

 Scheme $env(FLTK_SCHEME)

or
 Scheme set -name $env(FLTK_SCHEME)

69 Scheme - Specify the widget rendering scheme

69.7 Configuration of schemes 212

70 Screen - Get the current screen geometry

 The Screen command will return a list of values that describes the geometry of the current display screen. The format of the
command is:

 Screen

The returned value is a list of 4 elements that have the following meanings:

 x y width height

where:

x - The current screen x offset•
y - The curren screen y offset•
width - The current screen width in pixels•
height - The current screen height in pixels•

Typically, the values of x and y are zero.

70 Screen - Get the current screen geometry 213

71 Scroll - Create a scrollable container widget

 TheScroll widget is a container that provides automatic scrolling of its client area. Scrollbars are created automatically according
to the relationship between the size of theScroll widget and the size of the items contained in theScroll container.

The format of theScroll command is:

 Scroll path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. In addition to the standard set of widget options, theScroll supports the following widget specific options:

configuration Specify the widget scrollbar configuration

scrollbars Specify the state of the scrollbars

xposition Specify the position of the horizontal scrollbar

yposition Specify the position of the vertical scrollbar

position Query the position of the scrollbars

xstep Specifies the amount to move the horizontal scroll bar

ystep Specifies the amount to move the vertical scroll bar

scrollbarwidth Specify the height or width of the scroll bars

The configuration option allows the positioning of the scrollbars either on the traditional right and bottom locations of the widget or
on the top and right of the widget. The configuration is specified by a set of comma delimited keywords from the list top, left,
bottom and right. For example, to set up aScroll with scrollbars along the top and right, use the command:

 Scroll root.scroll -configuration top,right ...

Only 2 scrollbars are available, so the configuration options will only select a valid configuration. By default, the configuration is
right,bottom.

 The scrollbars option defines how and when scrollbars are displayed. The possible option values are:

horizontal Show the horizontal scrollbar

vertical Show the vertical scrollbar

71 Scroll - Create a scrollable container widget 214

both Show both scrollbars

always_horizontalAlways show the horizontal scrollbar

always_vertical Always show the vertical scrollbar

always_both Always show both scrollbars

none Never show scrollbars

The default value is both, which means that the scrollbars appear on both axes as needed. The widget will still scroll if none is
specified by dragging the mouse in the direction of desired panning.

 The xposition and yposition options can be used to adjust the scroll position of the axes. The default value for these options is
(0,0). The position option can be used to query the current scrollbar positions.

 By default, the horizontal and vertical scroll bars will move the scroll position by 1 unit when the buttons on the ends of the
scrollbars are pressed using the mouse. If the xstep and ystep values are specified, these values become the size of the scroll position
motion when a button is pressed.

 The scrollbarwidth option can be used to change the width or height of the scroll bars. By default, the value of the scrollbarwidth
option is 10, and the width and height of the scroll bars, when visible, will be 10 pixels. Changing this value will change the width
or height of the scroll bars. The same value is used for both the vertical and horizontal scroll bars.

71.1 Adding widgets to a Scroll

 Widgets are added to aScroll container by creating children of the container widget. For example, consider aScroll widget
created with the following command:

 set s [Scroll root.scroll -width 200 -height 200]

which results in a widget with a client area of 200 x 200 pixels. Now add anImage widget that has a larger image displayed in it:

 set i [Image $s.i -file images/ashley.gif -width 400 -height 400 -centered yes]

The result will be aScroll with scrollbar along the bottom and right which can be used to pan across the largerImage widget which
has a picture of Ashley at its center. Any number of children could be added to theScroll. Complex mega-widgets can be created
usingScroll widgets that containPackage widgets that contain collections of other types of widgets.

71 Scroll - Create a scrollable container widget

71.1 Adding widgets to a Scroll 215

72 Scrollbar - Create a scroll bar widget

 The Scrollbar command creates a standard scrollbar widget. Using this widget one can construct mega-widgets that have scrollable
client areas, however, the typical use is to adjust the value of a Tcl variable. The Scoll container provides fully automatic scrollable
client areas, and is a simpler approach than using the Scrollbar.

The format of the command is:

 Scrollbar path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the Scrollbar supports the following set of widget specific options:

value Specify the current value of the widget

step Specify the step increment

min Specify the minimum value

max Specify the maximum value

orientation Specify the orientation of the widget

sliderstyle Specify the style of the slider

size Specify the size of the widget

sliderrelief Specify the relief of the slider

The value is the current position of the slider in relation to the min and max values. The step value is the size of the change caused
by pressing the buttons at the end of the scrollbar, as opposed to dragging the slider. By default the min and max values are 0 and
100, and the step value is 5. Floating point values can be specified for the range and the step.

 The orientation can be vertical or horizontal. The default is horizontal.

 The sliderstyle option can be normal, filled or nice. The default is normal. The different styles present some fancy visual effects.

 The sliderrelief is the relief used for the slider when it is active. Any relief can be specified. The size option specifies the pixel
size of the slider along the specified orientation.

 Scrollbars are usually needed to adjust values, and are typically tied to some Tcl variable. Here is a command that creates a slider
that will change the contents of the variable myvar:

 Scrollbar root.sb1 -variable myvar -min 0.1 -max 1.0 -step 0.05 -value 0.5

If you want to scroll some other widget or collection of widgets, use theScroll container instead of building your own facility.

h

72 Scrollbar - Create a scroll bar widget 216

73 Show - Show one or more windows

 The Show command is used to make one or more windows visible. There is a distinction between a window and a widget in Fltk.
Windows are a special case of a widget and can be managed by the windows manager on the target computer system.

 The format of the command is:

 Show options path names ,,,

where options is a list of options for the window display mode and path names are the path names of the widgets to be made visible.
Only windows support display mode options. If a container widget is made visible, all of its children are also made visible.

 The list of options available is:

center Center the window in the current display

display The display to use for the window

dnd Allow drag and drop

nodnd Diable drag and drop

kbd Allow keyboard input

nokbd Disable keyboard input

tooltips Allow tool tips

notooltips Disable tool tips

title The window title to use

fg The foreground color

bg The background color

geometry The window geometry

bg2 The second background color

name The window name

iconic If the window is iconic

x,y Specify the location of the window

w,h Specify the dimensions of the window

 These options are related to the equivalent options implemented by the X Windows toolkit and by the FLTK library. The X
Windows options are mostly useful for applications running on UNIX systems that support the X Windows GUI interface. The color
options fg,bg and bg2 are supported on all platforms, as are the geometry, title and iconic options. The FLTK library options
dnd,nodnd,kbd,nokbd,tooltips and notooltips toggle features of the library. The center option, by default false, will center the
window on the current display screen. The x,y,w and h options are just an easier way to specify the geometry of the widtget. The
geometry option can also be used, but its format is slightly obscure to non-UNIX users.

 Where multiple windows are being processed, the geometry options can be applied severally or uniquely to the windows. For
example, the command:

 Show -x 10 -y 30 t -center y -x 500 -y 30 v

would put the window whose path is t at (10,30), while the window whose path is u will be centered on the screen, and the window
whose path is v will be placed at (500,30) on the screen. The window can be centered at a specific height on the screen by using a
command of the form:

 Show -y 200 -centered true t

73 Show - Show one or more windows 217

or centered vertically at a particular inset using a command of the form:

 Show -x 300 -centered true t

 The scheme option is, in this instance, related to the FLTK library, and is not the same as the Scheme command implemented as
part of this extension. Instead of using the scheme option, users should use the Scheme command of the extension. The FLTK
library may implement schemes not supported by the Tcl extension, and vice versa.

 Usually, the only widgets that need to make use of the Show command are theToplevel widgets that are the containers of all other
application widgets. When widgets are constructed, they are invisible. Typically an application will construct its widgets, then use
Show to display them all at once. Any widget that is constructed inside a visible container is automatically made visible.

 The Hide command can be used to hide existing widgets. Hiding a widget also hides all of its children.

73 Show - Show one or more windows

73 Show - Show one or more windows 218

74 Signal - Signal an Event

 The Signal command is used to construct events and cause the event handlers associated with a widget to be invoked. Signal can
be used to simulate standard mouse and keyboard events, and to cause event handlers bound to user defined events to be invoked.

 The format of the command is:

 Signal path event options

where path is the path name of the widget to receive the event, event is the name of an event and options is a list of option and value
pairs that are used to configure the properties of the event. Events have the following list of configurable properties:

x Window relative horizontal location of the event

y Window relative vertical location of the event

sx Screen relative horizontal location of the event

sy Screen relative vertical location of the event

button Name of the mouse button

buttonstate State of the mouse button

key Name of the key

keystate State of the keyboard

Depending on the desired results, the configurable event properties generally must all be set.

 The x and y properties are window relative locations for the event. The window in question is the window that is the containing
parent of the widget. You can discover this window using the Winfo command. The sx and sy values are the screen relative, or
absolute screen location coordinates of the event.

 The button name can be left, middle or right. The buttonstate may be up or down. The key property is the name of the key. For the
alphanumeric keys, the name is just the letter or number of the key. The usual names of the extended keys, such as Pg Up, Home
and Escape, apply to the non alphanumeric keys. The keystate property describes the state of the keyboard when the key is pressed.
The state is a combination of flags that have the names:

shift Shift key presses

control Control key pressed

alt Alt key pressed

caps Capitals

numlock Number lock set

scrolllock Scroll lock set

The state of the keyboard is defined by a comma separated list of keystate names.

 Here is an example of how to generate the <Motion> event for a widget:

 Signal $w <Motion> -x 20 -y 40

where $w is the path name of the widget and (20,40) is the window relative coordinate of the event. If the widget has an event
handler bound to the <Motion> event, the above command will invoke it.

74 Signal - Signal an Event 219

74 Signal - Signal an Event

74 Signal - Signal an Event 220

75 Slider - Create a slider widget

 A Slider is a scrollbar style of widget that can be used to change the value of a variable. Sliders have a somewhat less elaborate
appearance than do scrollbars.

The format of the command is:

 Slider path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the following widget specific options are supported:

value The current value of the slider

step The increment size to use

min The minimum value

max The maximum value

orientation The widget orientation

sliderstyle Style options for the slider

size Pixel length of the slider

sliderrelief Relief of the slider

format A format code for the displayed value

The orientation can have the values vertical or horizontal. By default, the orientation is horizontal. The sliderstyle option can take
the values normal, filled or nice. By default, the sliderstyle is normal.

 The range of the slider is set by the min and max options which have default values of 0 and 100. The slider step value is by
default 1. Changing the step value affects the resolution of slider movements. The sliderrelief is the relief of the actual slider itself
and can accept any of the relief values supported by the extension package.

 The format option is used to set the type of format specifier used to display the slider value for sliders that have this feature. The
option can be integer, float or general. The default format is integer.

 Here is the command that creates a slider that controls the value of a Tcl variable names MySliderVar:

 Slider root.s -min 10 -max 40 -step 0.1 -variable MySliderVar -format float -size 150

75 Slider - Create a slider widget 221

76 Table - Create a table of items

 The Table widget is used to data in tabular form. Table widgets look like spreadsheet pages.

The format of the command that creates a Table widget is:

 Table path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. In addition to the set ofstandard widget options, the Table widget supports the following widget specific options:

columns Number of columns in the table

column_widths Widths of the columns in the table

columns_resizeableIf the columns can be resized

features List of table features

rows Number of rows in the table

row_heights Height of the rows

rows_resizeable If the rows are resizeable

value A write only option!

76.1 Features

Table widgets can be configured using a comma separated list of features that describe the appearance of the table. Here is the list of
feature names:

none A plain table that displays the data

row_header The rows have a prefix title

row_footer The rows have a suffix title

row_divider The rows have a divider line

column_header The columns have a header

column_footer The columnd have a footer

column_divider The columns are divided

multi-select Rows and column selection available

row_select Row selection available

76 Table - Create a table of items 222

col_select Column selection available

persist_select Persistent selection

full_resize Resize allowed on rows and columns

dividers Full grid dividers

headers Headers on

footers Footers on

column_ends Headers and footers on columns

row_ends Headers and footers on rows

row_all Everything for rows

column_all Everything for columns

Some experimentation with the features is warranted in order to gain familiarity with their effects on the appearance and behaviour
of the Table widget. A specific configuration is established by using a command of the form:

 $w configure -features list

where $w is the path name of the Table widget and list is a comma separated list of the feature names. For example, the command:

 $w configure -features full_resize,headers,footers,dividers

will produce a widget with row and column headers and footers, rows and columns resizeable using the mouse, and a set of grid
lines dividing the rows and columns of the table. The default configuration of the Table widget is
dividers,row_header,column_header.

76.2 Cell Styles

 There are a number of features of the table cells than can be configured to change the appearance of the cells. Cells typically are
used to hold the contents of elements of a Tcl array variable, and as such, they are text strings. The appearance of the cells is
governed by the following list of style options:

background The background color

foreround The foreground color

relief The cell relief

alignment How text is justified

font The font being used

fontsize The font size being used

fontstyle The style of the font

locked If a cell is locked

resizeable If a cell isresizable

bordercolor Color of the border

borderspacingSpace for the border

width Cell width

height Cell height

value Contents of the cell

76 Table - Create a table of items

76.1 Features 223

padx Internal horizontal padding

pady Internal vertical padding

The style of a cell or a group of cells is managed with the getstyle and setstyle widget commands.

76.3 Tcl Variables and the Table Widget

 The Table widget is useful for the display of 2 dimensional arrays of values. Tcl provides the array type variable that is a
convenient way of arranging data in 2 dimensional arrays through the use of indices. The Table widget can be bound to a Tcl array
that uses a specific index format, causing the Table widget to display the contents of the Tcl array.

 The appropriate index format for the Tcl array is that of a pair of integer indices separated with a comma. For example, the
statement:

 set MyArray(10,4) "Something to display"

could be used to cause the Table widget to display the string "Something to display" in the cell located at row 10 and column 4. The
Table widget associates with the Tcl variable through the mechanism of the variable widget configuration option. Here is one
method of forming the association:

 $w configure -variable MyArray

where $w is the path name of the Table widget and MyArray is the name of the Tcl array to use for the cell contents. The
association created is symmetric, so any changes to the Table widget caused by, for example, the editing of a cell, will be reflected
in the contents of the associated Tcl array element, and any changes in the contents of the array element will be reflected in the
displayed cells of the Table widget.

 The Table widget handles the end cases of, for example, a cell having an association with a Tcl array element that does not exist,
by displaying nothing, or by creating the needed variable should the cell be modified through user editing operations.

 Cells are specified by a pair of integers that range from -2 to rows + 1 for the row index and -2 to cols + 1 for the column index.
The ranges 0 through rows - 1 and 0 through cols - 1 refer to the actual cells, while the indices -2 and either row + 1 or col + 1 refer
to the header and footer titles of the table, while the values -1 and either rows or cols refer to specific row and column header and
footers. The use of these extended range indices depends on the configured features of the Table widget. Where the appropriate
feature is enabled, the widget will make use of the contents of the bound Tcl variable to fill in the appropriate feature, otherwise,
these Tcl array elements will be ignored.

76.4 Widget Commands

 In addition to the standardcget and configure widget commands, the Table widget supports the following widget specific
commands:

getstyle Get the style of a Table element

setstyle Set the style of a Table element

The format of the commands is:

 $w function type options

where $w is the path name of the Table widget, function is either getstyle or setstyle, type is the name of the style specification to act
on, and options is the list of option names to be either set or queried for the style. The available style types are as follows:

76 Table - Create a table of items

76.2 Cell Styles 224

global Style elements that affect all cells

row Style elements that affect cells in a row

column Style elements that affect cells in a column

header Style elements that affect header cells

footer Style elements that affect footer cells

cell Style elements that affect specific cells

For the global style, the command format looks like this:

 $w setstyle global -foreground blue -background white -relief sunken -align centered

while for the cell style the command looks like this:

 $w setstyle cell 10 5 -foreground red -background blue -relief raised -align left

The commands for the other style management functions take parameters appropriate to their scope. Where the getstyle function is
used, the result of the command is a list that contains the current values of the style options. For example, the current global style
can be queried using a command like:

 $w getstyle global -background -relief -align

76 Table - Create a table of items

76.4 Widget Commands 225

77 Tabs - Create a notebook tabs widget

 The Tabs widget is a container widget that presents a number of notebook style tabs that can be used to select the currently active
child widget. The format of the command is:

 Tabs path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard set of widget options the Tabs widget supports the following option:

activetab Set the currently active tab

count Get the number of tabs in the widget

tabstyle Set the type of tabs to draw

list Get the list of tab labels for the widget

activelabel Get the label of the currently active tab

tabsbelow If the tabs should be below the tab contents

auto If automatic layout should be used

The activetab option takes a value that is a number that ranges from 1 through the number of child widgets in the container.
Querying the activetab option will return the current tab ordinal. The number of available tabs in the widget can be determined by
querying the count option.

 The tabstyle option may have the value old or new. New style tabs are the square tabs used by more recent releases of the FLTK
toolkit, while old style tabs are the angled tabs draw my releases prior to the 1.1 series of FLTK releases. The default tab style is
new.

 The list option can be used to query the labels of the tabs in the widget. The activelabel option is used to query the label of the
currently active tab.

 The Tabs container creates a tab for each child that is added to the container, and uses the label of the widget as the text written
on the tab. The default label for a widget is its path name, so it is usually a good idea to configure the child widgets to have labels
that are useful in identifying the contents of the child. All of the layout and features of the Tabs widget are done automatically, so
some practice is needed to get something looking pleasant to the eye.

 Children are added to the widget simply by creating them. Fairly complex mega-widgets can be constructed by packing
interesting combinations of things into Package,Scroll,Group orTile containers and then arranging for these containers to
themselves be children of aTabs container.

 The tabsbelow option can be used to specify how the tabs should be positioned with respect to the contents of the tabs. By
default, the value of the tabsbelow option is true, and the tab contents will appear above the row of tab labels. If the value of the
tabsbelow option is set to false, the tab labels will appear above the tab contents.

 The auto option is used to specify whether or not automatic child widget resize is used to lay out the tab widgets. By default the
value of the auto option is true, and tab content widgets are automatically resized to fill the tab content area. If the value of the auto
option is set to false, tab content widgets are not resized.

77.1 Widget Commands

 In addition to the standard widget commands configure and cget, the Tabs widget supports the following widget specific
commands:

whichtab Find the tab with a label that matches the specified string

label Get the label for a specified tab

77 Tabs - Create a notebook tabs widget 226

 The format of the whichtab function command is:

 $w whichtab string1 ... string n

where $w is the path name of the Tabs widget to use, and string1 through stringn are strings to use to examine the current set of tab
labels. The result returned by this command is the list of tab ordinals that have labels that match the specified strings.

 The format of the label function command is:

 $w label ord1 ... ordn

where $w is the path name of the Tabs widget to use, and ord1 through ordn are the ordinals of the tabs to be queried. The result
returned by this command is a list of the labels of the specified tabs.

 Here is a simple example of a Tabs widget:

The above is produced using the following code fragment:

 Tabs root.t -w 300 -h 220 -tabstyle old

 Text root.t.text -label "Text Data" -w 300 -h 200 -value "This is some text for the widget!"

 Image root.t.image -label Ashley -file images/ashley.gif -w 300 -h 200

These commands result in a tab notebook that has 2 tabs, one labeled "Text Data" and the other labeled "Ashley". Clicking on the
appropriate tab will activate the appropriate child. Note that when automatic layout is not in use, the widgets packed into the Tabs
container should be smaller than the container itself. This is to provide space for the tabs themselves. If no space is left, the tabs will
get squashed!The Tabs container decides how to place the tabs based on the distance between the edges of the child windows and
the edge of the container window. The largest distance determines the tab location. If automatic layout is used, then the tab location
is determined by the value of the tabsbelow option, and the child widgets are both resized and position in the container to
implement the chosen specification.

77 Tabs - Create a notebook tabs widget

77.1 Widget Commands 227

The above Tabs container holds a number of time series graphs produced using the XYPlot widget. Each of the tabs will bring to the
foreground the relevant time series. See the file timesubs.tcl in the scripts directory of the distribution for the details of the
construction of this display.

77 Tabs - Create a notebook tabs widget

77.1 Widget Commands 228

78 TestWidget - Create a test widget

 This command is a place holder for the development of new widgets. Its command format and options depend on the nature of the
widget being developed.

78 TestWidget - Create a test widget 229

79 Text - Create a text widget

 The Text widget is used to edit multiple lines of text. The widget supports the usual set of basic editing features and text display
features, but it is not by any means a highly evolved text editing widget such as one might find in other tool kits.

 The format of the command is:

 Text path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the following widget specific options are supported:

value The text in the widget

textfont The font to use

textsize The size of the font

length Query the amount of text in the widge

The Text widget is typically used to present the user with some multi-line text that needs changing. The user does standard editing
operations on the text, then the result is retrieved and used for whatever purpose by the application. The widget can be initialized by
sending a string of characters with embedded newline characters. For example:

 Text root.t -value "Hello\nWorld!\n"

will produce two lines of text in the widget.

79 Text - Create a text widget 230

80 Thermometer - Construct a liquid thermometer widget

 The Thermometer command constructs a widget that presents the appearance of a typical liquid based glass tube thermometer. The Thermometer widget is a

dual scale thermometer that can be used to convert from Celcius to the equivalent values on the Fahrenheit, Kelvin and Gladstone scales.

 The format of the command line that constructs a Thermometer widget is:

 Thermometer path options

where path is the path name of the widget to be constructed and options is the list of option and value pairs that is used to configure
the widget. In addition to the list of standard widget options, the Thermometer widget supports the following widget specific
options:

value The current temperature reading

step The number of degrees between steps

min The minimum temperature value

max The maximum temperature value

scale The temperature scale

liquidcolor The color of the liquid in the thermometer

tickcolor The color used to draw the scale markings

colorscale If the scale is colored to the temperature range

warm The color that represents warmth

cold The color that represents cold

local_max The local maxumum of displayed observations

local_min The local minimum of displayed observations

local_mean The local average value of displayed observations

local_var The local variance of displayed observations

count Count of the observations in the local group

span Number of observations to be used to compute local values

time The time of the start of the local window statistics

 The Thermometer widget handles values in the current scale, so, the values of the value, max, and min options are presented in degrees in the current scale
when theses options are used for initialization, and are returned in the current scale when these options are queried. There is an optional syntax for the value
option that allows the specification of the current temperature reading in one of the supported scales. A command of the form:

 $w set -value 30.0c -scale fahrenheight

will recognize the value as being in Celcius, while the widget scale is Fahrenheit. The widget will convert the value of value appropriately. Similarly,
following the numerical value of the temperature with an f, k or g will indicate that the value is in Fahrenheit, Kelvin or Gladstone degrees, respectively.

 The default values for value, step, min, and max are 0, 1, -50 and 50 respectively. The default scale is Fahrenheit. The widget supports the following
scales:

Celcius The common international standard

Fahrenheit A historically used scale now limited to the US

Kelvin The scale of absolute temperature

80 Thermometer - Construct a liquid thermometer widget 231

Gladstone A scale useful for meteorological codes

 The liquidcolor option sets the color used to depict the liquid in the thermometer. The default color is silver, reminiscent of the one time wide spread use of
mercury for the construction of liquid thermometers.

 The tickcolor option sets the color used to draw the scale markings on the thermometer. The default value is gold.

 The colorscale option determines how the scale values are displayed along the thermometer scale. By default the value of colorscale is true, and the scale
values are colored according to the value and the colors specified for the warm and cold options. If the value of the colorscale option is false, the scale values
are drawn using the current value of the foreground widget option.

 The values of the warm and cold options determine the range of colors used for the coloring of the scale values. By default the value of the warm option is
orangered3, and the value of the cold option is blue. This scheme renders higher value of the scale in a warm color and the lower values of the scale in a cold
color.

 The tick mark closest to the current temperature value will be drawn in red. If the closest tick mark also has a scale label, the scale label will be drawn
either in a lighter version of the current scale value color, or in red if the colorscale option is false.

 The local statistics of the stream of observerd values sent to the widget can be interrogated using the local_max, local_min, local_mean and localv_ar
options. These options are read only, and return the appropriate statistics. The value of the count option can be used to determine how many observations are
in the local set. The span option can be used to set or query the number of observations that should be in the local set. The time option can be used to query
the time that the local statistics window begins. Resetting any of the local statistics will also reset the time value.

80.1 Changing the temperature value

 The Thermometer widget is an input widget that can be used to control the value of a Tcl variable. By clicking on the thermometer fistle within the range of
the scale, the value of the widget will change to the value that would be closest to the coordinate of the mouse click along the scale.

 Clicking with the left mouse button while the cursor is inside the thermometer bulb will increment the value of the widget by the amount of the current
value of the step option. Clicking with the right mouse button will decrement the value of the widget by the current value of the step option.

 Using a command of the form:

 Thermometer t.t -variable MyTemperatureVar

would cause and change in the value of the Thermometer widget to be reflected in the value of the Tcl variable MyTemperatureVar, and, vice versa.

80 Thermometer - Construct a liquid thermometer widget

80.1 Changing the temperature value 232

81 Tile - Create a tile widget

 A Tile widget is a container that allows the resizing of its child widgets by the dragging of the internal borders of the widgets.
Usually a Tile container has a number of widgets that are placed beside each other. The relative sizes of the widgets can then be
adjusted by dragging the adjacent borders.

The format of the command is:

 Tile path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the Tile widget supports the following option:

rows Number of rows to use for automatic layout

cols Number of columns to use for automatic layout

auto Specify how to use the layout options

Children are added to the Tile container simply by creating them. You need to do your own geometry management when laying out
the children in the container unless the automatic layout facility is used. The options rows, cols and auto determine whether the
automatic layout of child widgets will occur. By default, the value of the auto option is true, and the values of the rows and cols
options are used to position and size the child widgets added to the Tile widget. By default, the value of rows is 7 and cols is 2.

The auto option may take the following values:

horizontal Layout in the horizontal direction only

vertical Layout in the vertical direction only

both Layout in both directions

none Do not use automatic layout

Here is an example of a script that uses automatic layout:

 # Create a tile widget with 3 rows of 2 columns of widgets

 Tile t.t -rows 3 -cols 2 -auto true
 Show t

 set clr { red black green yellow blue white }

 # Create some child widgets

 for { set i 0 } { $i < 6 } { incr i } {
 Label t.t.l$i -bg [lindex $clr $i]

81 Tile - Create a tile widget 233

 }

Once they are in place, just drag the internal borders to resize the children. They remain packed in the container If the automatic
layout feature is not used, you must specifically place the widgets into the container with the location and dimensions you wish to
start off with. Be careful to align the borders of the widgets so that they share common borders with each other..

81 Tile - Create a tile widget

81 Tile - Create a tile widget 234

82 Toplevel - Construct a top level widget

 TheToplevel command creates a window container widget that is also a top level window for the window manager. This means it is
a window with a border, title and system menu, and the usual maximize, minimize and close buttons. AToplevel window is usually
either the root window of an application, or one of several container windows for an application.

 The format of the command is:

 Toplevel path options

where path is a valid path name for the widget and options are the option and value pairs used to configure the window. In addition
to the set of standard widget options, the Toplevel command provides the following list of widget specific options:

fullscreen Make a full screen window

hidden Make a hidden window

iconic Make an iconic window

modal If the window is system modal

shrinkwrap Shrink the window to the background image size

tile Tile the background image

autosize If windows should autosize

border Set the border width

A top level window will normally be created with default attributes which results in a window of the current default dimensions and
position in the normal (i.e not full screen and not iconic) mode.

 If the window has a background image, then by default it will be displayed centered in the window client area. If the shrinkwrap
option is set to true, then the window is resized to wrap the image, and the user will not be able to resize the window using the
standard resize frame or by using the maximize button. If the tile option is true, then the window image will be tiled across the client
area.

 Modal windows are typically used by dialogs. A modal window will capture all mouse and keyboard input until it either is closed
or becomes non-modal.

 The autosize option is by default true, and the window will try to resize itself to surround any children. If either a height or a
width is supplied for the window, autosize will be set to false, and no attempt to resize the window will occur.

 The border option can be used to supress the presentation of the window title and system menus. By default, border is true,
and the window is drawn with its title and system menus. Setting the value of the border option to false will suppress these
decorations.

82 Toplevel - Construct a top level widget 235

Toplevel windows can be created automatically by creating a child widget for a Toplevel window that does not already exist. For
example, the following command will create aToplevel window that contains anImage widget:

 Image root.image -file images/ashley.gif

If there is not already aToplevel named root, then it is created and automatically wrapped around theImage widget named
root.image.

82 Toplevel - Construct a top level widget

82 Toplevel - Construct a top level widget 236

83 Update - Redraw widgets

 The Update command is used to cause the redrawing of the contents of one or more widgets. The format of the command line is:

 Update widget1 ... widget n

where the optional parameters widget1 to widgetn are the path names of the widgets to be redrawn. If no parameters are provided,
all of the curent widgets are redrawn. This command is used in scripts to make certain that the displayed contents of windows is not
unduely delayed by other computational activity in the script. Tcl/Tk can postpone redrawing of widgets while loops are being
processed, for example.

83 Update - Redraw widgets 237

84 UserButton - Create a custom button

 The UserButton command constructs a button that has a face that can be drawn on using the turtle graphics command language.

The format of the command is:

 UserButton path options

where path is the path name of the button and options is the list of option and value pairs that is used to configure the widget. In
addition to the list ofstandard widget options, the UserButton widget supports the following widget specific options:

drawing The drawing script for the button face

value The current value of the button

type The type of the button

downrelief The relief of the button when pressed

onvalue The value of the button when it is on

offvalue The value of the button when it is off

shortcut The name of the shortcut key for the button

Aside from the drawing option, the other widget specific options implement behaviour identical to that implemented by these
options for the other widgets in theButton class. The UserButton widget is also a member of the Button class.

 The drawing option is, by default, an empty string, and the face of the widget is blank. Any set of drawing commands supported
by theturtle graphics drawing language may be passed as a script to the UserButton. A complete description of the turtle graphics
language is given in the chapter on theDrawing widget. For example, the command:

 UserButton t.t -drawing "cs ht fl on bg blue cr 40 bg yellow cr 30 bg red cr 20"
 Show t

will produce a button that has a target displayed on its face.

84 UserButton - Create a custom button 238

85 Value - Create a Value widget

 TheValue widget is a simple rectangular widget that displays some formatted text. It is identical to theLabel widget with the
added ability to specify a format
for the displayed text.

The format of the command is:

 Value path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. In addition to the set ofstandard widget options, this widget supports the following widget specific options:

value The current value to display

format The format to use when displaying the value

conversion The type of conversion to perform on the value

The value option is used to set the object to which the format statement is applied. For instance, the value could be a number, or a
string, and the format statement might be:

 -format "This is a number %d"

The resulting display will be the result of applying the format statement to the current value. The conversion option is used to
specify how a value is to be treated before it is passed as a parameter to the format statement. The conversion option can have the
following values:

string Treat the value as a string (no conversion)

integer Treat the value as an integer

long Treat the value as a long integer

float Treat the value as a floating point number

unsigned Treat the value as an unsigned integer

The default value of the conversion option is string, and the default format statement is "%S", so all values are simply treated as their string representation.
Since the internal representation of a variable in Tcl is that of a string, before use can be made of the usual conversion operators in the format string the
internal value must be converted to an appropriate target. For instance, a floating point result of a mathematical expression may have more digits than is
desired for the
display application. Specifying a conversion of float will then allow the use of the usual %8.2f format specification in the display format, resulting in no more
than 2 decimal places being shown.

 Here is an example of a Value widget:

 Value root.value -value 150 -format "This is a a value of %d" -conversion integer -width 200 -background yellow

In this case, the default value of the align widget option is centered, and the value of the widget relief is sunken, so the resulting
widget will look like a depressed button but without adding some other functionality, the widget will not react to mouse events.

85 Value - Create a Value widget 239

See also theLabeledText widget, which is a compound widget that does the same sort of thing as this example.

85 Value - Create a Value widget

85 Value - Create a Value widget 240

86 ValueSlider - Create a slider with a value display

 The ValueSlider widget is similar to a Slider widget except that it has an attached text box that continuously displays the current
value of the widget.

The format of the command is:

 ValueSlider path options

where path is the path name of the widget to be created and options is the list of option and value pairs used to configure the widget.
In addition to the set ofstandard widget options, the ValueSlider supports all of the widget specific options of the Slider widget and
the following list of widget specific options:

color The color of the text display

textfont The font used to display the text

textsize The size of the font

Here is a ValueSlider that shows the value in red:

 ValueSlider root.vs -color red -variable MySliderVar -orientation vertical

This widget will set the value of the Tcl variable MySliderVar as the slider is moved.

86 ValueSlider - Create a slider with a value display 241

87 Vu - Construct a digital volume units widget

 The Vu command is used to construct a widget that resembles a digital volume units display typical of some LED based displays
on audio equipment.

 The format of the command is:

 Vu path options

where path is the pat name of the widget to be constructed and options is the list of keyword and value pairs that is used to configure
the widget. In addition to the set of standard widget options, the Vu widget supports the following widget specific options:

value The current value of the widget

orientation The orientation of the widget

maximum The largest value to display

minimum The lowest value to display

logscale If the scale is logarithmic

autoscale If automatic range normalization is used

 The value options is used to get or set the current value of the widget. This value is used to create the display presentation.

 The orientation option can have the values horizontal or vertical. By default, the value of the orientation option is horizontal and
the widget is displayed as a horizontal oblong with the minimum value at the left of the rectangle. If the orientation is set to vertical,
the widget is displayed as a vertical oblong with the minimum value at the bottom of the rectangle.

 The maximum and minimum options are used to set the range of the values being displayed by the widget. By default, the values
of the maximum and minimum options are 100.0 and 0.0 respectively. When the autoscale option is true, the values of the maximum
and minimum options are computed automatically based on a series of values sent to the widget. The widget will automatically
adjust the maximum and minimum values to accomodate the range of values presented. By default, the value of the autoscale option
is false.

 The logscale option is by default false. If set to true, the base 10 logarithm of the value is used to construct the plot instead of the
value itself.

87 Vu - Construct a digital volume units widget 242

88 Windows - Interrogate the list of widgets

 The Windows command gets information about the current list of widgets being managed by the Fltk extension. The functions
supported by this command are:

list Return the list of all widgets

count Return the count of the managed widgets

toplevels Return the list of top level widgets

class Return a list of windows by class name

group Return a list of windows in a grou

88.1 list - Get a list of windows

 The list function will return a list of all of the widgets currently registered to an application, or optionally, a subset of this list
based on a set of selection strings. The format of the the command is:

 Windows list ?patterns?

where patterns is a comma seperated list of strings used to filter the window list. If the patterns option is provided, the returned list
of widgets contains all of the widgets whose path names contain one of the substrings in patterns. For example, the command:

 Windows list YUL,plot

could be used to select all of the widget with the substrings YUL or plot in their path names. The command:

 Windows list

results in a list of all widget names for the widgets that are currently in existence and managed by the Fltk extension.

88.2 count - Get the widget count of toplevels

 The count function simply gets the number ofToplevel widget in the current application.

88.3 toplevels - Get the count of container windows

 The toplevel function gets the number of container widgets in the widget list. Container widgets may beToplevel widgets, but can
also be other types of containers.

88.4 class - Get the list of widgets in a class

 The format of this function command is:

 Windows class name

where name is a class name. The result of this function is a list of all widget that are members of the specified class name.

88 Windows - Interrogate the list of widgets 243

88.5 group - Get the widgets in a group

 Some widgets act in groups, such as RadioButtons. This function will list all of the widgets in a group. The format of the
command is:

 Windows group name

where name is the name of the group. The name of the group is the path name of the group container being used to group the
widgets.

88 Windows - Interrogate the list of widgets

88.5 group - Get the widgets in a group 244

89 Winfo - Get information about a widget

 The Winfo command is used to retrieve information about a widget window. The functions supported by the command are:

exists Returns 1 if the widget exists, otherwise, returns 0

geometry Returns the current widget geometry in standard X windows format

x Returns the current horizontal position of the widget

y Returns the current vertical position of the widget

width Returns the current width of the widget

height Returns the current height of the widget

id Returns the system dependant widget identifier

childcount Returns the number of child widgets of this widget

root Returns the root widget for this widget

children Returns the list of children of this widget

class Returns the class name of this widget

parent Returns the parent of this widget

The general format of the command is:

 Winfo function path

where function is one of the functions from the list of supported functions and path is the path name of the widget.

 For example, the command:

 Winfo geometry root

would return the current geometry of the window identified by root in the form:

 wxh+x+y

where w and h are the width and height of the widget, and x and y represent the screen or widget relative locations of the widget
with respect to its parent. Since the parent of a top level widget is the screen, in this case the location is screen relative.

89 Winfo - Get information about a widget 245

90 Wm - Interact with the window manager

 The Wm command interacts with the window manager to control the behaviour of top level widgets. The functions supported are:

title Set the title of the widget window

iconname Set the name of the widget window icon

maxsize Set the maximum dimensions of a widget window

minsize Set the minimum size of a widget window

deiconize Restore a hidden or minimized window to its normal state

withdraw Hide the widget window

geometry Set the widget window initial geometry

position Set the position of the widget window on the screen

The format of the command is:

 Wm function widget ?data?

where function is the function to perform from the list of supported functions, widget is the path name of the widget to act upon, and
data is any data needed for the function.

 For example, the command:

 Wm title root "My Root Window"

would set the title of the window that is named root to the string "My Root Window"

90 Wm - Interact with the window manager 246

91 Wizard - Create a wizard widget

 Wizard widgets are containers that can hold a number of child widgets that overlay each other. This widget is similar to the Tabs
widget, although the no tabs are drawn and the currently visible child is controlled by the application, as opposed to being controlled
by the user's mouse input. This widget is useful for stepping the user through a series of actions and option selections.

 The format of the command used to construct a Wizard is:

 Wizard path options

where path is the path name of the Wizard and options are the option and value pairs used to configure the widget. In addition to
the standard set of widget options, the Wizard accepts the following widget specific options:

 activechild The index of the currently active child
 count The number of children in the container

 The activechild option takes a number that must be from 1 through the number of child widgets in the container. If the activechild
option is queried, then the value returned is the index of the currently active child widget, or -1 if there are no children in the widget.
The count option can be queried to determine the number of children in the container.

91.1 Widget Specific Commands

 In addition to the standard widget commands configure and cget, the Wizard supports the commands next and previous. The next
command will cause the next child in the container to become the active widget, while the previous command will cause the
previous widget to become active. Clearly, these commands have no effect at the oposite ends of the child list, respectively.

91.2 Adding Children to a Wizard

 Child widgets are added to the Wizard simply by creating them as children. The order of creation determines the order they are
displayed in the container. Here is some sample code that creates a typical wizard:

#!/bin/sh
\
exec fltkwish "$0" ${1+"$@"}
#
--- wizard.tcl --- Test harness for the Wizard container
#
Copyright(C) I.B.Findleton, 2003. All Rights Reserved
#
Move to the next item in the wizard

proc Next { w next prev } {

 global status

 $w next

 SetState $w $next $prev

 }

Move to the previous item in the wizard

91 Wizard - Create a wizard widget 247

proc Prev { w next prev } {

 $w previous

 SetState $w $next $prev

 }

Set the state of the wizard buttons

proc SetState { w next prev } {

 set count [$w get -count]
 set current [$w get -activechild]

 if { $current == 1 } {
 $prev set -state disabled
 $next set -state normal
 } elseif { $current == $count } {
 $prev set -state normal
 $next set -state disabled
 } else {
 $prev set -state normal
 $next set -state normal
 }

 }

Create a GUI for the wizard

Destroy t

set f [Frame t.g -w 400 -h 140 -relief flat -auto false]

set w [Wizard $f.w -w width -h 100 -relief flat]

set f0 [Package $f.actions -x right-8 -y 120 -pad 5 -orientation horizontal -w 205]
Button $f0.previous -command "Prev $w $f0.next $f0.previous" -label Previous -state disabled
Button $f0.next -command "Next $w $f0.next $f0.previous" -label Next

proc ScrolledImage { w args } {

 eval { Scroll $w -nocomplain true } $args
 eval { Image $w.image -nocomplain true } $args

 return $w
 }

The first child

ScrolledImage $w.c1 -Image.f $Fltk(Library)/images/ashley.gif -Scroll.w width -Scroll.h heigh

The second child

ScrolledImage $w.c2 -Image.f $Fltk(Library)/images/clouds.jpg -Scroll.w width -Scroll.h height

91 Wizard - Create a wizard widget

91.2 Adding Children to a Wizard 248

The third child

Button $w.c3 -x centered -y centered -label "Centered Button"

The fourth child

Button $w.c4 -x center -y top -label "Top Center"

The fifth child

Listbox $w.c5 -h height -w width

$w.c5 add Iain Ross David Emily Derek Suzanne Ashley Amber Julie Anne-Marie

SetState $w $f0.next $f0.previous

Show t

Wm title t "Wizard Test Harness"

91 Wizard - Create a wizard widget

91.2 Adding Children to a Wizard 249

92 XYPlot Create a 2 dimensional plot widget

 The XYPlot widget is a data graphing widget that can be used to display data points in a 2 dimensional space. The widget can also
perform some basic linear regression calculations and display a linear fit to the data points along with the standard error bounds for
the regression line. The format of the the command line is:

 XYPlot path options

where path is the path name of the widget to be created and options is the list of option and value pairs that is used to configure the
widget. In addition to the set ofstandard widget options , the XYPlot widget supports the following widget specific options:

textfont Font used for point labels

textsize Size of text used for point labels

textcolor Color of the text

textbackground Color of the text background

xlabel,ylabel Labels for the X and Y axes

xlabelcommand Command to create a label on the abscissa

ylabelcommand Command to create a label on the ordinate

xformat,yformat Formats for the X and Y axes labels

xrange,yrange,zrangeSet the normalization range for values

valuegradient If the color of the points is scaled to values

line If the points are joined by a line

linestyle The default line style

fit If a regression fit is shown

fitcolor Color of the fit lines

fitlinestyle Line style of the fit lines

grid If a grid is shown

gridcolor Color used to draw the grid

gridlines Number of grid lines to draw

plotbackground Color of the plot background

autolabel If the points are labelled with their values

autolabelformat Format for the point labels

value A write only option!

zerox If the X=0 line is drawn

zeroy If the Y=0 line is drawn

zerolinestyle How to draw zero lines

zerolinecolor Color of zero lines

pagegeometry Get the dimensions of the plot diagram

pagex Get the X coordinate of a plotted value

pagey Get the Y coordinate of a plotted value

drawing Supply a turtle graphics script

92 XYPlot Create a 2 dimensional plot widget 250

92.1 Configurable Options

92.1.1 Text Options

 The options textfont, textsize , textbackground and textcolor apply to the optional labels that may be displayed on the graph
associated with the plotted points. These values default to helvetica, 10,clear and black. Note that the text that appears for the titles,
axes labels and axes tick marks is controlled by the appropriate standard widget options, which just happen to have the same default
values.

92.1.2 xlabel and ylabel

 These 2 options are the text strings that appear as the labels for the X and Y axes of the plot. Their default values are X Axis and Y
Axis respectively.

92.1.3 xlabelcommand and ylabelcommand

 These 2 options allow the user to provide a Tcl script to be executed whenever a value along one of the axes is displayed. The
script should format the value to be displayed along the axis and return that value appropriately formatted for display as its result.
This is useful when there is a non-ordinal relationship between the coordinates of the values being plotted, such as when the
displayed label is some function of the actual coordinate value.

 The script is first expanded by converting the following tokens based on the widget and the data being plotted:

%W The path name of the widget

%a The axis being drawn (Either X or Y)

%v The value of along the relevant axis

The above tokens are first replaced by their actual values, the resulting script is then evaluated, and the returned result is drawn
along the appropriate axis. For example, the command:

 $w set -xlabelcommand "XLabel %W %v"

would cause the Tcl procedure XLabel to be executed with parameters that are the widget path name and the value along the X axis
to be formatted. The XLabel procedure needs to return the properly formated value to be displayed.

92.1.4 xformat,yformat

 These options are used to set the format specifiers used to display values for the axis tick marks. The widget will automatically
scale the ranges of the values of the plot point coordinates and label the tick marks at locations that represent about 10 percent of the
scale range. The default format specification is %6.1f. Any valid format specification acceptable to the standard C library function
sprintf is acceptable. The range values are floating point numbers, so a floating point specification is good unless you want to cause
a program crash.

92.1.5 xrange,yrange,zrange

 These options set the range that is used for the normalization of the values used for the x, y and z (value) coordinates in the
plotted graphs. By default, the normalization is computed automatically from the range of values provided for the components. If a
normalization range is set, then the values are scaled within the specified range. For example, the command:

 XYPlot t.t -xrange 92,105

would cause the range of the X axis to be from 92 to 105, and all points whose X coordinate fall within this range will be plotted.
Points with an X coordinate outside of this range will not appear on the chart.

92 XYPlot Create a 2 dimensional plot widget

92.1 Configurable Options 251

 By setting one of these options to an empty string, range normalization is reset to automatic, and the axis range is determined
automatically from the range of values for the relevant coordinate value.

92.1.6 valuegradient

 This boolean option determines whether the points plotted on the graph have colors that are adjusted according to the value of the
point. By default, the value of this option is false.

92.1.7 line

 This is a boolean option that determines whether a line joining the plotted points is drawn. By default, the value of this option is
false and no line is drawn. When the value of the option is true, adjacent points that meet certain selection criteria are joined by a
line. Each point on the graph can be drawn using a user defined symbol. For a line to be drawn joining 2 points, each of the points
must be adjacent in the list of points being plotted, and they must have the same symbol. By default, all points have the same
symbol. The add function details the method of changing the symbol used to plot a point.

92.1.8 linestyle

 The linestyle option is used to set the style of the line used to join adjacent points, if the value of the line option is true. By
default, the value of the linestyle option is solid.

92.1.9 fit

 The value of the fit option is a boolean value that determines whether or not a regression analysis is performed on the list of data
points being plotted. By default, the value of the fit option is false, and no regression analysis is carried out. If the value of the fit
option is true, the linear regression line, based on a best least squares error fit, that describes the relationship between the x and y
coordinate values of the points is computed. The regression line, regression equation and the standard error estimates of the
predicted values of the dependent variable are all displayed on the graph.

92.1.10 fitcolor

 The fitcolor option sets the color used to display the regression lines on a plot for which the fit option is true. By default, the
value of this option is orange .

92.1.11 fitlinestyle

 The fitlinestyle option is used to specify the line style used to draw the regression line and standard error bounds lines of the
regression model. By default, the value of the fitlinestyle option is dash.

92.1.12 grid

 The grid option determines whether a background grid is displayed as part of the graph. By default, the value of the grid option is
false. If the value of the grid option is true, the background grid will appear using the same spacing as that used by the access ticks.

92.1.13 gridcolor

 The gridcolor option is used to define the color of the grid lines displayed when the grid option is true. By default, the value of
this option is gray80, which displays a very pale gray color.

92.1.14 gridlines

 The gridlines option is used to query or specify a value that determines the number of horizontal or vertical lines that are drawn
when the value of the grid option is true. The number of lines to draw is specified by a floating point value for the horizontal and

92 XYPlot Create a 2 dimensional plot widget

92.1.5 xrange,yrange,zrange 252

vertical dimensions that is used to compute the interval between ticks on the graph along the respective axes. By default, the values
are 11.0 for both axes. This results in 11 lines being drawn, depending on the actual dimensions of the widget.

 The gridlines values are set using a command of the form:

 $w set -gridlines horizontal,vertical

where $w specifies the widget path name of the XYPlot widget, and horizontal and vertical are floating point numbers that are used
to determine the number of lines drawn. The determination is carried out by computing an interval value for the relevant axis by
dividing the number of pixels available along the axis by the relevant factor. Because of rounding and varying resolutions and
widget dimensions, the values of horizontal and vertical are only approximately equal to the number of grid lines actually drawn.

92.1.15 plotbackground

 The plotbackground option is used to set the color of the background for the area of the widget window that is used to display
plotted data. By default the value of the plotbackground option is white.

92.1.16 autolabel

 The value of the autolabel option determines whether a label is automatically generated for plotted points. The automatic label is
based on the value assigned to a point. By default, the value of the autolabel option is false.

92.1.17 autolabelformat

 The value of the autolabelformat option is a format specifier that is used to display automatically generated labels. By default, the
value of this option is %g. Any specification acceptable to the standard C library printf function may be used. Note that the value of
a point is a floating point number, so it is useful to used a floating point format specifier.

92.1.18 value

 The value option is a write only option and is used by the variable binding functions. It has no effect on the command line.

92.1.19 zerox

The zerox option is a boolean option that is by default false. If set to true, then the line that represents the location of the vertical axis at a value of x = 0 is
drawn, if this value lies within the current range of plotted values for the independent variable.

92.1.20 zeroy

 The zeroy option is a boolean option that is by default false. If set to true, then the line that represents the location of the
horizontal axis at the value y = 0 is drawn, if this value lies within the current range of plotted values for the dependant variable.

92.1.21 zerolinestyle

 The zerolinestyle option is used to specify the style of the line used to draw the axes at the zero value locations of the X and Y
variables on the plot. By default the line style is dash.

92.1.22 zerolinecolor

 The zerolinecolor option is used to specify the color used to draw the axes at the zero value locations of the X and Y variables on
the plot. By default the color used is black .

92 XYPlot Create a 2 dimensional plot widget

92.1.14 gridlines 253

92.1.23 pagegeometry

 The pagegeometry option is read only and returns a list of 4 numbers that represent the location of the origin and the extent of the area of the widget being
used to display the plotted values. The first 2 numbers are the location of the upper left hand corner of the plotting area while the second 2 numbers are the
width and height of the plotting area.

92.1.24 pagex

 The pagex option, when set, returns the location X location of the value supplied. When read, the value returned is the X location of the most recently set
value. The values returned can be used directly as coordinate by the drawing script, if one is supplied.

92.1.25 pagey

 The pagey option, when set, returns the Y location of the value supplied. When read, the value returned is the Y location of the
most recently set value. The values returned can be used directly as coordinates in the drawing scripts, if one is supplied.

92.1.26 drawing

 The drawing option can be used to supply a turtle graphics script that will be drawn on the region of the widget that is being used for displaying the plotted
data. This feature can be used to annotate the plotted data, or to enhance the plot with additional text or graphics. The drawing area used is the same region of
the widget that is used to display the plotted data.

 The coordinate system that is used by the turtle graphics engine is that of the displayed values of the horizontal and vertical axes of the plot. The pagex and
pagey options can be used to translate between values in the space of the plotted data to display coordinates used to draw items. For example, here is a
command that will draw a circle at the point in the data space with coordinates of (0.0, 0.0):

 $w set -drawing "cs pc red sp [$w set -pagex 0.0] [$w set -pagey 0.0] cr 20"

The XYPlot widget path name is in the variable w. The turtle graphics script draws a red circle centered about the point at data coordinates (0.0,0.0) with a
radius of 20 pixels.

 Any of the commands and features of the turtle graphics drawing engine may be used to create annotations and graphics on the plot. The documentation on
the Drawing widget describes how to develop turtle graphics scripts.

92.2 Points and their attributes

 A point as defined for use by the XYPlot widget consists of a set of 2 coordinate values representing the location of the point with
respect to the abscissa and the ordinate of the graph, and a value that is the value of the point. For example, if a set of points is
stored as a Tcl array, an entry in the array can be set using the following Tcl command:

 set Data(4.3,35.2) 103,5

In this example, the coordinates of the point are 4.3 and 35.2, while the value of the point is 103.5. Points may also have additional
attributes that define how the point is to appear on the graph, as well as attributes useful for managing points or series of points.

 When a point is created, or for a point already contained in the list of points being plotted, the following attributes can be set or
modified:

x Location with respect to the abscissa

y Location with respect to the ordinate

value Value of the point

symbol The name of the symbol to use to plot the point

color Color used to plot the point

label Label used for the point

tags List of tags for the point

92 XYPlot Create a 2 dimensional plot widget

92.1.23 pagegeometry 254

linestyle Style of the line used to join points

labelcolor Color used for label text

labelalign Where to put the label

labelbackgroundBackground color for the label

Points are indexed in the point list using a number between 0 and 1 minus the number of points in the list. Using this index, the
attributes of a point may be modified. When a new point is added to the list, the attributes of the point can be set using the above
option names.

 When points are plotted on the graph they appear as one of a set of available symbols. By default, all points are plotted using the
point symbol. Here is the list of available symbols:

point A small point

cross An x symbol

plus A plus sign symbol

circle A small unfilled circle

triangle A small triangle

square A small box

blob A small filled circle

 Labels for points are just text strings. They can be of any length, however, plots can become crowded if long text labels are
specified.

 Tags for points are strings of comma separated tag names that are associated with points. These tag lists are used to manage the
characteristics of the displayed points using the widget commands. By default, points have no tag.

92.3 Using Tcl Arrays

 The XYPlot widget can be bound to a Tcl variable that is an array of points that are to be plotted. Using the variable widget
option, the name of a Tcl array can be supplied to the widget as the source of the data to be plotted. For example, if a global Tcl
array has elements of the form:

 Data(x,y)

where the x and y components of the array index are numerical values, then the command:

 $w configure -variable Data

will cause the plot widget to collect all of the members of the array Data and use the values stored in the array to plot the points.
This provides a convenient way of plotting data directly from a Tcl script. See theexample script below for the details of how to
implement variable binding.

 The indices of Tcl arrays can optionally be used to specify the color and label attributes of the points to be plotted. The general
form of the indices being used is:

 x,y,color,label

where x and y are numerical values that specify the coordinates of the point to be plotted, color is a color name to be used to plot the
point, and label is a text string that is to be used as the label for the plotted point. The color and label components are optional, and
if they are not present, the default values will be used. The following array element:

 Data(4.3,19.7,purple,Special)

92 XYPlot Create a 2 dimensional plot widget

92.2 Points and their attributes 255

would be plotted at the graph location (4.3,19.7) in purple and with the label Special.

92.4 Widget Commands

 In addition to the standard widget commands cget and configure, the XYPlot widget supports the following list of widget specific
commands:

add Add a point to the list of points

bounds Specify the normalization range for the axes

clear Clear the list of points

closest Get the point closest to a location

color Specify the color for the list of points

count Get the point count

hide Hide points

labelbackgroundSet the label background color for points

labelcolor Set the label color for points

labelalign Set the location of labels

linestyle Set the line style used to join points

statistics Get the statistical information about the points

show Show points in the list

symbol Set the symbol for a list of poin

92.4.1 add Add points to the list

 The format of the add command is:

 $w add options

where $w is the path name of the widget and options is a list of option and value pairs that is used to configure the point. The names
of the options are the names of the attributes of the points. For example, the command:

 $w add -x 100 -y 30 -value -18 -color blue -tags blue,special -symbol square -label "Blue is Special"

will add a point with coordinates (100,30) and value 18 to the list of points being plotted by the widget. When displayed, this point
will be represented by a small square box colored blue and it will have the tags blue and special associated with it.

92.4.2 bounds Set the normalization range for the axes

 By default, the XYPlot widget will automatically set the range of the axes labels based on the ranges of the values of the the
coordinates of the plotted points. It may be preferable in some cases to be able to specify the range of values for the axes and to plot
the points on the graph according to these values.

 The format of the bounds command is:

 $w bounds -x min,max -y min,max -value min,max

where any or all of the options may be specified. Here $w is the path name of the widget and min and max refer to the desired
minimum and maximum values of the ranges for the respective coordinate axes. For example, it is often the case where the value of
the dependent variable ranges between 0 and 1, as in the case where the points being plotted represent a percentage type of value.
The following command will set the bounds of the Y axis appropriately:

92 XYPlot Create a 2 dimensional plot widget

92.3 Using Tcl Arrays 256

 $w bounds -y 0,1

 Using the bounds command to set the range of normalization for a coordinate or the point values turns off automatic scaling.
While this is certainly useful in some cases, should any points be added that have values or coordinate locations outside of the
specified ranges, they may not be plotted on the graph.

92.4.3 clear Clear a set of points

 The clear command can be used to remove all of the points from the widget, or to selectively remove points from the widget. The
format of the clear command is:

 $w clear tag tag ...

where $w is the path name of the widget and the optional tag strings are the tags that identify the points to be removed from the list.
If no tags are specified, then all points in the list are deleted. If any tags are specified, all points that have the specified tags in their
tag lists will be deleted.

92.4.4 closest Get the point closest to a location

 The closest command returns the attributes of the point that is closest to the coordinates specified on the command line. This
function is provided to support the mapping between locations generated by the mouse over the widget window and the coordinates
used to plot the points on the graph.

 The format of the closest command is:

 $w closest x y

where $w is the path name of the widget being queried, and x and y are the window relative coordinates of the location to query. The
window relative location is the location that is returned by a mouse event when the use moves or clicks the mouse over the widget
window.

 The value returned by this command depends on whether or not a point is in the point list and which of the points in the list is
closest to the window location. If there are no points in the point list, then the result returned by this command is simply the 2 input
values.

 If there is a point found in the point list, the result returned is a Tcl list that contains 2 elements. The first element of the list is a
list that has the 2 numbers that are the input location values, and the second element of the list is a list of 3 numbers that represent
the plot coordinates of the point and its value.

 Here is a script that shows how to use the closest command:

 Bind $w <ButtonPress> { puts { [%W closest %x %y] } }

92.4.5 color Set the color of a list of points

 The color command will set the color of the point symbol and the color of any line joining the points for all of the points in the
point list that match the selection criterion. The format of the the color command is:

 $w color color_name tag tag ...

where $w is the path name of the widget and color_name is the color to be set. If no tags are specified, all points in the list are
affected. If any tags are specified, only those points with matching entries in their tag lists will be affected.

 The following command will set all of the points in the current point list to green:

 $w color green

92 XYPlot Create a 2 dimensional plot widget

92.4.2 bounds Set the normalization range for the axes 257

92.4.6 count Get the number of points in the point list

 The count command takes no parameters and returns the number of points in the point list. The format of the command is:

 $w count

where $w is the path name of the widget to use.

92.4.7 hide Hide points

 The hide command is used to render invisible points in the point list. The format of the command is:

 $w hide tag tag ...

where $w is the path name of the widget to use and the optional tag values are tags that identify the points to be hidden. If no tags
are specified, all of the points in the list are made invisible. If any tags are specified, only those points which contain matching tags
in their point tag lists will be hidden.

 Points which have been hidden using the hide command can be made visible using the show command.

92.4.8 labelbackground Set the label background color

 The labelbackground command is used to set the background color for labels of points in the point list. The format of the
command is:

 $w labelbackground color tag tag ...

where $w is the path name of the widget to use, color is the color to use and the optional tag values are tags that identify the points.
If no tags are specified, all of the points in the list are set to use the specified background color. If any tags are specified, only those
points which contain matching tags in their point tag lists will be affected.

92.4.9 labelcolor Set the label text color

 The labelcolor command is used to set the foreground color for labels of points in the point list. The format of the command is:

 $w labelcolor color tag tag ...

where $w is the path name of the widget to use, color is the color to use and the optional tag values are tags that identify the points.
If no tags are specified, all of the points in the list are set to use the specified foreground color. If any tags are specified, only those
points which contain matching tags in their point tag lists will be affected.

92.4.10 labelalign Set the label position

 The labelalign command is used to set the location for labels of points in the point list. The format of the command is:

 $w labelalign alignment tag tag ...

where $w is the path name of the widget to use, alignment is the location to use and the optional tag values are tags that identify the
points. If no tags are specified, all of the points in the list are set to use the specified alignment. If any tags are specified, only those
points which contain matching tags in their point tag lists will be affected.

 Labels can be aligned using the following location names:

top Above the point

92 XYPlot Create a 2 dimensional plot widget

92.4.6 count Get the number of points in the point list 258

bottom Below the point

left Left of the point

right Right of the point

When a label is displayed, the background is always erased in the area used to display the label text.

92.4.11 linestyle Set the line style of points

 The linestyle command is used to set the line style used for the lines that join points in the point list. The format of the command
is:

 $w llinestyle style tag tag ...

where $w is the path name of the widget to use, style is the style to use and the optional tag values are tags that identify the points. If
no tags are specified, all of the points in the list are set to use the specified background color. If any tags are specified, only those
points which contain matching tags in their point tag lists will be affected.

 Line styles may be any of the line styles specified by the extension package. The default line style is solid. Other common styles
are dash, dot and dashdot.

92.4.12 show Show points

 The show command is used to make visible points in the point list that are hidden. The format of the command is:

 $w show tag tag ...

where $w is the path name of the widget to use and the optional tag values are tags that identify the points. If no tags are specified,
all of the points in the list are set to be visible. If any tags are specified, only those points which contain matching tags in their point
tag lists will be affected.

 Points can be made invisible using the hide command.

92.4.13 statistics Get the model statistics

 The statistics command will return a list of elements that contains the various statistical values computed for the variables and
used to construct the regression model, if the fit option has been set to true.

92.4.14 symbol Set the symbols used to plot points

 The symbol command is used to set the symbols of points in the point list. The format of the command is:

 $w symbol name tag tag ...

where $w is the path name of the widget to use, name is the name of the symbol to use and the optional tag values are tags that
identify the points. If no tags are specified, all of the points in the list are set to use the specified background color. If any tags are
specified, only those points which contain matching tags in their point tag lists will be affected.

 The default symbol for a point is point.

92.5 Example of the use of the XYPlot Widget

92 XYPlot Create a 2 dimensional plot widget

92.4.10 labelalign Set the label position 259

 The following script can be found in the plotdata.tcl file in the distribution scripts directory. It demonstrates how to display a set
of points on a 2 dimensional graph, along with some linear correlation statistics on the relationship between the X and Y values of
the points. In this example, the points themselves have labels which are the values of the ordinate.

#!/bin/sh
\
exec fltkwish "$0" -- ${1+"$@"}
#
--- plot.tcl --- Test harness for the XYPlot Widget
#
Copyright(C) I.B.Findleton, 2001. All Rights Reserved
#
This script shows how to use the xyplot widget to generate a
graph from a set of data in a Tcl array variable. The widget
will scan the named variable for values and plot the data.
#
catch { Destroy t }

Generate some data in a global array

for { set i 0 } { $i < 10 } { incr i } {
 set Data($i,[expr $i * $i]) [expr $i * $i]
 }
#
Create a plot widget and bind a variable to it. This plot will also
compute the linear regression fit to the plotted points and display
both the fit and the standard error bounds for the regression.
#
XYPlot t.t -fit true -align top,inside -label "Test Plot from Tcl Array" \
 -line true -variable Data -autolabel true -linestyle dashdot \
 -xlabel "Value of X" -ylabel "Value of X**2" -grid true \

92 XYPlot Create a 2 dimensional plot widget

92.5 Example of the use of the XYPlot Widget 260

 -bg blue -fg white -font helv,italic -plotbackground gray
#

92 XYPlot Create a 2 dimensional plot widget

92.5 Example of the use of the XYPlot Widget 261

93 Relief - Specify the type of relief for a widget

 The relief of a widget determines how its border pixels are drawn. The Fltk extension supports relief names that are provided by
the Fltk tool kit being used to draw the widgets. For the Fltk tool kit, the following relief names are valid:

 none

 flat

 raised

 sunken

 raisedframe

 sunkenframe

 raisedthin

 sunkenthin

 raisedthinframe

 sunkenthinframe

 engraved

 engravedframe

 embossed

 embossedframe

 border

 borderframe

 shadow

 shadowframe

 round

 roundframe

 roundshadow

 roundflat

 roundraised

 roundsunken

 raiseddiamond

 sunkendiamond

 oval

 ovalframe

 ovalshadow

 ovalflat

 The relief names are used differently amongst the widgets, and can be used to describe different states of the widgets. For
example, Buttons use the relief option for the unpressed state, and a downrelief option for the pressed state.

 There are 2 classes of relief, the frame relief types and the non-frame relief types. The frame relief types just draw the frame
around the widget, and do not draw the widget client area. The non-frame relief types draw both the frame and the widget client
area. When building up a complex compound widget there can be some efficiencies of drawing obtained by using only the frame
style to draw relief.

 Some schemes make use of the borderwidth option to set the number of pixels used to draw relief. Various effects can be
achieved by varying the borderwidth value, particularly with schemes that make use of OpenGl for widget drawing.

93 Relief - Specify the type of relief for a widget 262

94 Copyright Notice

 The software and documentation that form part of this package are all copyrighted materials.

 Copyright(C) I.B.Findleton, 2001. All Rights Reserved.

 This software is offered without warranty of any kind. The author accepts no responsibility for any loss or damage to your
interests that may result, either directly or indirectly, from the use of this software. USE AT YOUR OWN RISK AND EXPENSE.

 License is hereby granted to use this software for non-commercial purposes. Redistribution is permitted as long as the complete
contents of the package are included and this copyright notice is retained intact as part of the package.

94.1 Miscellaneous Contributions

 Some few of the widgets provided as part of this distribution are based on the copyrighted work of other contributors. Where such
software is included in this distribution, the license conditions of the original authors apply. While all of the miscellaneous software
used to create the package is available under some version of the GNU Public License or under other Open Source license
arrangements, the rights of the original authors respecting their software remain in force. Before you make use of this software for
any purpose you should consult the relevant license materials. All relevant license documents are distributed as part of the source
release of this package which is available at:

http://pages.infinit.net/cclients/software.htm

Contact: ifindleton@videotron.ca

94 Copyright Notice 263

http://pages.infinit.net/cclients/software.htm

	Table of Contents
	1 Introduction
	1.1 Features of the FLTK Tool Kit
	1.2 Limitations of the FLTK Tool Kit
	1.3 FLTK and TCL/TK
	1.4 FLTK and Other Extensions

	2 Acquiring and Installing the FLTK Extension for TCL
	2.1 TCL/TK Distributions
	2.2 FLTK Distributions
	2.3 Distributions of the FLTK Extension for TCL/TK

	3 Introduction to Tcl Programming
	3.1 Writing Tcl Programs
	3.2 Tcl Language Syntax
	3.3 Variables
	3.4 Tcl Lists
	3.5 Command Evaluation
	3.6 Expressions
	3.7 Procedures
	3.8 Control of Statement Execution
	3.9 Error Handling
	3.10 Input and Output
	3.11 Events
	3.12 Library Code and Extensions
	3.13 Introspection
	3.14 Summary

	4 How to Write Applications Using the Fltk Extension
	4.1 Designing User Interfaces
	4.2 Creating Custom Mega-Widgets
	4.3 Binding Tcl Procedures to Widgets
	4.4 Using Options and Application Data
	4.5 The Fltk Global Array
	4.6 Running the Application using the fltkwish Interpreter

	5 Fltk Command List
	6 Widgets - Standard configurable widget options
	6.1 Getting and Setting Widget Option Values
	6.2 Qualified Option Names
	6.2.1 alignment
	6.2.2 anchor
	6.2.3 background
	6.2.4 borderwidth
	6.2.5 class
	6.2.6 command
	6.2.7 cursor
	6.2.8 damage
	6.2.9
	6.2.10 data
	6.2.11 eventdefault
	6.2.12 font
	6.2.13 fontsize
	6.2.14 fontstyle
	6.2.15 foreground
	6.2.16 highlightbackground
	6.2.17 highlightforeground
	6.2.18 highlightthickness
	6.2.19 height,width,x,y
	6.2.20 invertstate
	6.2.21 label
	6.2.22 limits
	6.2.23 nocomplain
	6.2.24 padx,pady
	6.2.25 qualifiednames
	6.2.26 relief
	6.2.27 resizeable
	6.2.28 state
	6.2.29 statevariable
	6.2.30 statevariablecommand
	6.2.31 tooltip
	6.2.32 underline
	6.2.33 variable
	6.2.34 variablecommand
	6.2.35 visible
	6.2.36 wraplength
	6.2.37 wallpaper

	6.3 Configurable Options and the Option Database
	6.4 Initialization of Widgets from the Option Database
	6.5 Using Widget Commands
	6.6 Widget Construction
	6.7 Widget Destruction

	7 Alert - Display an alert message
	8 Ask - Ask a question
	9 Adjuster - Create an adjuster widget
	10 Application - Specify application data
	11 Bind - Manage event bindings for widgets
	11.1 Event Names
	11.2 User Event Bindings
	11.3 Script Expansion
	11.4 Event Processing

	12 BindTags - Manage event processing list for a widget
	13 Button, CheckButton, DiamondButton, LightButton, RepeatButton, ReturnButton, RoundButton, LEDButton - Construct a button
	13.1 Typical Button Use
	13.2 CheckButton - Create a checkbutton
	13.3 DiamondButton - Create a button with a diamond indicator
	13.4 LEDButton - Create a LED button
	13.5 LightButton - Create an illuminating button
	13.6 RepeatButton - Create a repeat button
	13.7 ReturnButton - Create a return button
	13.8 RoundButton - Create a round button

	14 Canvas - Create a canvas widget
	14.1 Widget specific commands
	14.2 Canvas Items
	14.2.1 The origin of Canvas items
	14.2.2 The rotate property of Canvas items
	14.2.3 The scale property of Canvas items
	14.2.4 Canvas item geometry items
	14.2.5 The state property of Canvas items
	14.2.6 Color properties of Canvas items
	14.2.7 Line style properties of Canvas items
	14.2.8 The tags property of Canvas items

	14.3 Canvas Item Creation
	14.4 Deleting Canvas Items
	14.4.1 Canvas Arc Items
	14.4.2 Canvas Circle Items
	14.4.3 Canvas Curve Items
	14.4.4 Canvas Image Items
	14.4.5 Canvas Line Items
	14.4.6 Canvas Polygon Items
	14.4.7 Canvas Point Items
	14.4.8 Canvas Quadrangle Items
	14.4.9 Canvas Rectangle Items
	14.4.10 Canvas Text Items
	14.4.11 Canvas Triangle Items

	14.5 The Canvas delete function command
	14.6 The Canvas itembind function command
	14.7 The Canvas itemcget function command
	14.8 The Canvas itemconfigure function command
	14.9 The Canvas itemlist function command
	14.10 Canvas initialization from text files
	14.10.1 The Canvas load function command
	14.10.2 The Canvas save function command

	15 Center - Center a widget on the screen
	16 Chart - Create a chart widget
	16.1 Chart Widget Function Commands
	16.1.1 The Chart bounds function command
	16.1.2 The Chart clear function command
	16.1.3 The Chart insert function command
	16.1.4 The Chart replace function command

	17 CheckEvents - Check for pending events
	18 Choice - Construct a choice widget
	19 Choose - Choose from some options
	20 Combobox - Create a combobox widget
	20.1 Widget Specific Commands
	20.1.1 add - Add items to the list
	20.1.2 clear - Clear the list
	20.1.3 delete - Delete items from the list
	20.1.4 find - Find an item in the list
	20.1.5 insert - Insert an item into the list
	20.1.6 load - Load the list from a file
	20.1.7 replace - Replace the contents of an item
	20.1.8 sort - Sort the list contents
	20.1.9 selection - Query or set the current selection

	21 Color - Color Functions
	22 ChooseColor - Choose a color
	23 ColorName - Get the name of a color specification
	24 Counter - Create a counter widget
	25 Cursor - Manage User Defined Cursors
	25.1 Configurable Cursor Options
	25.2 cget
	25.3 configure
	25.4 add
	25.5 delete
	25.6 list

	26 Debug - Set controls on debugging messages
	27 Destroy - Destroy one or more widgets
	28 Dial - Create a dial widget
	29 Drawing - Create a Turtle Graphics drawing widget
	29.1 The Turtle Graphics Drawing Language
	29.2 Drawing Concepts
	29.3 Turtle Graphics Command Reference
	29.3.1 al - Set the text alignment
	29.3.2 ar - Draw an arc
	29.3.3 bd - Set the current drawing window limits
	29.3.4 bg - Set the background color
	29.3.5 bk - Move backwards
	29.3.6 cl - Clear the drawing and set the background color
	29.3.7 cr - Draw a circle
	29.3.8 cs - Clear the drawing
	29.3.9 di - Delete items from the display list
	29.3.10 dl - Draw a line
	29.3.11 fd - Move forward
	29.3.12 fl - Set the fill state
	29.3.13 fs - set the size of the current font
	29.3.14 ft - Set the current text font
	29.3.15 hi - Hide draw items
	29.3.16 hl - Display help information
	29.3.17 hm - Move the cursor to the home position
	29.3.18 ht - Hide the cursor
	29.3.19 im - Draw an image
	29.3.20 li - List the current draw list
	29.3.21 ls - Set the current line style
	29.3.22 lt - Left turn
	29.3.23 pc - Set the pen color
	29.3.24 pd - Pen down
	29.3.25 pp - Pop the drawing engine state
	29.3.26 ps - Push the drawing engine state
	29.3.27 pt - Draw a point
	29.3.28 pu - Pen up
	29.3.29 rc - Draw a rectangle
	29.3.30 rp - Repeat a command block
	29.3.31 rt - Right turn
	29.3.32 sh - Set the drawing direction
	29.3.33 si - Show hidden items
	29.3.34 sp - Set the cursor position
	29.3.35 st - Show the cursor position
	29.3.36 sx - Set the horizontal position
	29.3.37 sy - Set the vertical position
	29.3.38 tg - Specify item tags
	29.3.39 th - Set the line thickness
	29.3.40 tr - Set the command trace state.
	29.3.41 tx - Set the text
	29.3.42 // - Comment

	30 Dummy - Do nothing
	31 Exit - Terminate the current application
	32 Frame - Construct a frame widget
	33 Focus - Set or Query the input focus
	34 GelTabs - Create a tabs widget using gel syyle tab labels
	34.1 Widget Commands

	35 GetInput - Get some input from the user
	36 GetPassword - Get a password from the user
	37 GetFileName - Get a file name from the user
	38 Group - Create a group container widget
	38.1 Automatic Child Widget Positioning

	39 Help - Display help information
	40 HelpDialog - Display Help information
	41 HelpViewer - Create a HTML viewing widget
	41.1 Loading HTML Data
	41.2 value
	41.3 textcolor,textfont, and textsize
	41.4 length
	41.5 doctitle
	41.6 directory and filename
	41.7 topline
	41.8 linkproc
	41.9 url

	42 HtmlWidget - Construct an HTML Display Widget
	42.1 Widget Specific Commands
	42.1.1 load
	42.1.2 page
	42.1.3 font

	43 Hide - Make one or more windows invisible
	44 Image - Construct an image widget
	44.1 Supported File Formats
	44.2 Configuration Options
	44.3 Image Markup
	44.4 Mark Attributes
	44.5 Widget Commands
	44.5.1 add Add a mark to the mark list
	44.5.2 clear Clear the mark list
	44.5.3 closest Get the closest mark to a location
	44.5.4 getpixel Get the color of a pixel
	44.5.5 Hide Hide items in the mark list
	44.5.6 List List the items in the mark list
	44.5.7 ListTags List the tags associated with the items in the mark list
	44.5.8 Location Convert from window coordinates to image coordinates
	44.5.9 itemcget Query the attributes of a mark
	44.5.10 itemconfigure Configure mark attributes
	44.5.11 setpixel Set the color of a pixel
	44.5.12 save Save the image to a file
	44.5.13 Show Show hidden items

	44.6 Drawings

	45 ImageButton - Construct an image button widget
	46 Input - Create an input widget
	46.1 Using Input Widgets
	46.2 Input Widget Commands
	46.2.1 The insert command
	46.2.2 The cut command
	46.2.3 The copy command
	46.2.4 The replace command
	46.2.5 The copycuts command
	46.2.6 The undo command
	46.2.7 The load command
	46.2.8 The mark command
	46.2.9 The position command

	47 Iterator - Construct a list iterator button
	47.1 Widget Specific Commands
	47.2 Grouping Iterators

	48 Knob - Create a knob widget
	49 Label - Create a label widget
	50 LabeledCounter - Construct a labeled counter widget
	51 LabeledInput - Create an input box with a configurable label
	51.1 Input Box Configuration
	51.2 Widget Configuration Options

	52 LabeledText - Create a text box with a configurable label
	52.1 Text Box Configuration
	52.2 Widget Configuration Options

	53 Lcd - Create a Liquid Crystal Display Widget
	54 Library - Manage the library search list
	54.1 Add Library Files
	54.2 Clear the Library List
	54.3 Delete Files from the Library List
	54.4 List the Contents of the Library List
	54.5 List the Modules in the Library List
	54.6 List the Procedures in the Library List
	54.7 Locate a Procedure or Module
	54.8 Locate the Source of a Procedure or Module

	55 Listbox - Create a listbox widget
	55.1 Using Listbox Widgets
	55.2 Listbox Widget Commands
	55.2.1 The Listbox add function command
	55.2.2 The Listbox clear function command
	55.2.3 The Listbox contains function command
	55.2.4 The Listbox count function command
	55.2.5 The Listbox data function command
	55.2.6 The Listbox delete function command
	55.2.7 The Listbox deselect function command
	55.2.8 The Listbox hide function command
	55.2.9 The Listbox insert function command
	55.2.10 The Listbox load function command
	55.2.11 The Listbox move function command
	55.2.12 The Listbox position function command
	55.2.13 The Listbox remove function command
	55.2.14 The Listbox scroll function command
	55.2.15 The Listbox select function command
	55.2.16 The Listbox selected function command
	55.2.17 The Listbox show function command
	55.2.18 The Listbox text function command
	55.2.19 The Listbox visible function command

	56 Menu - Create a Menu
	56.1 Types of Menu Widgets
	56.2 Menu Widget Commands
	56.3 Initialization of Menus
	56.3.1 The Menu activate function command
	56.3.2 The Menu delete function command
	56.3.3 The Menu index function command
	56.3.4 The Menu invoke function command
	56.3.5 The Menu listitems function command
	56.3.6 The Menu add function command
	56.3.7 Configuration of Menu Items
	56.3.8 The variable option

	57 Message - Display a message
	58 Output - Create a text output widget
	59 Option - Manage the contents of the option database
	59.1 Adding Option Database Entries
	59.2 Removing Option Database Entries
	59.3 Retrieving Option Values
	59.4 Listing the contents of the option database
	59.5 Loading the option database from a file
	59.6 Creating an Option File

	60 Package - Manage the geometry of widgets
	61 Popup - Construct a pop up menu
	61.1 Menu Items
	61.2 Widget Commands
	61.2.1 The add command
	61.2.2 The itemcget command
	61.2.3 The itemconfigure command
	61.2.4 The list command
	61.2.5 The popup command

	62 ProgressBar - Create a progress bar widget
	63 RadialPlot - Create a widget to plot radial diagrams
	63.1 Automatic Plotting
	63.2 The Background Grid
	63.3 Adding Annotations
	63.4 Displayed Values
	63.5 Selections
	63.6 Widget Specific Commands
	63.6.1 Point Attributes
	63.6.2 add - Add a point to the widget
	63.6.3 clear - Clear the point list
	63.6.4 color - Set the color of points
	63.6.5 count - Get the count of points in the point list
	63.6.6 delete - Delete points from the plot
	63.6.7 hide - Hide points in the point list
	63.6.8 list - List points in the point list
	63.6.9 replace - Replace points in the point list
	63.6.10 select - Select a point in the point list
	63.6.11 show - Show hidden points in the point list
	63.6.12 statistics - Get basic statistics on point values

	64 Region - Create a region widget
	64.1 The Add Function
	64.2 The Delete Function
	64.3 The ItemCGet Function
	64.4 The ItemConfigure Function
	64.5 The List Function
	64.6 Box Regions
	64.7 Circle Regions

	65 Roller - Create a roller widget
	66 RollerInput - Create a roller input widget
	67 Run - Run a binary module
	67.1 Decoder Options
	67.2 Encoding Binary Module Files

	68 Scalebar - Create a scroll bar widget
	69 Scheme - Specify the widget rendering scheme
	69.1 The normal scheme
	69.2 The shiny scheme
	69.3 The gradient scheme
	69.4 The skins scheme
	69.5 The image scheme
	69.6 The plastic and modern schemes
	69.7 Configuration of schemes

	70 Screen - Get the current screen geometry
	71 Scroll - Create a scrollable container widget
	71.1 Adding widgets to a Scroll

	72 Scrollbar - Create a scroll bar widget
	73 Show - Show one or more windows
	74 Signal - Signal an Event
	75 Slider - Create a slider widget
	76 Table - Create a table of items
	76.1 Features
	76.2 Cell Styles
	76.3 Tcl Variables and the Table Widget
	76.4 Widget Commands

	77 Tabs - Create a notebook tabs widget
	77.1 Widget Commands

	78 TestWidget - Create a test widget
	79 Text - Create a text widget
	80 Thermometer - Construct a liquid thermometer widget
	80.1 Changing the temperature value

	81 Tile - Create a tile widget
	82 Toplevel - Construct a top level widget
	83 Update - Redraw widgets
	84 UserButton - Create a custom button
	85 Value - Create a Value widget
	86 ValueSlider - Create a slider with a value display
	87 Vu - Construct a digital volume units widget
	88 Windows - Interrogate the list of widgets
	88.1 list - Get a list of windows
	88.2 count - Get the widget count of toplevels
	88.3 toplevels - Get the count of container windows
	88.4 class - Get the list of widgets in a class
	88.5 group - Get the widgets in a group

	89 Winfo - Get information about a widget
	90 Wm - Interact with the window manager
	91 Wizard - Create a wizard widget
	91.1 Widget Specific Commands
	91.2 Adding Children to a Wizard

	92 XYPlot Create a 2 dimensional plot widget
	92.1 Configurable Options
	92.1.1 Text Options
	92.1.2 xlabel and ylabel
	92.1.3 xlabelcommand and ylabelcommand
	92.1.4 xformat,yformat
	92.1.5 xrange,yrange,zrange
	92.1.6 valuegradient
	92.1.7 line
	92.1.8 linestyle
	92.1.9 fit
	92.1.10 fitcolor
	92.1.11 fitlinestyle
	92.1.12 grid
	92.1.13 gridcolor
	92.1.14 gridlines
	92.1.15 plotbackground
	92.1.16 autolabel
	92.1.17 autolabelformat
	92.1.18 value
	92.1.19 zerox
	92.1.20 zeroy
	92.1.21 zerolinestyle
	92.1.22 zerolinecolor
	92.1.23 pagegeometry
	92.1.24 pagex
	92.1.25 pagey
	92.1.26 drawing

	92.2 Points and their attributes
	92.3 Using Tcl Arrays
	92.4 Widget Commands
	92.4.1 add Add points to the list
	92.4.2 bounds Set the normalization range for the axes
	92.4.3 clear Clear a set of points
	92.4.4 closest Get the point closest to a location
	92.4.5 color Set the color of a list of points
	92.4.6 count Get the number of points in the point list
	92.4.7 hide Hide points
	92.4.8 labelbackground Set the label background color
	92.4.9 labelcolor Set the label text color
	92.4.10 labelalign Set the label position
	92.4.11 linestyle Set the line style of points
	92.4.12 show Show points
	92.4.13 statistics Get the model statistics
	92.4.14 symbol Set the symbols used to plot points

	92.5 Example of the use of the XYPlot Widget

	93 Relief - Specify the type of relief for a widget
	94 Copyright Notice
	94.1 Miscellaneous Contributions

