ContainersV 1

Containers V 1

Table of Contents

1 Containers — Container itemsfor TCl ProgramiS........oooooiiiiii oo aaraanees 1
L.2DESCRIPTION. ..ttt ettt e e e ettt e e e e e ettt e e e e e e e e e st be et e e e e e e e e e nnseaeeeeaeeeesannsbsaneeeaeeenanns 1
L.3CONTAINER TYPES......coiiii i ettt ettt e e e e e ettt e e e e e e s sttt e e e e e e e s nb bt et e e eeeeesanntsneeeeeeeeaans 2
L.AARRAY VARIABLES...... oottt ettt ettt e e e e e ettt e e e e e e e e s s et e e e e e e e e e e nabaeeeaaaeeeeannnnees 2

2 Bag— Bagcontainer itemMSfOr TCl PrOgIramIS..... ... uuuuiuiiiiiiiiiiiiiiittersssueeeresrresesssesssesssreersreraerrae—e—errrrrrerree———e 3
2.2 DESCRIPTION. .. et ittt ittt ettt e e e e e e ettt e e e e e e s e sttt ettt e e e e e e s ea et e e e e e e e annssbseeeaeeeesannssseneeeaeeananns 3

3 Queue- SequentialQueueContainer for TCl ProgramsS........ccooeiiiiiiiii i 5
I IR N[Y 1 3SR E
.2 DESCRIPTION. ..t ettt ettt ettt ettt e e e e e e ettt e e e e e e s e st e e et e e e e e e s nna b e et e e e e e e e e s sbeeeeeeeeesannsssnneeeaeeaaanns 5

4 Stack — Stack Container for TCl Programs.........cooooi oo 6
I L@ T USRS (
| ST @ 1 i I T N PSPPSR €

5 Hash - Hashtable containeritemsfor TCl programs...........c.ooooiiiiiiiii s 7
ES I IS N[T 1 3SR T
D 2 DESCRIPTION. .. ettt ettt ittt ettt e e e e e ettt e e e e e e e sttt et e e e e e e e s sa e et e e e e e e e e nssbeeeeaeeeesannssseneeeeeeaaanns 7

6 Tree — Tree ContainNer fOr TCl PrOgIAMIS. i ittt e aaabeeaesssasesssssesssssssssssssssssssessssssesseneseees 9
B. L SYINOP SIS, ...ttt ettt et e e e e ettt e e e e e e e — e e et e e e e e et a ettt e e e e e e e nnat et e e e e e e e aannarreeeeas (
B.2 DESCRIPTION. ..ctt ittt ittt ettt e e e e e e ettt e e e e e e e e e sttt et e e e e e e e s sa b e e e aeeeee e s nssbeeeeeeeeesannsssnneeeaeeaaanns C

7 PQueue— Priority QueueContainer for TCl PrOgramMS...........uueuuerrreeirerreerereeseereeeereeererrrresereererrrrrrrereeee. 12
T LSYNOPSIS. ..ottt e e e e e e ettt e e e e e e e e h b ettt et e e e e e e r ittt e e e e e e e e naa e e e aeeee e e nnrrnees 1:
T 2 DESCRIPTION. .. et ettt ittt e e ettt e e e e e e ettt et e e e e e sttt e e e e e e e s sb bt e e eeeeeeeeanstetseeeeeeeaaannnseeeeeaeens 12

8 RQueue- Random QueueContainer for TCl programs...........cooooviiiiiiiiii e, 14
B L SYNOP SIS ...ttt e e e e e e et e e e e e e b —— et e e e e e e e et e bt e e e e e e e e e narrreaaeeeeeannrreees 1
8.2 DESCRIPTION. ... tttttitiee e e ettt e e e e e ettt e e e e e e e bt e e e e e e e s astb e eeeeeeeeeaaannabeeeeeaeeeeeanssaneeeeeeeaaans 14

9 Struct — Structure Container fOr TCl PrOgIramMIS.......uuuviiiiiiiiieiieei et e e e e 15
. L SYNOP SIS ..ottt ettt e e e e e e e et e e e e e e et — e e et e e e e e e E ettt e e e e e e e e naaateeaeeeeeannrrrees 1
9.2 DESCRIPTION. .. ettt ettt et e ettt e e e e e e e ettt e e e e e e s s s e et e e e e e e e e s se bt et eeeeeeeeansssteeeeeeeeaaannnsneneaaeens 1E
S N Y I N I S PRRRRS 15
D AINSTANGCES ettt ettt et e e e e ettt et e e e e e s s ettt et eee e e e e n st tee e e e e e e e e annnnab et e e e e e e e e nnnarreeaaeeas 1¢
O.5DATA ACCESS ... ettt ettt e e e e e e ettt et e e e e e e e e et e e e e e e e e n it e e aaeee e e e nraretaaeeeaaaas 16
9.6 DATA MODIFICATION. ...ttt ettt e e e e e ettt e e e e e e e s e e e e e e e e s ansbaaeeeeaeeeeansbaneeeeeeeeaannnes 17
Q.7 INHERITANCE. ..o ittt ettt et e e e e e sttt e e e e e e e s b bttt eeeeeeeeansseeseeeeeeeaaansnbneeeeaeeas 17
9.8EMBEDDED STRUCTURES......coitiiiiiiitiiiiiee ettt e e e e e s e e e e e e e e snsbaeeeeeaeeeaannnes 18
0.0 ASSIGINMENT. ...t tteettee e e ettt e e e e ettt e e e e e st et e e e e e s e s e baeeeeeeee e s e nseteeeeeeaeeaaansnneeeeeeaeeeennnnnrnees 1€

1 Containers — Container items for Tcl programs

1.1 SYNOPSIS

bag stack queue tree pqueue rqueue struct

1.2 DESCRIPTION

This package is a dynamically loaded extension to the Tcl language that implements a few container object:
that can be useful for processing lists of things. The containers are implemented as containers of Tcl object:
and therefore can hold any type of item that can be represented as a native Tcl object. This includes lists, lis
of lists, arrays, blocks of binary data, and strings.

When a container is created using this package, it creates an associated Tcl array that is maintained consis
as to contents with the contents of the container. The usual Tcl array syntax can also be used to access the
contents of the container. The array will have indices that match those of the relevant container. For exampl
a hash will have an associated variable with string indices that match the hash keys, while a bag container v
have indices that are numerical keys that represent the order in which items entered the container.

When an instance of a container is created, it is represented by a Tcl command that is used to access the
functions of the container. Each of the containers provides a set of functions that are appropriate to the
container. For example, the stack container will process the functions push and pop. Similarly the queue
container will process the functions insert and remove. Every container supports a set of common functions
and whatever container specific functions that are meaningful for the specific container type.

All containers will process the following functions:

empty Empty the container

destroy Destroy the container

count Get the number of items in the container

elements Make a list of the element values in the container
keys Make a list of the element keys in the container

list Make a list of the elements and their keys.

status Get or set the container status

trace Get or set the variable trace state

The count function will return the number of items currently in the container.

The destroy function will delete the container command from the interpreter and remove the equivalent Tcl
array variable, if any.

The empty function will remove all items from the container.
The elements function will return a Tcl list that contains all of the element values of the items in the containe

The keys function will return a Tcl list that contains all of the indices of the items in the container. Container

1 Containers — Container items for Tcl programs 1

Containers V 1

indices can be either numerical values or string keys, depending on the type of container.

The list function always returns a proper Tcl list that includes all of the items in the container. The format of
the list is a list of lists, one sub-list for each of the items in the container. The first element of the sub-list is
the key to the item, and the second element in the list is the item value.

The status function returns the value clean or dirty depending on the update status of the container. Whene
the container is modified, the status is set to dirty. The status function can be used to reset the container sta
to clean.

1.3 CONTAINER TYPES

The current package implements the following containers:

bag A simple unordered indexed list of items
stack A stack container

queue A simple FIFO queue

tree A sorted binary tree container

pqueue A priority queue container

rqueue A random queue container

hash A hash table

struct A structure

Each container command accepts options that allow for the configuration of features of the particular
container. The result of the container command, if no error has been detected, is a new Tcl command that
represents the container itself.

Each container object command implements the list of common and object specific functions appropriate to
the container. The documentation entries for the specific containers describe the available functions.

1.4 ARRAY VARIABLES

When a container command is used to create an instance of a container, the resulting return value will be a
token that is the name of the Tcl command that was created to represent the container. This name is also th
name of a Tcl array variable, created in the global scope, that can be used to access the contents of the
container using the usual Tcl array syntax.

The array variable is automatically created and initialized whenever an array reference is made using the
container token as the array name. The package initialization creates the Tcl command
Containers:UpdateArray that is called to recreate the array each time the container contents are modified.
By using the status function of the container, you can determine if the containers has been modified since tf
last array update, and then call Containers:UpdateArray as appropriate.

1.3 CONTAINER TYPES 2

2 Bag — Bag container items for Tcl programs

2.1 SYNOPSIS

bag ?-size? ?size? ?-unique? ?boolean? ?—circular? ?boolean?
2.2 DESCRIPTION

The bag command is part of the Containers extension to the Tcl programming language. The bag container
implements a simple unordered indexed list of items. The bag can be created with a command of the form:

set | [bag ?-size? ?size? ?—-unique? ?boolean? ?—circular? ?boolean?]
where the optional value size is the number of initial elements in the list to allocate. By default, size is 100.
Regardless of the initial size, the list will grow to handle the number of items that are added. The amount of

memory used by the list is not reduced by the simple deletion of items from the list.

The —unique option can be used to indicate that only items whose string representation are unique can be
added to the bag. By default, the items need not be unique.

The —circular option can be used to fix the number of items in the bag to the value specified for —size.
Adding more than this number of items will cause the bag to act like a circular buffer, with the oldest item in
the list deleted to make room for the newest item.

The bag command will create a container command that represents the bag object. The general format of tt
container command is:

$l function ?—option? ?option? ... ?item? ...

where the function must be one of the following:

add Add one or more items to the list
delete Delete one or more items from the list
get Get an item from the list

destroy Destroy the list object

empty Empty the list object

count Get the number of items in the list
list Make a Tcl list of the items in the list

The following examples show how to use the command functions on a list:
$l add string1 string2 { string3 string4 } string 5

will add 4 items to the list, the third item being a list that contains 2 strings. In the list, the items are identifiec
by ordinal, so the command

2 Bag - Bag container items for Tcl programs 3

Containers V 1

$l get 2
would return the result { string3 string4 } which is the third element of the list. Similarly, the command:
$l delete 2

would remove the third element from the list, and the resulting contents of the container could then be
retrieved using the command:

$l list
which would return the following Tcl list:
{ string1 string2 string5 }

Bag elements are numbered from O through [expr [$| count] — 1]. The destroy function will delete the
container object command from the Tcl interpreter and release any space being used by the container.

2 Bag - Bag container items for Tcl programs 4

3 Queue - Sequential Queue Container for Tcl
programs

3.1 SYNOPSIS

queue ?-size? ?size? ?-unique? ?boolean? ?-fixed? ?boolean?

3.2 DESCRIPTION

The queue command will create a container that behaves as a FIFO type queue. The queue container can |
created with a command of the form:

queue ?-size? ?size? ?—unique? ?boolean? ?-fixed? ?boolean?

where the value specified for the —size option is the initial number of entries in the queue to allocate, the val
for the —unique option specifies whether the string representation of items in the queue must be unique, anc
the value specified for the —fixed option specifies whether the queue is limited to a fixed size.

Regardless of the value specified for the —size option, for queues that are not of fixed length, the size of the
gueue will be expanded to accommodate new entries.

By default, the value of the —unique option is false.

By default, the value of the —fixed option is false. If the value is set to true, then once the number of entries i
the queue reaches the value specified for the —size option, all new additions to the queue will cause the new
arrival to replace the oldest item in the queue. This makes the queue container act like a pipeline.

In addition to the common commands of count, destroy, empty and list, the queue container command will
also process the following functions:

insert Add one or more items to the queue
remove Remove an item from the queue

The following example creates a queue, puts some items into the queue, then removes the items from the
queue:

set g [queue -size 5]
$q insert string1 string2 string3 string4 string5
while { [$q count] =0 } {

puts [$q remove]

}

The result of this script is the printing of the elements of the queue in the order in which they entered the
queue.

3 Queue — Sequential Queue Container for Tcl programs 5

4 Stack — Stack Container for Tcl programs
4.1 SYNOPSIS

stack ?-size? ?size? ?-unique? ?boolean?

4.2 DESCRIPTION

The stack command will create a container object that implements a simple stack. The stack container can |
created with a command of the form:

stack ?-size? ?size? ?-unique? ?boolean?

where the value specified for the —size option is the initial number of entries to allocate for the stack and the
value specified for the —unique determines whether the string representations of the items placed on the sta
must be unique.

Regardless of the value specified for the —size option, the stack will grow to accommodate new entries. By
default, the value of the —unique option is false.

In addition to the common commands of count, destroy, empty and list, the stack container will process the
following functions:

push Push one or more items into the stack
pop Pop one item from the stack
peek Peek at the next item to be popped

The following example creates a stack and inserts a number of items into the stack:

set s [stack —-size 20]
$s push stringl string2 string3 string4
while { [$s count] =0} {

puts [$s pop]

}

The result of this little script is the printing of the list of strings in reverse order, as the stack is a LIFO
implementation of gueue.

4 Stack — Stack Container for Tcl programs 6

5
Hash — Hash table container items for Tcl programs

5.1 SYNOPSIS

hash ?keyl1? ?valuel? ... ?keyn? ?valuen?

5.2 DESCRIPTION

The hash command is part of the Containers extension to the Tcl programming language. The hash contain
implements a simple hash table container whose elements are identified by strings that are keys into the tak
The hash table can be created with a command of the form:

set | [hash ?keyl? ?valuel? ... ?keyn? ?valuen?]
The hash command will create a container command that represents the hash table object. The key and va
pairs, if specified, are used to initialize the contents of the container. An empty container is created if there &
no parameters specified.
The general format of the container command is:
$l function ?—option? ?option? ... ?item? ...

where the function must be one of the following:

add Add one or more items to the list
delete Delete one or more items from the list
get Get an item from the list

destroy Destroy the list object

empty Empty the list object

count Get the number of items in the list

list Make a Tcl list of the items in the list
keys Make a Tcl list of the keys in the list
values Make a Tcl list of the values in the list

The following examples show how to use the command functions on a list:
$l add key1 stringl key2 string2

will add 2 items to the hash list with keys keyl and key2. To recover the items, a command of the form:
3l get key1 key?2

could be used. The result of this command would be a Tcl list with the elements stringl and string2 as its
members.

5 Hash — Hash table container items for Tcl programs 7

Containers V 1

To delete items from the hash table, the command:

$l delete keyl ... keyn

could be used, where the key parameters are strings that match the keys of elements in the list.

5 Hash - Hash table container items for Tcl programs

6 Tree — Tree Container for Tcl programs

6.1 SYNOPSIS

tree ?-size? ?size? ?-reverse? ?boolean?
?-unique? ?boolean? ?—nocase? ?boolean?
?-alphabet? ?string? ?-first? ?value?
?-range? ?count?

6.2 DESCRIPTION

The tree command will create a container that implements a binary tree data structure that will store items
according to their sorting order. The tree command has the following format:

tree ?—size? ?size? ?-reverse? ?boolean?
?-unique? ?boolean? ?—nocase? ?boolean?
?-alphabet? ?string? ?-first? ?value?
?-range? ?count?

where size sets the initial number of item entries to allocate, the value of the —reverse option establishes the
sorting order to use, and the value of the —unique option determines whether duplicate items can be enterec
into the tree. The —nocase option is used to specify whether case is to be ignored when comparing items for
sorting purposes. The —alphabet option can be used to specify the order of characters in the alphabetic orde
used to sort the items. The —first and —range options can be used to select the characters in the input string:
that are used for sorting the items.

By default, the value of —reverse is false, and items are stored in ascending order according to their collating
sequence value of the string representation of the Tcl object being stored. If —reverse is set to true, then the
reverse collating sequence order is used.

By default, the value of the —unique option is false and the tree can accept multiple copies of items whose
string representation is the same. By setting —unique to true, then duplicate entries will not be added to the
tree.

By default, the value of the —nocase option is false. If this option is set to true, then the items in the containe
are sorted without regard to the case of the characters in the item strings.

By default, the value of the —alphabet option is NULL. This causes the items in the container to be sorted
according to the collating sequence for the character set being used that is the default for the computer bein
used. This would mean the ASCII collating sequence on many machines.

If a string of characters is supplied with the —alphabet option, then the order of the characters in the string is
used to sort the items in the container. The supplied string need not contain the entire list of possible
characters. If the supplied string is incomplete, then for items that contain characters in string, the sorting
order will be based on the supplied list of characters in string, otherwise, the sorting order is based on the
default collating sequence.

The string supplied with the —alphabet option has a syntax for the specification of ranges of characters base

6 Tree — Tree Container for Tcl programs 9

Containers V 1

on their numeric value in the default collating sequence. The general form of the specification is:
—alphabet cc(c—c,c,nnn,nnn)(nnn—-nnn)

where the c are single characters and the nnn are numbers of more than 1 digit that represent a character b
collating sequence ordinal. The — symbols between two characters or numbers indicate a range of characte
in the collating sequence from the character on the left hand side of the — up to and including the character
on the right hand side of the — symbol. The , is used to separate single characters or ranges in a sequence
specifications that is contained within the parentheses. The backslash character can be used to escape
characters such as (and), or the backslash itself. Here is an example that creates an alphabet that consists
the characters @+* and the

numbers from 0 through 9:

—alphabet "@+*(0-9)"

This example would sort all items using the precedence @+*0123456789 and then, for strings not containin
any of these characters, the default collating sequence.

The —first and —range options can be used to define which characters in the item strings are used for sortin
By default, the value of —first is 0, and the value of —range is the lesser of the lengths of the two items being
compared during a sorting operation. By adjusting the value of —first and setting a value for —range, the
comparison operation can be applied to an part of the item strings.

In addition to the common functions of count, destroy, empty, and list, the tree container will process the
following functions:

add Add one or more items to the tree
compact Compact a tree

delete Delete one or more items from the tree
get Get one or more items from the tree
next Get the first item from the tree

The next function returns the first item in the tree and marks it as deleted.

The get function can accept a list of indices of the items currently in the tree and return the items that
correspond to those indices. Similarly the delete command will mark as deleted all of the items specified in
the list of indices in the command.

The compact command can be used to recover the memory occupied by deleted tree nodes. When items at
deleted from a tree the memory space occupied by the actual item is released, but the tree node itself remal
in existence but marked deleted. The compact command will clean up the tree by reorganizing the nodes ar
removing the deleted ones.

The following demonstrates how to make use of the tree container:

set t [tree —reverse true —unique true]
$t add string3 stringl string4 string2 string2
puts [$t list]

which will result in a listing of the items in the following order:

6 Tree — Tree Container for Tcl programs 10

Containers V 1

string4 string3 string2 stringl

The tree container is handy for creating and maintaining a sorted list of items without having to re—sort the li
each time a new item is added.

The following tree shows how to sort a collection of strings that have some additional attributes that indicate
that promotion in list order is wanted.

set t [tree —nocase true —unique true —alphabet @+]
$t add +Sally @George @+Mary Peter +lrene @Eric +Diane Willy
puts [$t list]

will result in the list:

@+Mary @Eric @George +Diane +Irene +Sally Peter Willy

6 Tree — Tree Container for Tcl programs 11

7 PQueue - Priority Queue Container for Tcl
programs

7.1 SYNOPSIS

pqueue ?-size? ?size? ?-reverse? ?boolean?
?-unique? ?boolean? ?—priority? ?type?
?-nocase? ?boolean?

7.2 DESCRIPTION

The pqueue command creates a priority queue data structure basetrea toatainer described above.

PQueue containers support the same command set as daesdlm®ntainer. A priority queue is a waiting
gueue which contains items that can have a priority associated with them. The interesting characteristic of tt
priority queue is that the items are always maintained in order of their priority, with the highest or lowest
priority item at the head of the queue.

A priority queue container can be created with a command of the form:

pqueue ?-size? ?size? ?-reverse? ?boolean?
?-unique? ?boolean? ?—priority? ?type?
?-nocase? ?boolean?

where —size specifies the initial number of slots to be allocated for the queue, —reverse specifies the sorting
order of the priority values, the —unique value specifies whether the items must have unique string
representations, and the —priority option indicates the type of key that is being used. The —nocase option ca
be used to indicate that case should not be used when sorting key values of the items. By default, for
non—numeric keys, case is used for sorting.

Regardless of the value specified for the —size option, the queue will expand to accommodate additional
entries.

By default, the queue entries are maintained in order of decreasing priority, so the highest priority item is
always at the front of the queue. If the —reverse option is true, then the queue will be maintained in the ordel
of increasing priority, with the highest priority item being at the back of the queue.

By default, the value of the —unique item is false. If the value of the —unique item is set to true, then the
string representation of items added to the queue must be unique.

The —priority option can be used to specify the type of the key that is to be used. By default, the key type is
string, and the keys are sorted by collating sequence. If the value of the —priority option is numeric, then the
keys must be integer values, and the item priorities are sorted by numeric value. This distinction can be
important, as for string keys, the standard sorting sequence of the keys:

7 PQueue — Priority Queue Container for Tcl programs 12

Containers V 1

12104

iS

11024

which may not be the desired result.

The pgueue command will create a container command that represents the container that has the following
format:

$pq function ...

where the functions supported include the common container functions of count, destroy, empty and list, as
well as the following:

add Add a new entry to the queue
next Get the item at the head of the queue

The add command has the following format:
$pqg add keyl item1 keyn itemn

where there may be any number of key and item pairs. The items themselves could be any type of Tcl objec
while the keys are things that can be viewed as either strings or integer numbers.

The next command will retrieve the current head of the queue and remove it from the queue. It requires no
parameters.

7 PQueue — Priority Queue Container for Tcl programs 13

8 RQueue — Random Queue Container for Tcl
programs

8.1 SYNOPSIS

rqueue ?-size? ?size? ?-unique? ?boolean? ?-reverse? ?boolean?

8.2
DESCRIPTION

The rqueue command createsee based container that inserts new items into the queue in a random order.
The rqueue container supports the same function set as the tree pgdehe container commands.

A random queue can be created with a command of the form:

rqueue ?-size? ?size? ?-reverse? ?boolean? ?-unique? ?boolean?
where —size specifies the initial number of slots to be allocated for the queue, —reverse specifies the sorting
order of the priority values, the —unique value specifies whether the items must have unique string
representations. By default, the value of the —reverse option is false and the value of the —unique option is
false. The value of the —size option specifies the initial allocation size for the random queue. Regardless of
the value specified, the random queue will automatically grow to accommodate new entries.
The format of the command to add items to a random queue is:

$r add item1 ... itemn

where the items are Tcl objects of some kind. The items are inserted into an ordered list in random order. Tt
items can then be removed from the random queue using the next function. For example, the command:

while {[set item [$r next]] ="} { puts $item }

will empty a random queue.

8 RQueue - Random Queue Container for Tcl programs 14

9 Struct — Structure Container for Tcl programs

9.1 SYNOPSIS

struct ?—function? ?name? ... ?name?

9.2 DESCRIPTION

The struct command creates a data structure container that holds named elements. The named elements c:
hold any type of Tcl object.

The format of the struct command is:
struct ?—function? ?namel? ?name2? ... ?namen?

where function may be either —list to generate a list of structures currently known or —templates to generate
list of templates currently known. The list of name parameters are the names of the elements in the structure
or the names of existing templates that are to be used to initialize the names of the structure.

In the simple case where the name parameters are names of the structure elements, then the result of the
command will be a template whose element names match the list of strings given as parameters to the struc
command. If any of the names is the name of an existing template, then the element names of the template
added to the new structure.

The struct command returns a token that represents the structure template. The template itself does not hol

any data, but provides a pattern for use in initializing the instances of the structure. The returned token is a
template command.

9.3 TEMPLATES

Instances of structures are initialized by using the template command. Template commands have the
following form:

template ?—function? ?valuel? ... ?valuen?
where template is the name of a template command that was created using the struct command, function is
one of the functions supported by template commands, and the value parameters are the Tcl objects that ar

be used to initialize the instance of the structure.

All template commands support the following functions:

—elements List the element names of the template
—destroy Destroy the template

The —destroy function is the equivalent of renaming the template command to an empty string. The commar
is deleted from the Tcl interpreter and the template is no longer available for the creation of new instances.

9 Struct — Structure Container for Tcl programs 15

Containers V 1

The -elements function returns a Tcl list of the element names of the elements in the structure.

There must be either a function parameter or a list of value parameters that includes the same number of
values as their are elements in the structure. Value items are assigned to structure elements in order of the
element names as specified on the struct command that created the template.

For example, suppose the following command is used to create a structure template that is to hold data on
individuals:

set person [struct Name Address Phone]
then an instance of the template for the structure could be initialized with the following command:
set george [$person "George Peabody" "2035 Wonder Way" "202-555-6053"]

Here the resulting token in george would be a Tcl command that can then be used to manipulate the data in
this instance of the template that is represented by the command token in person.

9.4 INSTANCES

An instance of a structure is represented by a token that is a Tcl command of the form:

name ?-function? ?element? ?value?
where name is the name of the instance command as returned by a previous template command, function is
one of the functions that are supported by instance commands, element is an element name of an element |

the structure, and value is a new value for the named element.

The list of functions supported by the instance commands is:

—elements List the elements of the structure

-values List the values of the elements of the structure
—list List the elements and their values for the structure
—destroy Destroy this instance of the structure

—assign Assign the values of one structure to another
—append Append the values of one structure to another
—isequal Check if 2 structures contain the same data

The —destroy function is the equivalent of renaming the instance command to an empty string. The instance
deleted an is no longer available in the interpreter.

The —elements, —values and —list functions all return Tcl lists containing information about the structure

instance. Because of the implementation of the structure there is not necessarily a relationship between the
order of the elements in the returned lists and the order of the elements in the structure template.

9.5 DATA ACCESS

9.4 INSTANCES 16

Containers V 1

Once an instance of a struct is initialized, the values of the elements in the structure can be accessed using
element names and the instance command of the structure. The instance command of the structure is the tc
returned by the template command that was used to initialize the structure.

Using the above example, the instance command for the structure instance that contains the information ab
George Peabody is in the Tcl variable george. To access the Address element, use the following command:

$george Address

The value returned from this command will be the string 2035 Wonder Way. Similarly, the other elements of
the structure can be accessed by using their names.

9.6 DATA MODIFICATION

Data elements can be changed using the instance command in the following form:
token element value

where token is the instance command for the relevant instance of the structure, element is the name of the
element to be modified, and value is any Tcl object that is to be used as the element value.

For example, suppose George Peabody has a second residence. The construct:
$george Address { [$george Address] "300 SummerDays Lane" }

would replace the current value of Address with a list of 2 addresses, the original one and the new address
300 SummerDays Lane.

9.7 INHERITANCE

Existing struct templates can be used to construct new templates. If any of the parameters to the struct
command are themselves tokens that identify an existing template, all of the element names of that existing
template are added to the definition of the new structure.

For example, assume that the token stored in person is that of the template that was as defined above with
elements Name, Address, and Phone. A new template might be defined as follows:

set business [struct $person Business]

which would result in a new template that contains the 3 elements that were defined for the person, and a n
element called Business. To initialize an instance of the new structure the command:

set george [$business "George Peabody" "2035 Wonder Way" "202-555-6023"
"202-555-6197"]

might be used. Now the token george will be able to deliver the additional value by using the element name
Business as well as the

9.6 DATA MODIFICATION 17

Containers V 1

original 3 values.

Because the new template business is derived from the template in person, then an instance of the new
structure could also be initialized as follows:

set george [$business $george "202-555-6197"]

This last command will take the current values of the elements of george and assign them to the
corresponding elements in the new structure instance, and then add in the final element.

9.8 EMBEDDED STRUCTURES

Existing structure templates can be used to create structures of structures. The format of the command uset
create a structure that contains embedded, named structures as its elements is:

set list [struct [list namel templatel] [list name2 template2] ...]

where the name and template values are respectively the element name and the defining template respecti
Note that the parameters to the struct command are proper Tcl lists of exactly 2 elements, the first of which
the element name, and the second of which is an existing template.

As an example, the following command creates a structure whose elements are structures that describe 3
individuals:

set | [struct [list George $person] [list Mary $person] [list alice $person]]

This structure will have elements that are of the form:

George.Name, George.Address George.Phone
Mary.Name, Mary.Address, Mary.Phone
Alice.Name, Alice.Address Alice.Phone

Initialization of the compound structure can be carried out using a syntax that is of the form:
$l —assign [list George $george] ...

where, as with the template definition, the use of proper Tcl lists as the items in the initialization list is
required. The elements of the Tcl lists that are initialization items are the element name of the sub-structure
and the token that represents an instance of a structure that has elements whose names match those of the
substructure. In the above example, george contains a token that represents an instance of the template
described by the token in person.

Where the elements of the initialization list are not proper Tcl lists, they are assumed to be values. The list ¢
values is used to initialize the elements of the compound structure exactly as they occur. For the example
structure being used here, the first 3 initialization elements would be used to initialize the 3 elements of the
substructure named George, the second 3 initialization elements would apply to the elements of Mary and tt

9.8 EMBEDDED STRUCTURES 18

Containers V 1

last 3 would apply to Alice.

9.9 ASSIGNMENT

Given 2 structures that contain values identified by element names that are common to both, a command of
the form:

$george —assign $home $office

will assign to george all of the values in home and office that are identified in either of these structures by
element names that are also in george.

The assignment operator will replace any values in george by those in the other structures. If you want to
append common element values, use a command of the form:

$george —append $home S$office
which will cause the elements in common with george found in home and office to be concatenated into a lis
and used to replace the original value in george. Note that the final list of common element values will also
contain the original value in george.
A final operator is the equivalence operator, which returns the value of 1 if the string representation of all of
the elements in one structure match the string representation of all of the elements in another structure. For
example, the command:

$george —isequal $george

will always return 1. If there is a mismatch, the value returned is O.

9.9 ASSIGNMENT 19

	Table of Contents
	1 Containers - Container items for Tcl programs
	1.1 SYNOPSIS
	1.2 DESCRIPTION
	1.3 CONTAINER TYPES
	1.4 ARRAY VARIABLES

	2 Bag - Bag container items for Tcl programs
	2.1 SYNOPSIS
	2.2 DESCRIPTION

	3 Queue - Sequential Queue Container for Tcl programs
	3.1 SYNOPSIS
	3.2 DESCRIPTION

	4 Stack - Stack Container for Tcl programs
	4.1 SYNOPSIS
	4.2 DESCRIPTION

	5 Hash - Hash table container items for Tcl programs
	5.1 SYNOPSIS
	5.2 DESCRIPTION

	6 Tree - Tree Container for Tcl programs
	6.1 SYNOPSIS
	6.2 DESCRIPTION

	7 PQueue - Priority Queue Container for Tcl programs
	7.1 SYNOPSIS
	7.2 DESCRIPTION

	8 RQueue - Random Queue Container for Tcl programs
	8.1 SYNOPSIS
	8.2 DESCRIPTION

	9 Struct - Structure Container for Tcl programs
	9.1 SYNOPSIS
	9.2 DESCRIPTION
	9.3 TEMPLATES
	9.4 INSTANCES
	9.5 DATA ACCESS
	9.6 DATA MODIFICATION
	9.7 INHERITANCE
	9.8 EMBEDDED STRUCTURES
	9.9 ASSIGNMENT

