
Tcl and the Tk Toolkit

John K. Ousterhout
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal
use only. Any other form of duplication or reproduction requires prior written permis-
sion of the author or publisher. This statement must be easily visible on the first page
of any reproduced copies. The publisher does not offer warranties in regard to this
draft.

Note to readers:
This manuscript is a partial draft of a book to be published in early 1994 by Addison-
Wesley (ISBN 0-201-63337-X). Addison-Wesley has given me permission to make
drafts of the book available to the Tcl community to help meet the need for introduc-
tory documentation on Tcl and Tk until the book becomes available. Please observe
the restrictions set forth in the copyright notice above: you’re welcome to make a
copy for yourself or a friend but any sort of large-scale reproduction or reproduction
for profit requires advance permission from Addison-Wesley.

I would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atouster@cs.berkeley.edu . I’m particularly interested
in hearing about things that you found difficult to learn or that weren’t adequately
explained in this document, but I’m also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

2

DRAFT (8/12/93): Distribution Restricted

1

DRAFT (8/12/93): Distribution Restricted

Chapter 1 Introduction 1
1.1 Introduction 1

1.2 Organization of the book 3

1.3 Notation 4

Chapter 2 An Overview of Tcl and Tk 5
2.1 Getting started 5

2.2 Hello world with Tk 7

2.3 Script files 9

2.4 Variables and substitutions10

2.5 Control structures 11

2.6 Event bindings 13

2.7 Subprocesses15

2.8 Additional features of Tcl and Tk 18

2.9 Extensions and applications18
2.9.1 Expect 19
2.9.2 Extended Tcl 19
2.9.3 XF 20
2.9.4 Distributed programming 20
2.9.5 Ak 22

Chapter 3 Tcl Language Syntax 25
3.1 Scripts, commands, and words25

3.2 Evaluating a command26

3.3 Variable substitution 28

3.4 Command substitution29

3.5 Backslash substitution30

3.6 Quoting with double-quotes30

3.7 Quoting with braces 32

3.8 Comments 33

3.9 Normal and exceptional returns33

3.10 More on substitutions 34

2

DRAFT (8/12/93): Distribution Restricted

Chapter 4 Variables 37
4.1 Simple variables and the set command37

4.2 Arrays 38

4.3 Variable substitution 39

4.4 Removing variables: unset40

4.5 Multi-dimensional arrays 41

4.6 The incr and append commands41

4.7 Preview of other variable facilities42

Chapter 5 Expressions 43
5.1 Numeric operands 43

5.2 Operators and precedence44
5.2.1 Arithmetic operators 44
5.2.2 Relational operators 46
5.2.3 Logical operators 46
5.2.4 Bitwise operators 46
5.2.5 Choice operator 46

5.3 Math functions 47

5.4 Substitutions 47

5.5 String manipulation 49

5.6 Types and conversions49

5.7 Precision 50

Chapter 6 Lists 51
6.1 Basic list structure and the lindex command51

6.2 Creating lists: concat, list, and llength53

6.3 Modifying lists: linsert, lreplace, lrange, and lappend54

6.4 Searching lists: lsearch56

6.5 Sorting lists: lsort 56

6.6 Converting between strings and lists: split and join57

6.7 Lists and commands58

3

DRAFT (8/12/93): Distribution Restricted

Chapter 7 Control Flow 61
7.1 The if command 61

7.2 Looping commands: while, for, and foreach 63

7.3 Loop control: break and continue65

7.4 The switch command 65

7.5 Eval 67

7.6 Executing from files: source68

Chapter 8 Procedures 69
8.1 Procedure basics: proc and return69

8.2 Local and global variables71

8.3 Defaults and variable numbers of arguments 72

8.4 Call by reference: upvar73

8.5 Creating new control structures: uplevel74

Chapter 9 Errors and Exceptions77
9.1 What happens after an error?77

9.2 Generating errors from Tcl scripts 79

9.3 Trapping errors with catch80

9.4 Exceptions in general81

Chapter 10 String Manipulation 85
10.1 Glob-style pattern matching85

10.2 Pattern matching with regular expressions88

10.3 Using regular expressions for substitutions90

10.4 Generating strings with format91

10.5 Parsing strings with scan93

10.6 Extracting characters: string index and string range94

10.7 Searching and comparison94

10.8 Length, case conversion, and trimming95

4

DRAFT (8/12/93): Distribution Restricted

Chapter 11 Accessing Files 97
11.1 File names 97

11.2 Basic file I/O 99

11.3 Output buffering 101

11.4 Random access to files101

11.5 The current working directory102

11.6 Manipulating file names: glob and file102

11.7 File information commands105

11.8 Errors in system calls107

Chapter 12 Processes 109
12.1 Invoking subprocesses with exec109

12.2 I/O to and from a command pipeline112

12.3 Process ids 113

12.4 Environment variables 113

12.5 Terminating the Tcl process with exit 113

Chapter 13 Managing Tcl Internals 115
13.1 Querying the elements of an array115

13.2 The info command 117
13.2.1 Information about variables 117
13.2.2 Information about procedures 120
13.2.3 Information about commands 121
13.2.4 Tclversion and library 122

13.3 Timing command execution122

13.4 Tracing operations on variables123

13.5 Renaming and deleting commands125

13.6 Unknown commands 126

13.7 Auto-loading 128

Chapter 14 History 131
14.1 The history list 131

5

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.3 Re-executing commands from the history list133

14.4 Shortcuts implemented by unknown134

14.5 Current event number: history nextid134

6

DRAFT (8/12/93): Distribution Restricted

1

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 1
Introduction

1.1 Introduction

This book is about two packages called Tcl and Tk. Together they provide a programming
system for developing and using graphical user interface (GUI) applications. Tcl stands
for “tool command language” and is pronounced “tickle”; is a simple scripting language
for controlling and extending applications. It provides generic programming facilities that
are useful for a variety of applications, such as variables and loops and procedures. Fur-
thermore, Tcl is embeddable: its interpreter is implemented as a library of C procedures
that can easily be incorporated into applications, and each application can extend the core
Tcl features with additional commands specific to that application.

One of the most useful extensions to Tcl is Tk. It is a toolkit for the X Window Sys-
tem, and its name is pronounced “tee-kay”. Tk extends the core Tcl facilities with addi-
tional commands for building user interfaces, so that you can construct Motif user
interfaces by writing Tcl scripts instead of C code. Like Tcl, Tk is implemented as a library
of C procedures so it too can be used in many different applications. Individual applica-
tions can also extend the base Tk features with new user-interface widgets and geometry
managers written in C.

Together, Tcl and Tk provide four benefits to application developers and users. First,
Tcl makes it easy for any application to have a powerful scripting language. All that an
application needs to do is to implement a few new Tcl commands that provide the basic
features of that application. Then the application can be linked with the Tcl interpreter to
produce a full-function scripting language that includes both the commands provided by
Tcl (called theTcl core) and those implemented by the application (see Figure 1.1).

FIGURE 1

TABLE 1

2 Introduction

DRAFT (8/12/93): Distribution Restricted

For example, an application for reading electronic bulletin boards might contain C
code that implements one Tcl command to query a bulletin board for new messages and
another Tcl command to retrieve a given message. Once these commands exist, Tcl scripts
can be written to cycle through the new messages from all the bulletin boards and display
them one at a time, or keep a record in disk files of which messages have been read and
which haven’t, or search one or more bulletin boards for messages on a particular topic.
The bulletin board application would not have to implement any of these additional func-
tions in C; they could all be written as Tcl scripts, and users of the application could write
additional Tcl scripts to add more functions to the application.

The second benefit of Tcl and Tk is rapid development. For example, many interest-
ing windowing applications can be written entirely as Tcl scripts with no C code at all,
using a windowing shell calledwish . This allows you to program at a much higher level
than you would in C or C++, and many of the details that C programmers must address are
hidden from you. Compared to toolkits where you program entirely in C, such as Xt/
Motif, there is much less to learn in order to use Tcl and Tk and much less code to write.
New Tcl/Tk users can often create interesting user interfaces after just a few hours of
learning, and many people have reported ten-fold reductions in code size and development
time when they switched from other toolkits to Tcl and Tk.

Another reason for rapid development with Tcl and Tk is that Tcl is an interpreted lan-
guage. When you use a Tcl application such aswish you can generate and execute new
scripts on-the-fly without recompiling or restarting the application. This allows you to test
out new ideas and fix bugs very rapidly. Since Tcl is interpreted it executes more slowly
than compiled C code, of course, but modern workstations are surprisingly fast. For exam-
ple, you can execute scripts with hundreds or even thousands of Tcl commands on each
movement of the mouse with no perceptible delay. In the rare cases where performance
becomes an issue, you can re-implement the most performance-critical parts of your Tcl
scripts in C.

Tcl
Interpreter

Built-in Commands

Application
Data Structures

Application Commands

Figure 1.1. To create a new application based on Tcl, an application developer designs new C data
structures specific to that application and writes C code to implement a few new Tcl commands. The
Tcl library provides everything else that is needed to produce a fully programmable command
language. The application can then be modified and extended by writing Tcl scripts.

Tcl Library Application

1.2 Organization of the book 3

DRAFT (8/12/93): Distribution Restricted

The third benefit of Tcl is that it makes an excellent “glue language”. Because it is
embeddable, it can be used for many different purposes in many different programs. Once
this happens, it becomes possible to write Tcl scripts that combine the features of all the
programs. For example, any windowing application based on Tk can issue a Tcl script to
any other Tk application. This feature makes multi-media effects much more accessible:
once audio and video applications have been built with Tk (and there exist several
already), any Tk application can issue “record” and “play” commands to them. In addi-
tion, spreadsheets can update themselves from database applications, user-interface edi-
tors can modify the appearance and behavior of live applications as they run, and so on.
Tcl provides thelingua franca that allows application to work together.

The fourth benefit of Tcl is user convenience. Once a user learns Tcl and Tk, he or she
can write scripts for any Tcl and Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more users to
personalize and enhance their applications.

1.2 Organization of the book

Chapter 2 uses several simple scripts to provide a quick overview of the most important
features of Tcl and Tk. It is intended to give you the flavor of the systems and convince
you that they are useful without explaining anything in detail. The remainder of the book
goes through everything again in a more comprehensive fashion. It is divided into four
parts:

• Part I introduces the Tcl scripting language. After reading this section you will be able
to write scripts for Tcl applications.

• Part II describes the additional Tcl commands provided by Tk, which allow you to cre-
ate user-interface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you’ll be able to create new windowing applica-
tion aswish scripts and write scripts to enhance existing Tk applications.

• Part III discusses the C procedures in the Tcl library and how to use them to create new
Tcl commands. After reading this section you’ll be able to write new Tcl packages and
applications in C.

• Part IV describes Tk’s library procedures. After reading this section you’ll be able to
create new widgets and geometry managers in C.

Each of these major parts contains about ten short chapters. Each chapter is intended to be
a self-contained description of a piece of the system, and you need not necessarily read the
chapters in order. I recommend that you start by reading through Chapters 3-9 quickly,
then skip to Chapters XXX-YYY, then read other chapters as you need them.

Not every feature of Tcl and Tk is covered here, and the explanations are organized to
provide a smooth introduction rather than a terse reference source. A separate set of refer-

4 Introduction

DRAFT (8/12/93): Distribution Restricted

ence manual entries is available with the Tcl and Tk distributions. These are much more
terse but they cover absolutely every feature of both systems.

This book assumes that you are familiar with the C programming language as defined
by the ANSI C standard, and that you have some experience with UNIX and X11. In order
to understand Part IV you will need to understand many of the features provided by the
Xlib interface, such as graphics contexts and window attributes; however, these details are
not necessary except in Part IV. You need not know anything about either Tcl or Tk before
reading this book; both of them will be introduced from scratch.

1.3 Notation

Throughout the book I use aCourier font for anything that might be typed to a com-
puter, such as variable names, procedure and command names, Tcl scripts, and C code.
The examples of Tcl scripts use notation like the following:

set a 44

⇒ 44

Tcl commands such as “set a 44 ” is the example appear in Courier and their results,
such as “44” in the example, appear in Courier oblique. The⇒ symbol before the result
indicates that this is a normal return value. If an error occurs in a Tcl command then the
error message appears in Courier oblique, preceded by a∅ symbol to indicate that this is
an error rather than a normal return:

set a 44 55

∅ wrong # args: should be "set varName ?newValue?"

When describing the syntax of Tcl commands, Courier oblique is used for formal
argument names. If an argument or group of arguments is enclosed in question marks it
means that the arguments are optional. For example, the syntax of theset command is as
follows:

set varName ?newValue ?
This means that the wordset would be entered verbatim to invoke the command, while
varName andnewValue are the names ofset ’s arguments; when invoking the com-
mand you would type a variable name instead ofvarName and a new value for the vari-
able instead ofnewValue . ThenewValue argument is optional.

5

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 2
An Overview of Tcl and Tk

This chapter introduces Tcl and Tk with a series of scripts that illustrate the main features
of the systems. Although you should be able to start writing simple scripts after reading
this chapter, the explanations here are not intended to be complete. All of the information
in this chapter will be revisited in more detail in later chapters, and several important
aspects of the systems, such as their C interfaces, are not discussed at all in this chapter.
The purpose of this chapter is to show you the overall structure of Tcl and Tk and the
kinds of things they can do, so that when individual features are discussed in detail you’ll
be able to see why they are useful.

2.1 Getting started

In order to invoke Tcl scripts you must run a Tcl application. If Tcl is installed on your sys-
tem then there should exist a simple Tcl shell application calledtclsh , which you can
use to try out some of the examples in this chapter (if Tcl has not been installed on your
system then refer to Appendix A for information on how to obtain and install it). Type the
command

tclsh

to your shell to invoketclsh ; tclsh will start up in interactive mode, reading Tcl com-
mands from its standard input and passing them to the Tcl interpreter for evaluation. For
starters, type the following command totclsh :

expr 2 + 2

Tclsh will print the result “4” and prompt you for another command.

FIGURE 2

TABLE 2

6 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

This example illustrates several features of Tcl. First, Tcl commands are similar in
form to shell commands. Each command consists of one or morewords separated by
spaces or tabs. In the example there are four words:expr , 2, +, and2. The first word of
each command is its name: the name selects a C procedure in the application that will
carry out the function of the command. The other words arearguments that are passed to
the C procedure.Expr is one of the core commands built into the Tcl interpreter, so it
exists in every Tcl application. It concatenates its arguments into a single string and evalu-
ates the string as an arithmetic expression.

Each Tcl command returns a result string. For theexpr command the result is the
value of the expression. Results are always returned as strings, soexpr converts its
numerical result back to a string in order to return it. If a command has no meaningful
result then it returns an empty string.

From now on I will use notation like the following to describe examples:

expr 2 + 2

⇒ 4

The first line is the command you type and the second line is the result returned by the
command. The⇒ symbol indicates that the line contains a return value; the⇒ will not
actually be printed out bytclsh . I will omit return values in cases where they aren’t
important, such as sequences of commands where only the last command’s result matters.

Commands are normally terminated by newlines, so when you are typing totclsh
each line normally becomes a separate command. Semi-colons also act as command sepa-
rators, in case you wish to enter multiple commands on a single line. It is also possible for
a single command to span multiple lines; you’ll see how to do this later.

Theexpr command supports an expression syntax similar to that of expressions in
ANSI C, including the same precedence rules and most of the C operators. Here are a few
examples that you could type totclsh :

expr 3 << 2

⇒ 12

expr 14.1*6

⇒ 84.6

expr (3 > 4) || (6 <= 7)

⇒ 1

The first example illustrates the bitwise left-shift operator<<. The second example shows
that expressions can contain real values as well as integer values. The last example shows
the use of relational operators> and<= and the logical or operator|| . As in C, boolean
results are represented numerically with 1 for true and 0 for false.

To leavetclsh , invoke theexit command:

exit

This command will terminate the application and return you to your shell.

2.2 Hello world with Tk 7

DRAFT (8/12/93): Distribution Restricted

2.2 Hello world with Tk

Although Tcl provides a full set of programming features such as variables, loops, and
procedures, it is not intended to be a stand-alone programming environment. Tcl is
intended to be used as part of applications that provide their own Tcl commands in addi-
tion to those in the Tcl core. The application-specific commands provide interesting prim-
itives and Tcl is used to assemble the primitives into useful functions. Tcl by itself isn’t
very interesting and it is hard to motivate all of Tcl’s facilities until you have seen some
interesting application-specific commands to use them with.

Tk provides a particularly interesting set of commands to use with Tcl’s programming
tools. Most of the examples in the book will use an application calledwish , which is sim-
ilar to tclsh except that it also includes the commands defined by Tk. Tk’s commands
allow you to create graphical user interfaces. If Tcl and Tk have been installed on your
system then you can invokewish from your shell just liketclsh ; it will display a small
empty window on your screen and then read commands from standard input. Here is a
simplewish script:

button .b -text "Hello, world!" -command exit
pack .b

If you type these two Tcl commands towish the window’s appearance will change to
what is shown in Figure 2.1. If you then move the pointer over the window and click
mouse button 1, the window will disappear andwish will exit.

There are several things to explain about this example. First let us deal with the syn-
tactic issues. The example contains two commands,button andpack , both of which
are implemented by Tk. Although these commands look different than theexpr com-
mand in the previous section, they have the same basic structure as all Tcl commands,
consisting of one or more words separated by white space. Thebutton command con-
tains six words and the pack command contains two words.

The fourth word of thebutton command is enclosed in double quotes. This allows
the word to include white space characters: without the quotes “Hello, ” and “world! ”
would be separate words. The double-quotes are not part of the word itself; they are
removed by the Tcl interpreter before the word is passed to the command as an argument.

Figure 2.1. The “hello world” application. All of the decorations around the “Hello, world!” button
are provided by themwm window manager. If you use a different window manager then your
decorations may be different.

8 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

For theexpr command the word structure doesn’t matter much sinceexpr concate-
nates all its arguments together. However for thebutton andpack commands, and for
most Tcl commands, the word structure is important. Thebutton command expects its
first argument to be the name of a window and the following arguments to come in pairs,
where the first argument of each pair is the name of aconfiguration option and the second
argument is a value for that option. Thus if the double-quotes were omitted the value of
the-text option would be “Hello, ” and “world! ” would be treated as the name of a
separate configuration option. Since there is no option defined with the name “world! ”
the command would return an error.

Now let us move on to the behavior of the commands. The basic building block for a
graphical user interface in Tk is awidget. A widget is a window with a particular appear-
ance and behavior (the terms “widget” and “window” are used synonymously in Tk). Wid-
gets are divided into classes such as buttons, menus, and scrollbars. All the widgets in the
same class have the same general appearance and behavior. For example, all button wid-
gets display a text string or bitmap and execute a particular Tcl command when they are
invoked with the mouse.

Widgets are organized hierarchically in Tk, with names that reflect their position in
the hierarchy. Themain widget, which appeared on the screen when you startedwish , has
the name “.”. The name.b refers to a child of the main widget. Widget names in Tk are
like file names in UNIX except that they use “. ” as a separator character instead of “/ ”.
Thus.a.b.c refers to a widget that is a child of widget.a.b , which in turn is a child of
.a , which is a child of the main widget.

Tk provides one command for each class of widgets, which you invoke to create wid-
gets of that class. For example thebutton command creates button widgets. All of the
widget creation commands have the same form: the first argument is the name of a new
widget to create and additional arguments specify configuration options. Different widget
classes support different sets of options. Widgets typically have many options (there are
about 20 different options defined for buttons, for example), and default values are pro-
vided for the options that you don’t specify. When a widget creation command likebut-
ton is invoked it creates a new window by the given name and configures it as specified
by the options.

Thebutton command in the example specifies two options:-text , which is a
string to display in the button, and-command, which is a Tcl script to execute when the
user invokes the button. In this example the-command option isexit . Here are a few
other button options that you can experiment with:

-background The background color for the button.
-foreground The color of the text in the button.
-font The name of the font to use for the button, such as

- times- medium-r-normal---120-* for a 12-point
Times Roman font.

2.3 Script files 9

DRAFT (8/12/93): Distribution Restricted

Thepack command makes the button widget appear on the screen. Creating a widget
does not automatically cause it to be displayed. Independent entities calledgeometry man-
agers are responsible for computing the sizes and locations of widgets and making them
appear on the screen. Thepack command in the example asks a geometry manager called
thepacker to manage.b . The command asks that.b fill the entire area of its parent win-
dow; furthermore, if the parent has more space than needed by its child, as in the example,
the parent is shrunk so that it is just large enough to hold the child. Thus when you typed
thepack command the main window shrunk from its original size to the size that appears
in Figure 2.1.

2.3 Script files

In the examples so far you have typed Tcl commands interactively totclsh or wish .
You can also place commands into script files and invoke the script files just like shell
scripts. To do this for the hello world example, place the following text in a file named
hello :

#!/usr/local/bin/wish -f
button .b -text "Hello, world!" -command exit
pack .b

This script is the same as the one you typed earlier except for the first line. As far aswish
is concerned this line is a comment but if you make the file executable (type
“chmod 775 hello ” to your shell, for example) you can then invoke the file directly
by typinghello to your shell. When you do this the system will invokewish , passing it
the file as a script to interpret.Wish will display the same window shown in Figure 2.1
and wait for you to interact with it. In this case you will not be able to type commands
interactively to wish; all you can do is click on the button.

Note: This script will only work ifwish is installed in/usr/local/bin . If wish has been
installed somewhere else then you’ll need to change the first line to reflect its location on
your system.

In practice users of Tk applications rarely type Tcl commands; they interact with the
applications using the mouse and keyboard in the usual ways you would expect for graph-
ical applications. Tcl works behind the scenes where users don’t normally see it. The
hello script behaves just the same as an application that has been coded in C with a tool-
kit such as Motif and compiled into a binary executable file.

During debugging, though, it is common for application developers to type Tcl com-
mands interactively. For example, you could test out thehello script by startingwish
interactively (typewish to your shell instead ofhello). Then type the following Tcl
command:

source hello

10 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

Source is a Tcl command that takes a file name as argument. It reads the file and evalu-
ates it as a Tcl script. This will generate the same user interface as if you had invoked
hello directly from your shell, but you can now type Tcl commands interactively too.
For example, you could edit the script file to change the-command option to

-command "puts Good-bye!; exit"

then type the following commands interactively towish without restarting the program:

destroy .b
source hello

The first command will delete the existing button and the second command will recreate
the button with the new-command option. Now when you click on the button theputs
command will print a message on standard output beforewish exits.

2.4 Variables and substitutions

Tcl allows you to store values in variables and use those values in commands. For exam-
ple, consider the following script, which you could type to eithertclsh or wish :

set a 44

⇒ 44

expr $a*4

⇒ 176

The first command assigns the value “44” to variablea and returns the variable’s value. In
the secon command t he$ causes Tcl to performvariable substitution: the Tcl interpreter
replaces the dollar-sign and the variable name following it with the value of the variable,
so that the actual argument received byexpr is “44*4 ”. Variables need not be declared
in Tcl; they are created automatically when assigned to. Variable values are stored as
strings and arbitrary string values of any length are allowed. Of course, in this example an
error will occur inexpr if the value ofa doesn’t make sense as an integer or real number
(try other values and see what happens).

Tcl also providescommand substitution, which allows you to use the result of one
command in an argument to another command:

set a 44
set b [expr $a*4]

⇒ 176

Square brackets invoke command substitution: everything inside the brackets is evaluated
as a separate Tcl script and the result of that script is substituted into the word in place of
the bracketed command. In this example the second argument of the second command will
be “176 ”.

2.5 Control structures 11

DRAFT (8/12/93): Distribution Restricted

2.5 Control structures

The next example uses variables and substitutions along with some simple control struc-
tures to create a Tcl procedurepower that raises a base to an integer power:

proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result*$base]
set p [expr $p-1]

}
return $result

}

If you type the above lines towish or tclsh , or if you enter them into a file and then
source the file, a new commandpower will become available. The command takes two
arguments, a number and an integer power, and its result is the number raised to the
power:

power 2 6

⇒ 64

power 1.15 5

⇒ 2.01136

This example uses one additional piece of Tcl syntax: braces. Braces are like double-
quotes in that they can be placed around a word that contains embedded spaces. However,
braces are different from double-quotes in two respects. First, braces nest. The last word
of theproc command starts after the open brace on the first line and contains everything
up to the close brace on the last line. The Tcl interpreter removes the outer braces and
passes everything between them, including several nested pairs of braces, toproc as an
argument. The second difference between braces and double-quotes is that no substitu-
tions occur inside braces, whereas they do inside quotes. All of the characters between the
braces are passed verbatim toproc without any special processing.

Theproc command takes three arguments: the name of a procedure, a list of argu-
ment names separated by white space, and the body of the procedure, which is a Tcl script.
Proc enters the procedure name into the Tcl interpreter as a new command. Whenever the
command is invoked, the body of the procedure will be evaluated. While the procedure
body is executing it can access its arguments as variables:base will hold the first argu-
ment to power andp will hold the second argument.

The body of thepower procedure contains three Tcl commands:set , while , and
return . Thewhile command does most of the work of the procedure. It takes two
arguments, an expression “$p > 0 ” and a body, which is another multi-line Tcl script.
Thewhile command evaluates its expression argument and if the result is non-zero then
it evaluates the body as a Tcl script. It repeats this process over and over until eventually
the expression evaluates to zero. In the example, the body of thewhile command multi-

12 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

plies the result value bybase and then decrementsp. Whenp reaches zero the result con-
tains the desired power ofbase .

Thereturn command causes the procedure to exit with the value of variable
result as the procedure’s result. If it is omitted then the return value of the procedure
will be the result of the last command in the procedure’s body. In the case ofpower this
would be the result ofwhile , which is always an empty string.

The use of braces in this example is crucial. The single most difficult issue in writing
Tcl scripts is managing substitutions: making them happen when you want them and pre-
venting them from happening when you don’t want them. Braces prevent substitutions or
defer them until later. The body of the procedure must be enclosed in braces because we
don’t want variable and command substitutions to occur at the time the body is passed to
proc as an argument; we want the substitutions to occur later, when the body is evaluated
as a Tcl script. The body of thewhile command is enclosed in braces for the same rea-
son: rather than performing the substitutions once, while parsing thewhile command,
we want the substitutions to be performed over and over, each time the body is evaluated.
Braces are also needed in the “{$p > 0} ” argument towhile . Without them the value
of variablep would be substituted when parsing thewhile command; the expression
would have a constant value andwhile would loop forever (you can try replacing some
of the braces in the example with double quotes to see what happens).

In the examples in this book I use a stylized syntax where the open brace for an argu-
ment that is a Tcl script appears at the end of one line, the script follows on successive
lines indented, and the close brace is on a line by itself after the script. Although I think
that this makes for readable scripts, Tcl doesn’t require this particular syntax. Script argu-
ments are subject to the same syntax rules as any other arguments; in fact the Tcl inter-
preter doesn’t even know that an argument is a script at the time it parses it. One
consequence of this is that the open parenthesis must be on the same line as the preceding
portion of the command. If the open brace is moved to a line by itself then the newline
before the open brace will terminate the command.

By now you have seen nearly the entire Tcl language syntax. The only remaining syn-
tactic feature is backslash substitution, which allows you to enter special characters such
as dollar-signs into a word without enclosing the entire word in braces. Note thatwhile
andproc are not special syntactic elements in Tcl. They are just commands that take
arguments just like all Tcl commands. The only special thing aboutwhile andproc is
that they treat some of their arguments as Tcl scripts and cause the scripts to be evaluated.
Many other commands also do this. Thebutton command was one example (its-com-
mand option is a Tcl script), and you’ll read about several other control structures later on,
such asfor , foreach , case , andeval .

One final note about procedures. The variables in a procedure are normally local to
that procedure and will not be visible outside the procedure. In thepower example the
local variables include the argumentsbase andp as well as the variableresult . A
fresh set of local variables is created for each call to a procedure (arguments are passed by
copying their values), and when a procedure returns its local variables are deleted. Vari-

2.6 Event bindings 13

DRAFT (8/12/93): Distribution Restricted

ables named outside any procedure are calledglobal variables; they last forever unless
explicitly deleted. You’ll find out later how a procedure can access global variables and
the local variables of other active procedures.

2.6 Event bindings

The next example provides a graphical front-end for thepower procedure. In addition to
demonstrating two new widget classes it illustrates Tk’s binding mechanism. A binding
causes a particular Tcl script to be evaluated whenever a particular event occurs in a par-
ticular window. The-command option for buttons is an example of a simple binding
implemented by a particular widget class. Tk also includes a more general mechanism that
can be used to extend the behavior of arbitrary widgets in nearly arbitrary ways.

To run the example, copy the following script into a filepower and invoke the file
from your shell.

#!/usr/local/bin/wish -f
proc power {base p} {

set result 1
while {$p > 0} {

set result [expr $result*$base]
set p [expr $p-1]

}
return $result

}
entry .base -width 6 -relief sunken -textvariable base
label .label1 -text "to the power"
entry .power -width 6 -relief sunken -textvariable power
label .label2 -text "is"
label .result -textvariable result
pack .base .label1 .power .label2 .result \

-side left -padx 1m -pady 2m
bind .base <Return> {set result [power $base $power]}
bind .power <Return> {set result [power $base $power]}

This script will produce a screen display like that in Figure 2.2. There are two entry wid-
gets in which you can click with the mouse and type numbers. If you type return in either

Figure 2.2. A graphical user interface that computes powers of a base.

14 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

of the entries, the result will appear on the right side of the window. You can compute dif-
ferent results by modifying either the base or the power and then typing return again.

This application consists of five widgets: two entries and three labels. Entries are wid-
gets that display one-line text strings that you can edit interactively. The two entries,
.base and.power , are used for entering the numbers. Each entry is configured with a
- width of 6, which means it will be large enough to display about 6 digits, and a
- relief of sunken , which gives the entry a depressed appearance. The
- textvariable option for each entry specifies the name of a global variable to hold
the entry’s text: any changes you make in the entry will be reflected in the variable and
vice versa.

Two of the labels,.label1 and.label2 , hold decorative text and the third,
.result , holds the result of the power computation. The- textvariable option for
.result causes it to display whatever string is in global variableresult
whereas.label1 and.label2 display constant strings.

Thepack command arranges the five widgets in a row from left to right. The com-
mand occupies two lines in the script; the backslash at the end of the first line is a line-con-
tinuation character: it causes the newline to be treated as a space. The-side option
means that each widget is placed at the left side of the remaining space in the main widget:
first .base is placed at the left edge of the main window, then.label1 is placed at the
left side of the space not occupied by.base , and so on. The-padx and-pady options
make the display a bit more attractive by arranging for 1 millimeter of extra space on the
left and right sides of each widget, plus 2 millimeters of extra space above and below each
widget. The “m” suffix specifies millimeters; you could also use “c” for centimeters, “i ”
for inches, “p” for points, or no suffix for pixels.

Thebind commands connect the user interface to thepower procedure. Eachbind
command has three arguments: the name of a window, an event specification, and a Tcl
script to invoke when the given event occurs in the given window. <Return> specifies
an event consisting of the user typing the return key on the keyboard. Here are a few other
event specifiers that you might find useful:

<Button-1> Mouse button 1 is pressed.
<ButtonRelease-1> Mouse button 1 is released.
<Double-Button-1> Double-click on mouse button 1.
<1> Short-hand for<Button-1> .
<Key-a> Key “a” is pressed.
<a> or a Short-hand for<Key-a> .
<Motion> Pointer motion with no buttons or modifier keys

pressed.
<B1-Motion> Pointer motion with button 1 pressed.
<Any-Motion> Pointer motion with any (or no) buttons or modifier

keys pressed.

2.7 Subprocesses 15

DRAFT (8/12/93): Distribution Restricted

The scripts for the bindings invokepower , passing it the values in the two entries,
and they store the result inresult so that it will be displayed in the.result widget.
These bindings extend the generic built-in behavior of the entries (editing text strings)
with application-specific behavior (computing a value based on two entries and displaying
that value in a third widget).

The script for a binding has access to several pieces of information about the event,
such as the location of the pointer when the event occurred. For an example, start upwish
interactively and type the following command to it:

bind . <Any-Motion> {puts "pointer at %x,%y"}

Now move the pointer over the window. Each time the pointer moves a message will be
printed on standard output giving its new location. When the pointer motion event occurs,
Tk scans the script for % sequences and replaces them with information about the event
before passing the script to Tcl for evaluation.%x is replaced with the pointer’s x-coordi-
nate and%y is replaced with the pointer’s y-coordinate.

2.7 Subprocesses

Normally Tcl executes each command by invoking a C procedure in the application to
carry out its function; this is different from a shell program likesh where each command
is normally executed in a separate subprocess. However, Tcl also allows you to create sub-
processes, using theexec command. Here is a simple example ofexec :

exec grep #include tk.h

⇒ #include <tcl.h>
#include <X11/Xlib.h>
#include <stddef.h>

Theexec command treats its arguments much like the words of a shell command line. In
this exampleexec creates a new process to run thegrep program and passes it
“#include ” and “tk.h ” as arguments, just as if you had typed

grep #include tk.h

to your shell. Thegrep program searches filetk.h for lines that contain the string
#include and prints those lines on its standard output. However, exec arranges for
standard output from the subprocess to be piped back to Tcl. Exec waits for the process to
exit and then it returns all of the standard output as its result. With this mechanism you can
execute subprocesses and use their output in Tcl scripts.Exec also supports input and out-
put redirection using standard shell notation such as<, <<, and>, pipelines with| , and
background processes with&.

The example below creates a simple user interface for saving and re-invoking com-
monly used shell commands. Type the following script into a file namedredo and invoke
it:

16 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

#!/usr/local/bin/wish -f
set id 0
entry .entry -width 30 -relief sunken -textvariable cmd
pack .entry -padx 1m -pady 1m
bind .entry <Return> {

set id [expr $id + 1]
if {$id > 5} {

destroy .b[expr $id - 5]
}
button .b$id -command "exec <@stdin >@stdout $cmd" \

-text $cmd
pack .b$id -f ill x
.b$id invoke
.entry delete 0 end

}

Initially the script creates an interface with a single entry widget. You can type a shell
command such asls into the entry, as shown in Figure 2.3(a). When you type return the
command gets executed just as if you had typed it to the shell from which you invoked
redo , and output from the command appears in the shell’s window. Furthermore, the
script creates a new button widget that displays the command (see Figure 2.3(b)) and you
can re-invoke the command later by clicking on the button. As you type more and more
commands, more and more buttons appear, up to a limit of five remembered commands as
in Figure 2.3(c).

Figure 2.3. Theredo application. The user can type a command in the entry window, as in (a).
When the user types return the command is invoked as a subprocess usingexec and a new button is
created that can be used to re-invoke the command later, as in (b). Additional commands can be
typed to create additional buttons, up to a limit of five buttons as in (c).

(a)

(b)
(c)

2.7 Subprocesses 17

DRAFT (8/12/93): Distribution Restricted

Note: This example suffers from several limitations. For example, you cannot specify wild-cards
such as “*” in command lines, and the “cd ” command doesn’t behave properly. In Part I
you’ll read about Tcl facilities that you can use to eliminate these limitations.

The most interesting part of theredo script is in thebind command. The binding
for <Return> must execute the command, which is stored in thecmd variable, and cre-
ate a new button widget. First it creates the widget. The button widgets have names like
.b1 , .b2 , and so on, where the number comes from the variableid. Id starts at zero
and increments before each new button is created. The notation “.b$id ” generates a wid-
get name by “.b ” and the value ofid . Before creating a new widget the script checks to
see if there are already five saved commands; if so then the oldest existing button is
deleted. The notation “.b[expr $id - 5] ” produces the name of the oldest button by
subtracting five from the number of the new button and concatenating it with “.b ”. The -
command option for the new button invokesexec and redirects standard input and stan-
dard output for the subprocess(es) towish ’s standard input and standard output, which
are the same as those of the shell from whichwish was invoked: this causes output from
the subprocesses to appear in the shell’s window instead of being returned towish .

The command “pack .b$id -f ill x ” makes the new button appear at the bot-
tom of the window. The option “-f ill x ” improves the appearance by stretching the
button horizontally so that it fills the width of the window even it it doesn’t really need
that much space for its text. Try omitting the-f ill option to see what happens without
it.

The last two commands of the binding script are calledwidget commands. Whenever
a new widget is created a new Tcl command is also created with the same name as the
widget, and you can invoke this command to communicate with the widget. The first argu-
ment to a widget command selects one of several operations and additional arguments are
used as parameters for that operation. In theredo script the first widget command causes
the button widget to invoke its-command option just as if you had clicked the mouse
button on it. The second widget command clears the entry widget in preparation for a new
command to be typed.

Each class of widget supports a different set of operations in its widget commands,
but many of the operations are similar from widget to widget. For example, every widget
class supports aconf igure widget command that can be used to modify any of the con-
figuration options for the widget. If you run theredo script interactively you could type
the following command to change the background of the entry widget to yellow:

.entry conf igure -background yellow

Or, you could type

.b1 conf igure -foreground brown

.b1 f lash

to change the color of the text in button.b1 to brown and then cause the button to flash.
One of the most important things about Tcl and Tk is that they make every aspect of

an application accessible and modifiable at run-time. For example, theredo script modi-

18 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

fies its own interface on the fly. In addition, Tk provides commands that you can use to
query the structure of the widget hierarchy, and you can useconf igure widget com-
mands to query and modify the configuration options of individual widgets.

2.8 Additional features of T cl and Tk

The examples in this chapter used every aspect of the Tcl language syntax and they illus-
trated many of the most important features of Tcl and Tk. However, Tcl and Tk contain
many other facilities that are not used in this chapter; all of these will be described later in
the book. Here is a sampler of some of the most useful features that haven’t been men-
tioned yet:

Arrays and lists. Tcl provides associative arrays for storing key-value pairs efficiently
and lists for managing aggregates of data.

More control structures. Tcl provides several additional commands for controlling the
flow of execution, such aseval , for , foreach , andswitch .

String manipulation. Tcl contains a number of commands for manipulating strings,
such as measuring their length and performing regular expression pattern matching and
substitution.

File access. You can read and write files from Tcl scripts and retrieve directory infor-
mation and file attributes such as length and creation time.

More widgets. Tk contains many widget classes besides those shown here, such as
menus, scrollbars, a drawing widget called acanvas, and a text widget that makes it
easy to achieve hypertext effects.

Access to other X facilities. Tk provides commands for accessing all of the major
facilities in the X Window System, such as a command for communicating with the
window manager (to set the window’s title, for example), a command for retrieving the
selection, and a command to manage the input focus.

C interfaces. Tcl provides C library procedures that you can use to define your own
new Tcl commands in C, and Tk provides a library that you can use to create your own
widget classes and geometry managers in C.

2.9 Extensions and applications

Tcl and Tk have an active and rapidly-growing user community that now numbers in the
tens of thousands. Many people have built applications based on Tcl and Tk and packages
that extend the base functionality of Tcl and Tk. Several of these packages and applica-
tions are publically available and widely used in the Tcl/Tk community. There isn’t space
in this book to discuss all of the exciting Tcl/Tk software in detail but this section gives a

2.9 Extensions and applications 19

DRAFT (8/12/93): Distribution Restricted

quick overview of five of the most popular extensions and applications. See Appendix A
for information on how you can obtain them and other contributed Tcl/Tk software.

2.9.1 Expect

Expect is one of the oldest Tcl applications and also one of the most popular. It is a pro-
gram that “talks” to interactive programs. Following a script,expect knows what output
can be expected from a program and what the correct responses should be. It can be used
to automatically control programs likeftp , telnet , rlogin , crypt , fsck , tip , and
others that cannot be automated from a shell script because they require interactive input.
Expect also allows the user to take control and interact directly with the program when
desired. For example, the followingexpect script logs into a remote machine using the
rlogin program, sets the working directory to that of the originating machine, then turns
control over to the user:

#!/usr/local/bin/expect
spawn rlogin [lindex $argv 1]
expect -re "(%|#) "
send "cd [pwd]\r"
interact

Thespawn , expect , send , andinteract commands are implemented byexpect ,
andlindex andpwd are built-in Tcl commands. Thespawn command starts uprlo-
gin , using a command-line argument as the name of the remote machine. Theexpect
command waits forrlogin to output a prompt (either “%” or “#”, followed by a space),
thensend outputs a command to change the working directory, just as if a user had typed
the command interactively. Finally, interact causesexpect to step out of the way so
that the user who invoked theexpect script can now talk directly torlogin .

Expect can be used for many purposes, such as a scriptable front-end to debuggers,
mailers, and other programs that don’t have scripting languages of their own. The pro-
grams require no changes to be driven by expect.Expect is also useful for regression
testing of interactive programs.Expect can be combined with Tk or other Tcl exten-
sions. For example, using Tk it is possible to make a graphical front end for an existing
interactive application without changing the application.

Expect was created by Don Libes.

2.9.2 Extended T cl

Extended Tcl (TclX) is a library package that augments the built-in Tcl commands with
many additional commands and procedures oriented towards system programming tasks.
It can be used with any Tcl application. Here are a few of the most popular features of
TclX:

• Access to many additional POSIX system calls and functions.

• A file scanning facility with functionality much like that of theawk program.

20 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

• Keyed lists, which provide functionality similar to C structures.

• Commands for manipulating times and dates and converting them to and from ASCII.

• An on-line help facility.

• Facilities for debugging, profiling, and program development.

Many of the best features of TclX are no longer part of TclX: they turned out to be so
widely useful that they were incorporated into the Tcl core. Among the Tcl features pio-
neered by TclX are file input and output, array variables, real arithmetic and transcenden-
tal functions, auto-loading, XPG-based internationalization, and theupvar command.

Extended Tcl was created by Karl Lehenbauer and Mark Diekhans.

2.9.3 XF

Tk makes it relatively easy to create graphical user interfaces by writing Tcl scripts, but
XF makes it even easier. XF is an interactive interface builder: you design a user interface
by manipulating objects on the screen, then XF creates a Tcl script that will generate the
interface you have designed (see Figure 2.4). XF provides tools for creating and configur-
ing widgets, arranging them with Tk’s geometry managers, creating event bindings, and so
on. XF manipulates a live application while it is running, so the full effect of each change
in the interface can be seen and tested immediately.

XF supports all of Tk’s built-in widget classes and allows you to add new widget
classes by writing class-specific Tcl scripts for XF to use to handle the classes. You
needn’t use XF exclusively: you can design part of a user interface with XF and part by
writing Tcl scripts. XF supports most of the currently available extensions to Tcl and Tk,
and XF itself is written in Tcl.

XF was created by Sven Delmas. It is based on an earlier interface builder for Tk
called BYO, which was developed at the Victoria University of Wellington, New Zealand.

2.9.4 Distributed programming

Tcl Distributed Programming (Tcl-DP) is a collection of Tcl commands that simplify the
development of distributed programs. Tcl-DP’s most important feature is aremote proce-
dure call facility, which allows Tcl applications to communicate by exchanging Tcl
scripts. For example, the following script uses Tcl-DP to implement a trivial “id server”,
which returns unique identifiers in response toGetId requests:

set myId 0
proc GetId {} {

global myId;
set myId [expr $myId+1]
return $myId

}
MakeRPCServer 4545

2.9 Extensions and applications 21

DRAFT (8/12/93): Distribution Restricted

All of the code in this script except the last line is ordinary Tcl code that defines a global
variablemyId and a procedureGetId that increments the variable and returns its new
value. TheMakeRPCServer command is implemented by Tcl-DP; it causes the applica-
tion to listen for requests on TCP socket 4545.

Other Tcl applications can communicate with this server using scripts that look like
the following:

set server [MakeRPCClient server.company.com 4545]
RPC $server GetId

The first command opens a connection with the server and saves an identifier for that con-
nection. The arguments toMakeRPCClient identify the server’s host and the socket on
which the server is listening. TheRPC command performs a remote procedure call. Its

Figure 2.4. A screen dump showing the main window of XF, an interactive application builder for
Tcl and Tk.

22 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

arguments are a connection identifier and an arbitrary Tcl script.RPC forwards the script
to the server; the server executes the script and returns its result (a new identifier in this
case), which becomes the result of theRPC command. Any script whatosever could be
substituted in place of theGetId command.

Tcl-DP also includes several other features, including asynchronous remote procedure
calls, where the client need not wait for the call to complete, a distributed object system in
which objects can be replicated in several applications and updates are automatically
propagated to all copies, and a simple name service. Tcl-DP has been used for applications
such as a video playback system, groupware, and games. Tcl-DP is more flexible than
most remote procedure call systems because it is not based on compiled interfaces
between clients and servers: it is easy in Tcl-DP to connect an existing client to a new
server without recompiling or restarting the client.

Tcl-DP was created by Lawrence A. Rowe, Brian Smith, and Steve Yen.

2.9.5 Ak

Ak is an audio extension for Tcl. It is built on top of AudioFile, a network-transparent,
device independent audio system that runs on a variety of platforms. Ak provides Tcl com-
mands for file playback, recording, telephone control, and synchronization. The basic
abstractions in Ak are connections to AudioFile servers, device contexts (which encapsu-
late the state for a particular audio device), and requests such as file playback. For exam-
ple, here is a script that plays back an audio file on a remote machine:

audioserver remote "server.company.com:0"
remote context room -device 1
room create play "announcement-f ile.au"

The first command opens a connection to the audio server on the machine
server.company.com and gives this connection the nameremote . It also creates a
command namedremote , which is used to issue commands over the connection. The
second command creates a context namedroom , which is associated with audio device 1
on the server, and also creates a command namedroom for communicating with the con-
text. The last command initiates a playback of a particular audio file.

Ak implements a unique model of time that allows clients to specify precisely when
audio samples are going to emerge. It also provides a mechanism to execute arbitrary Tcl
scripts at specified audio times; this can be used to achieve a variety of hypermedia
effects, such as displaying images or video in sync with an audio playback. When com-
bined with Tk, Ak provides a powerful and flexible scripting system for developing multi-
media applications such as tutorials and telephone inquiry systems.

Ak was created by Andrew C. Payne.

Part I:

The Tcl Language

24

DRAFT (8/12/93): Distribution Restricted

25

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 3
Tcl Language Syntax

In order to write Tcl scripts you must learn two things. First, you must learn the Tcl syntax,
which consists of about a half-dozen rules that determine how commands are parsed. The
Tcl syntax is the same for every command. Second, you must learn about the individual
commands that you use in your scripts. Tcl provides about 60 built-in commands, Tk adds
several dozen more, and any application based on Tcl or Tk will add a few more of its
own. You’ll need to know all of the syntax rules right away, but you can learn about the
commands more gradually as you need them.

This chapter describes the Tcl language syntax. The remaining chapters in Part I
describe the built-in Tcl commands, and Part II describes Tk’s commands.

3.1 Scripts, commands, and words

A Tcl script consists of one or morecommands. Commands are separated by newlines and
semi-colons. For example,

set a 24
set b 15

is a script with two commands separated by a newline character. The same script could be
written on a single line using a semi-colon separator:

set a 24; set b 15

Each command consists of one or morewords, where the first word is the name of a
command and additional words are arguments to that command. Words are separated by
spaces and tabs. Each of the commands in the above examples has three words. There may

FIGURE 3

TABLE 3

26 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

be any number of words in a command, and each word may have an arbitrary string value.
The white space that separates words is not part of the words, nor are the newlines and
semi-colons that terminate commands

3.2 Evaluating a command

Tcl evaluates a command in two steps as shown in Figure 3.1:parsing andexecution. In
the parsing step the Tcl interpreter applies the rules described in this chapter to divide the
command up into words and perform substitutions. Parsing is done in exactly the same
way for every command. During the parsing step the Tcl interpreter does not apply any
meaning to the values of the words. Tcl just performs a set of simple string operations such
as replacing the characters “$a” with the string stored in variablea; Tcl does not know or
care whethera or the resulting word is a number or the name of a widget or anything else.

Figure 3.1. Tcl commands are evaluated in two steps. First the Tcl interpreter parses the command
string into words, performing substitutions along the way. Then a command procedure processes the
words to produce a result string. Each command has a separate command procedure.

Tcl Parser

Command Procedure

Command String

Words

Result

3.2 Evaluating a command 27

DRAFT (8/12/93): Distribution Restricted

In the execution step meaning is applied to the words of the command. Tcl treats the
first word as a command name, checking to see if the command is defined and locating a
command procedure to carry out its function. If the command is defined then the Tcl inter-
preter invokes its command procedure, passing all of the words of the command to the
command procedure. The command procedure is free to interpret the words in any way
that it pleases, and different commands apply very different meanings to their arguments

Note: I use the terms “word” and “argument” interchangeably to refer to the values passed to
command procedures. The only difference between these two terms is that the first
argument is the second word.

The following commands illustrate some of meanings that are commonly applied to
arguments:

set a 122

In many cases, such as theset command, arguments may take any form
whatsoever. Theset command simply treats the first argument as a variable
name and the second argument as a value for the variable. The command
“set 122 a ” is valid too: it creates a variable whose name is “122 ” and
whose value is “a”.

expr 24/3.2

The argument toexpr must be an arithmetic expression that follows the rules
described in Chapter 5. Several other commands also take expressions as argu-
ments.

eval {set a 122}

The argument toeval is a Tcl script.Eval passes it to the Tcl interpreter
where another round of parsing and execution occurs for the argument. Other
control-flow commands such asif andwhile also take scripts as arguments.

lindex {red green blue purple} 2

The first argument tolindex is alist consisting of four values separated by
spaces. This command will extract element 2 (“blue ”) from the list and
return it. Tcl’s commands for manipulating lists are described in Chapter 6.

string length abracadabra

Some commands, likestring and the Tk widget commands, are actually
several commands rolled into one. The first argument of the command selects
one of several operations to perform and determines the meaning of the
remaining arguments. For example “string length ” requires one addi-
tional argument and computes its length, whereas “string compare ”
requires two additional arguments.

button .b -text Hello -fg red

The arguments starting with-text are option-value pairs that allow you to
specify the options you care about and use default values for the others.

28 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

In writing Tcl scripts one of the most important things to remember is that the Tcl
parser doesn’t apply any meaning to the words of a command while it parses them. All of
the above meanings are applied by individual command procedures, not by the Tcl parser.
Another way of saying this is that arguments are quoted by default; if you want evaluation
you must request it explicitly. This approach is similar to that of most shell languages but
different than most programming languages. For example, consider the following C pro-
gram:

x = 4;
y = x+10;

In the first statement C stores the integer value 4 in variablex . In the second statement C
evaluates the expression “x+10 ”, fetching the the value of variablex and adding 10, and
stores the result in variabley. At the end of executiony has the integer value 14. If you
want to use a literal string in C without evaluation you must enclose it in quotes. Now con-
sider a similar-looking program written in Tcl:

set x 4
set y x+10

The first command assigns thestring “4” to variablex . The value of the variable need not
have any particular form. The second command simply takes the string “x+10 ” and stores
it as the new value fory. At the end of the script y has the string value “x+10 ”, not the
integer value 14. In Tcl if you want evaluation you must ask for it explicitly:

set x 4
set y [expr $x+10]

Evaluation is requested twice in this example. First, the second word of the second com-
mand is enclosed in brackets, which tells the Tcl parser to evaluate the characters between
the brackets as a Tcl script and use the result as the value of the word. Second, a dollar-
sign has been placed beforex . When Tcl parses theexpr command it substitutes the
value of variablex for the$x . If the dollar-sign were omitted thenexpr ’s argument
would contain the string “x ”, resulting in a syntax error. At the end of the scripty has the
string value “14”, which is almost the same as in the C example.

3.3 Variable substitution

Tcl provides three forms ofsubstitution: variable substitution, command substitution, and
backslash substitution. Each substitution causes some of the original characters of a word
to be replaced with some other value. Substitutions may occur in any word of a command,
including the command name, and there may be any number of substitutions within a sin-
gle word.

The first form of substitution isvariable substitution. It is triggered by a dollar-sign
character and it causes the value of a Tcl variable to be inserted into a word. For example,
consider the following commands:

3.4 Command substitution 29

DRAFT (8/12/93): Distribution Restricted

set kgrams 20
expr $kgrams*2.2046

⇒ 44.092

The first command sets the value of variablekgrams to 20 . The second command com-
putes the corresponding weight in pounds by multiplying the value ofkgrams by 2.2046.
It does this using variable substitution: the string$kgrams is replaced with the value of
variablekgrams , so that the actual argument received by theexpr command procedure
is “20*2.2046 ”.

Variable substitution can occur anywhere within a word and any number of times as
in the following command:

expr $result*$base

The variable name consists of all of the numbers, letters, and underscores following the
dollar-sign. Thus the first variable name (result) extends up to the* and the second
variable name (base) extends to the end of the word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to provide more explicit control over the extent of a variable name (e.g. so that there
can be a letter immediately following the variable name). These other forms are discussed
in Chapter 4.

3.4 Command substitution

The second form of substitution provided by Tcl is command substitution. Command sub-
stitution causes part or all of a command word to be replaced with the result of another Tcl
command. Command substitution is invoked by enclosing a nested command in brackets:

set kgrams 20
set lbs [expr $kgrams*2.2046]

⇒ 44.092

The characters between the brackets must constitute a valid Tcl script. The script may con-
tain any number of commands separated by newlines or semi-colons in the usual fashion.
The brackets and all of the characters in between are replaced with the result of the script.
Thus in the example above theexpr command is executed while parsing the words for
set ; its result, the string “44.092 ”, becomes the second argument toset . As with vari-
able substitution, command substitution can occur anywhere in a word and there may be
more than one command substitution within a single word.

30 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

3.5 Backslash substitution

The final form of substitution in Tcl is backslash substitution. It is used to insert special
characters such as newlines into words and also to insert characters like[and$ without
them being treated specially by the Tcl parser. For example, consider the following com-
mand:

set msg Eggs:\ \$2.18/dozen\nGasoline:\ \$1.49/gallon

⇒ Eggs: $2.18/dozen
Gasoline: $1.49/gallon

There are two sequences of backslash followed by space; each of these sequences is
replaced in the word by a single space and the space characters are not treated as word
separators. There are also two sequences of backslash followed by dollar-sign; each of
these is replaced in the word with a single dollar-sign, and the dollar signs are treated like
ordinary characters (they do not trigger variable substitution). The backslash followed by
n is replaced with a newline character

 Table 3.1 lists all of the backslash sequences supported by Tcl. These include all of
the sequences defined for ANSI C, such as\t to insert a tab character and\xd4 to insert
the character whose hexadecimal value is 0xd4. If a backslash is followed by any charac-
ter not listed in the table, as in\$ or \[, then the backslash is dropped from the word and
the following character is included in the word as an ordinary character. This allows you to
include any of the Tcl special characters in a word without the character being treated spe-
cially by the Tcl parser. The sequence\\ will insert a single backslash into a word.

The sequence backslash-newline can be used to spread a long command across multi-
ple lines, as in the following example:

pack .base .label1 .power .label2 .result \
-side left -padx 1m -pady 2m

The backslash and newline, plus any leading space on the next line, are replaced by a sin-
gle space character in the word. Thus the two lines together form a single command.

Note: Backslash-newline sequences are unusual in that they are replaced in a separate
preprocessing step before the Tcl interpreter parses the command. This means, for
example, that the space character that replaces backslash-newline will be treated as a
word separator unless it is between double-quotes or braces.

3.6 Quoting with double-quotes

Tcl provides several ways for you to prevent the parser from giving special interpretation
to characters such as$ and semi-colon. These techniques are calledquoting. You have
already seen one form of quoting in backslash subsitution; for example,\$ causes a dol-
lar-sign to be inserted into a word without triggering variable substitution. In addition to
backslash substitution Tcl provides two other forms of quoting: double-quotes and braces.

3.6 Quoting with double-quotes 31

DRAFT (8/12/93): Distribution Restricted

Double-quotes disable word and command separators, while braces disable almost all spe-
cial characters.

If a word is enclosed in double-quotes then spaces, tabs, newlines, and semi-colons
are treated as ordinary characters within the word. The example from page 30 can be
rewritten more cleanly with double-quotes as follows:

set msg "Eggs: \$2.18/dozen\nGasoline: \$1.49/gallon"

⇒ Eggs: $2.18/dozen
Gasoline: $1.49/gallon

Note that the quotes themselves are not part of the word. The\n in the example could also
be replaced with an actual newline character, as in

set msg "Eggs: \$2.18/dozen
Gasoline: \$1.49/gallon"

but I think the script is more readable with\n .
Variable substitutions, command substitutions, and backslash substitutions all occur

as usual inside double-quotes. For example, the following script setsmsg to a string con-
taining the name of a variable, its value, and the square of its value:

Table 3.1. Backslash substitutions supported by Tcl. Each of the sequences in the first column is
replaced by the corresponding character from the second column. If a backslash is followed by a
character other than those in the first column, then the two characters are replaced by the second
character.

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\f Form feed (0xc)

\n Newline (0xa)

\r Carriage return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\ ddd Octal value given byddd
(one, two, or threed’s)

\x hh Hex value given byhh
(any number ofh’s)

\ newline space A single space character.

32 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

set a 2.1
set msg "a is $a; the square of a is [expr $a*$a]"

⇒ a is 2.1; the square of a is 4.41

If you would like to include a double-quote in a word enclosed in double-quotes, then use
backlash substitution:

set name a.out
set msg "Couldn’t open f ile \"$name\""

⇒ Couldn’t open f ile "a.out"

3.7 Quoting with braces

Braces provide a more radical form of quoting where all the special charaters lose their
meaning. If a word is enclosed in braces then the characters between the braces are the
value of the word, verbatim. No substitutions are performed on the word and spaces, tabs,
newlines, and semi-colons are treated as ordinary characters. The example on page 30 can
be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen
Gasoline: $1.49/gallon}

The dollar-signs in the word do not trigger variable substitution and the newline does not
act as a command separator. In this case\n cannot be used to insert a newline into the
wod as on page 31, because the\n will be included in the argument as-is without trigger-
ing backslash substitution:

set msg {Eggs: $2.18/dozen\nGasoline: $1.49/gallon}

⇒ Eggs: $2.18/dozen\nGasoline: $1.49/gallon

One of the most important uses for braces is todefer evaluation. Deferred evaluation
means that special characters aren’t processed immediately by the Tcl parser. Instead they
will be passed to the command procedure as part of its argument and the command proce-
dure will process the special characters itself. Braces are almost always used when passing
scripts to Tcl commands, as in the following example that computes the factorial of five:

set result 1
set i 5
while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

}

The body of thewhile loop is enclosed in braces to defer substitutions.While passes
the script back into Tcl for evaluation during each iteration of the loop and the subsitutions
will be performed at that time. In this case it is important to defer the substitutions so that
they are done afresh each time thatwhile evaluates the loop body, rather than once-and-
for-all while parsing thewhile command.

Braces nest, as in the following example:

3.8 Comments 33

DRAFT (8/12/93): Distribution Restricted

proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result*base]
set p [expr $p-1]

}
return $result

}

In this case the third argument toproc contains two pairs of nested braces (the outermost
braces are removed by the Tcl parser). The command substitution requested with “[expr
$p-1] ” will not be performed when theproc command is parsed, or even when the
while command is parsed as part of executing the procedure’s body, but only when
while evaluates its second argument to execute the loop.

Note: If a brace is backslashed then it does not count in finding the matching close brace for a
word enclosed in braces. The backslash will not be removed when the word is parsed.

Note: The only form of substitution that occurs between braces is for backslash-newline. As
discussed in Section 3.5, backslash-newline sequences are actually removed in a pre-
processing step before the command is parsed.

3.8 Comments

If the first non-blank character of a command is# then the# and all the characters follow-
ing it up through the next newline are treated as a comment and discarded. Note that the
hash-mark must occur in a position where Tcl is expecting the first character of a com-
mand. If a hash-mark occurs anywhere else then it is treated as an ordinary character that
forms part of a command word:

This is a comment
set a 100 # Not a comment

∅ wrong # args: should be "set varName ?newValue?"

set b 101; # This is a comment

⇒ 101

The# on the second line is not treated as a comment character because it occurs in the
middle of a command. As a result the firstset command receives 6 arguments and gener-
ates an error. The last# is treated as a comment character, since it occurs just after the
command was terminated with a semi-colon.

3.9 Normal and exceptional returns

A Tcl command can terminate in several different ways. Anormal return is the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tcl also supportsexceptional returns from commands. The most frequent

34 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

form of exceptional return is an error. When an error return occurs, it means that the com-
mand could not complete its intended function. The command is aborted and any com-
mands that follow it in the script are skipped. An error return includes a string identifying
what went wrong; the string is normally displayed by the application. For example, the
following set command generates an error because it has too many arguments:

set state West Virginia

∅ wrong # args: should be "set varName ?newValue?"

Different commands generate errors under different conditions. For example,expr
accepts any number of arguments but requires the arguments to have a particular syntax; it
generates an error if, for example, parentheses aren’t matched:

expr 3 * (20+4

∅ unmatched parentheses in expression " 3 * (20+4 "

The complete exceptional return mechanism for Tcl is discussed in Chapter 9. It sup-
ports a number of exceptional returns other than errors, provides additional information
about errors besides the error message mentioned above, and allows errors to be “caught”
so that effects of the error can be contained within a piece of Tcl code. For now, though, all
you need to know is that commands normally return string results but they sometimes
return errors that cause Tcl command interpretation to be aborted.

Note: You may also find theerrorInfo variable useful. After an error Tcl setserrorInfo to
hold a stack trace indicating exactly where the error occurred. You can print out this
variable with the command “set errorInfo ”.

3.10 More on substitutions

The most common difficulty for new Tcl users is understanding when substitutions do and
do not occur. A typical scenario is for a user to be surprised at the behavior of a script
because a substitution didn’t occur when the user expected it to happen, or a substitution
occurred when it wasn’t expected. However, I think that you’ll find Tcl’s substitution
mechanism to be simple and predictable if you just remember two related rules:

1. Tcl parses a command and makes substitutions in a single pass from left to right. Each
character is scanned exactly once.

2. At most a single layer of substitution occurs for each character; the result of one substi-
tution is not scanned for further substitutions.

Tcl’s substitutions are simpler and more regular than you may be used to if you’ve pro-
grammed with UNIX shells (particularlycsh). When new users run into problems with
Tcl substitutions it is often because they have assumed a more complex model than actu-
ally exists.

For example, consider the following command:

3.10 More on substitutions 35

DRAFT (8/12/93): Distribution Restricted

set x [format {Earnings for July: $%.2f} $earnings]

⇒ Earnings for July: $1400.26

The characters between the brackets are scanned exactly once, during command substitu-
tion, and the value of theearnings variable is substituted at that time. It isnot the case
that Tcl first scans the wholeset command to substitute variables, then makes another
pass to perform command substitution; everything happens in a single scan. The result of
theformat command is passed verbatim toset as its second argument without any
additional scanning (for example, the dollar-sign informat ’s result does not trigger vari-
able substitution).

One consequence of the substitution rules is that all the word boundaries within a
command are immediately evident and are not affected by substitutions. For example,
consider the following script:

set city "Los Angeles"
set bigCity $city

The secondset command is guaranteed to have exactly three words regardless of the
value of variablecity . In this casecity contains a space character but the space isnot
treated as a word separator.

In some situations the single-layer-of-substitutions rule can be a hindrance rather than
a help. For example, the following script is an erroneous attempt to delete all files with
names ending in “.o ”:

exec rm [glob *.o]

∅ rm: a.o b.o c.o nonexistent

Theglob command returns a list of all file names that match the pattern “*.o ”, such as
“a.o b.o c.o ”. Theexec command then attempts to invoke therm program to delete
all of these files. However, the entire list of files is passed torm as a single argument;rm
reports an error because it cannot find a file named “a.o b.o c.o ”. For rm to work
correctly the result ofglob must be split up into multiple words.

Fortunately, it is easy to add additional layers of parsing if you want them. Remember
that Tcl commands are evaluated in two phases: parsing and execution. The substitution
rules apply only to the parsing phase. Once Tcl passes the words of a command to a com-
mand procedure for execution, the command procedure can do anything it likes with them.
Some commands will reparse their words, for example by passing them back to the Tcl
interpreter again.Eval is an example of such a command, and it can be used to solve the
problems withrm above:

eval exec rm [glob *.o]

Eval concatenates all of its arguments with spaces in-between and then evaluates the
result as a Tcl script, at which point another round of parsing and evaluation occurs. In this
exampleeval receives three arguments: “exec ”, “ rm”, and “a.o b.o c.o ”. It con-
catenates them to form the string “exec rm a.o b.o c.o ”. When this string is
parsed as a Tcl script it yields five words; each of the file names is passed toexec and

36 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

then to therm program as a separate argument, so the files are all removed successfully.
See Section 7.5 for more details on this.

One final note. It is possible to use substitutions in very complex ways but I urge you
not to do so. Substitutions work best when used in very simple ways such as
“set a $b”. If you use a great many substitutions in a single command, and particularly
if you use lots of backslashes, your code is unlikely to be unreadable and it’s also unlikely
to work reliably. In situations like these I suggest breaking up the offending command into
several commands that build up the arguments in simple stages. Tcl provides several com-
mands, such asformat andlist , that should make this easy to do.

37

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 4
Variables

Tcl supports two kinds of variables: simple variables and associative arrays. This chapter
describes the basic Tcl commands for manipulating variables and arrays, and it also pro-
vides a more complete description of variable substitution. See Table 4.1 for a summary of
the commands discussed in this chapter.

4.1 Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named “xyz !# 22 ” or “March earnings: $100,472 ”. In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores, since that makes it easier to use variable substitution.

Variables may be created, read, and modified with theset command, which takes
either one or two arguments. The first argument is the name of a variable and the second, if
present, is a new value for the variable:

set a {Eggs: $2.18/dozen}

⇒ Eggs: $2.18/dozen

set a

⇒ Eggs: $2.18/dozen

set a 44

⇒ 44

FIGURE 4

TABLE 4

38 Variables

DRAFT (8/12/93): Distribution Restricted

The first command above creates a new variablea if it doesn’t already exist and sets its
value to the character sequence “Eggs: $2.18/dozen ”. The result of the command is
the new value of the variable. The secondset command has only one argument:a. In this
form it simply returns the current value of the variable. The thirdset command changes
the value ofa to 44 and returns that new value.

Although the final value ofa looks like a decimal integer, it is stored as a character
string. Tcl variables can be used to represent many things, such as integers, floating-point
numbers, names, lists, and Tcl scripts, but they are always stored as strings. This use of a
single representation for all values allows different values to be manipulated in the same
way and communicated easily.

 Tcl variables are created automatically when they are assigned values. Variables
don’t have types so there is no need for declarations.

4.2 Arrays

In addition to simple variables Tcl also providesarrays. An array is a collection ofele-
ments, each of which is a variable with its own name and value. The name of an array ele-
ment has two parts: the name of the array and the name of the element within that array.
Both array names and element names may be arbitrary strings. For this reason Tcl arrays

Table 4.1. A summary of the basic commands for manipulating variables. Optional arguments are
indicated by enclosing them in question-marks.

append varName value ?value ...?
Appends each of thevalue arguments to variablevarName , in order. If
varName doesn’t exist then it is created with an empty value before
appending. The return value is the new value ofvarName .

incr varName ?increment ?
Adds increment to the value of variablevarName . Increment and
the old value ofvarName must both be integer strings (decimal,
hexadecimal, or octal). Ifincrement is omitted then it defaults to1. The
new value is stored invarName as a decimal string and returned as the
result of the command.

set varName ?value ?
If value is specified, sets the value of variablevarName to value . In
any case the command returns the (new) value of the variable.

unset varName ?varName varName ...?
Deletes the variables given by thevarName arguments. Returns an empty
string.

4.3 Variable substitution 39

DRAFT (8/12/93): Distribution Restricted

are sometimes calledassociative arrays to distinguish them from arrays in other lan-
guages where the element names must be integers.

Array elements are referenced using notation likeearnings(January) where the
array name (earnings in this case) is followed by the element name in parentheses
(January in this case). Arrays may be used anywhere that simple variables may be used,
such as in theset command:

set earnings(January) 87966

⇒ 87966

set earnings(February) 95400

⇒ 95400

set earnings(January)

⇒ 87966

The first command creates an array namedearnings , if it doesn’t already exist. Then it
creates an elementJanuary within the array, if it doesn’t already exist, and assigns it the
value87966 . The second command assigns a value to theFebruary element of the
array, and the third command returns the value of theJanuary element.

4.3 Variable substitution

Chapter 3 introduced the use of$-notation for substituting variable values into Tcl
commands. This section describes the mechanism in more detail.

Variable substitution is triggered by the presence of an unquoted$ character in a Tcl
command. The characters following the$ are treated as a variable name, and the$ and
name are replaced in the word by the value of the variable. Tcl provides three forms of
variable substitution. So far you have seen only the simplest form, which is used like this:

expr $a+2

In this form the$ is followed by a variable name consisting of letters, digits, and under-
scores. The first character that is not a letter or digit or underscore (“+” in the example)
terminates the name.

The second form of variable substitution allows array elements to be substituted. This
form is like the first one except that the variable name is followed immediately by an ele-
ment name enclosed in parentheses. Variable, command, and backslash substitutions are
performed on the element name in the same way as a command word in double-quotes,
and spaces in the element name are treated as part of the name rather than as word separa-
tors. For example, consider the following script:

set yearTotal 0
foreach month {Jan Feb Mar Apr May Jun Jul Aug Sep \

Oct Nov Dec} {
set yearTotal [expr $yearTotal+$earnings($month)]

}

40 Variables

DRAFT (8/12/93): Distribution Restricted

In theexpr command “$earnings($month) ” is replaced with the value of an ele-
ment of the arrayearnings . The element’s name is given by the value of themonth
variable, which varies from iteration to iteration.

The last form of substitution is used for simple variables in places where the variable
name is followed by a letter or number or underscore. For example, suppose that you wish
to pass a value like “1.5m ” to a command as an argument but the number is in a variable
size (in Tk you might do this to specify a size in millimeters). If you try to substitute the
variable value with a form like “$sizem ” then Tcl will treat them as part of the variable
name. To get around this problem you can enclose the variable name in braces as in the
following command:

.canvas conf igure -width ${size}m

You can also use braces to specify variable names containing characters other than letters
or numbers or underscores.

Note: Braces can only be used to delimit simple variables. However, they shouldn’t be needed
for arrays since the parentheses already indicate where the variable name ends.

Tcl’s variable substitution mechanism is only intended to handle the most common
situations; there exist scenarios where none of the above forms of substitution achieves the
desired effect. More complicated situations can be handled with a sequence of commands.
For example, theformat command can be used to generate a variable name of almost
any imaginable form,set can be used to read or write the variable with that name, and
command substitution can be used to substitute the value of the variable into other com-
mands.

4.4 Removing variables: unset

Theunset command destroys variables. It takes any number of arguments, each of
which is a variable name, and removes all of the variables. Future attempts to read the
variables will result in errors just as if the variables had never been set in the first place.
The arguments tounset may be either simple variables, elements of arrays, or whole
arrays, as in the following example:

unset a earnings(January) b

In this case the variablesa andb are removed entirely and theJanuary element of the
earnings array is removed. Theearnings array continues to exist after theunset
command. Ifa or b is an array then all of the elements of that array are removed along
with the array itself.

4.5 Multi-dimensional arrays 41

DRAFT (8/12/93): Distribution Restricted

4.5 Multi-dimensional arrays

Tcl only implements one-dimensional arrays, but multi-dimensional arrays can be simu-
lated by concatenating multiple indices into a single element name. The program below
simulates a two-dimensional array indexed with integers:

set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
set i 1
set j 2
set cell $matrix($i,$j)

⇒ 218

Matrix is an array with three elements whose names are “1,1 ” and “1,2 ” and “1,3 ”.
However, the array behaves just as if it were a two-dimensional array; in particular, vari-
able substitution occurs while scanning the element name in theexpr command, so that
the values ofi andj get combined into an appropriate element name.

4.6 The incr and append commands

Incr andappend provide simple ways to change the value of a variable.Incr takes
two arguments, which are the name of a variable and an integer; it adds the integer to the
variable’s value, stores the result back into the variable as a decimal string, and returns the
variable’s new value as result:

set x 43
incr x 12

⇒ 55

The number can have either a positive or negative value. It can also be omitted, in which
case it defaults to1:

set x 43
incr x

⇒ 44

Both the variable’s original value and the increment must be integer strings, either in deci-
mal, octal (indicated by a leading0), or hexadecimal (indicated by a leading0x).

Theappend command adds text to the end of a variable. It takes two arguments,
which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the variable’s new value. The following example usesappend to
compute a table of squares:

42 Variables

DRAFT (8/12/93): Distribution Restricted

set msg ""
foreach i {1 2 3 4 5} {

append msg "$i squared is [expr $i*$i]\n"
}
set msg

⇒ 1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

Neitherincr norappend adds any new functionality to Tcl, since the effects of
both of these commands can be achieved in other ways. However, they provide simple
ways to do common operations. In addition,append is implemented in a fashion that
avoids character copying. If you need to construct a very large string incrementally from
pieces it will be much more efficient to use a command like

append x $piece

instead of a command like

set x "xpiece"

4.7 Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These com-
mands will be introduced in full after you’ve learned more about the Tcl language, but this
section contains a short preview of some of the facilities.

Thetrace command can be used to monitor a variable so that a Tcl script gets
invoked whenever the variable is set or read or unset. Variable tracing is sometimes useful
during debugging, and it allows you to create read-only variables. You can also use traces
for propagation so that, for example, a database or screen display gets updated whenever a
variable changes value. Variable tracing is discussed in Section 13.4.

Thearray command can be used to find out the names of all the elements in an
array and to step through them one at a time (see Section 13.1). It’s possible to find out
what variables exist using theinfo command (see Section 13.2).

Theglobal andupvar commands can be used by a procedure to access variables
other than its own local variables. These commands are discussed in Chapter 8.

43

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 5
Expressions

Expressions combine values (oroperands) with operatorsto produce new values. For
example, the expression “4+2 ” contains two operands, “4” and “2”, and one operator,
“+”; it evaluates to6. Many Tcl commands expect one or more of their arguments to be
expressions. The simplest such command isexpr , which just evaluates its arguments as
an expression and returns the result as a string:

expr (8+4) * 6.2

⇒ 74.4

Another example isif , which evaluates its first argument as an expression and uses the
result to determine whether or not to evaluate its second argument as a Tcl script:

if $x<2 then {set x 2}

This chapter uses theexpr command for all of its examples, but the same syntax, substi-
tution, and evaluation rules apply to all other uses of expressions too. See Table 5.1 for a
summary of theexpr command.

5.1 Numeric operands

Expression operands are normally integers or real numbers. Integers are usually specified
in decimal, but if the first character is 0 (zero) then the number is read in octal (base 8) and
if the first two characters are0x then the number is read in hexadecimal (base 16). For
example,335 is a decimal number, 0517 is an octal number with the same value, and
0x14f is a hexadecimal number with the same value.092 is not a valid integer: the lead-
ing 0 causes the number to be read in octal but9 is not a valid octal digit. Real operands

FIGURE 5

TABLE 5

44 Expressions

DRAFT (8/12/93): Distribution Restricted

may be specified using most of the forms defined for ANSI C, including the following
examples:

2.1
7.91e+16
6E4
3.

Note: These same forms are allowable not just in expressions but anywhere in Tcl that an integer
or real value is required.

Expression operands can also be non-numeric strings. String operands are discussed
in Section 5.5.

5.2 Operators and precedence

Table 5.2 lists all of the operators supported in Tcl expressions; they are similar to the
operators for expressions in ANSI C. Horizontal lines separate groups of operators with
the same precedence, and operators with higher precedence appear in the table above
operators with lower precedence. For example,4*2<7 evaluates to0 because the* oper-
ator has higher precedence than<. Except in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this will prevent
errors by you or by others who modify your programs.

Operators with the same precedence group from left to right. For example,10-4-3
is the same as(10-4)-3 ; it evaluates to3.

5.2.1 Arithmetic operators

Tcl expressions support the arithmetic operators+, - , * , / , and%. The- operator may be
used either as a binary operator for subtraction, as in4-2 , or as a unary operator for nega-
tion, as in-(6*$i) . The/ operator truncates its result to an integer value if both oper-
ands are integers.% is the modulus operator: its result is the remainder when its first
operand is divided by the second. Both of the operands for% must be integers.

Note: The / and % operators have a more consistent behavior in Tcl than in ANSI C. In Tcl the
remainder is always positive and has an absolute value less than the absolute value of the

Table 5.1. A summary of theexpr command.

expr arg ?arg arg ...?
Concatenates all thearg values together (with spaces in between),
evaluates the result as an expression, and returns a string corresponding to
the expression’s value.

5.2 Operators and precedence 45

DRAFT (8/12/93): Distribution Restricted

divisor. ANSI C guarantees only the second property: In both ANSI C and Tcl the quotient
will always have the property that (x/y)*y + x%y is x ., for all x andy.

Table 5.2. Summary of the operators allowed in Tcl expressions. These operators have the same
behavior as in ANSI C except that some of the operators allow string operands. Groups of operands
between horizontal lines have the same precedence; higher groups have higher precedence.

Syntax Result Operand Types

- a Negative ofa int, float

! a Logical NOT: 1 if a is zero, 0 otherwise int, float

~a Bit-wise complement ofa int

a* b Multiply a andb int, float

a/ b Divide a by b int, float

a%b Remainder after dividinga by b int

a+b Add a andb int, float

a- b Subtractb from a int, float

a<<b Left-shift a by b bits int

a>>b Arithmetic right-shifta by b bits int

a<b 1 if a is less thanb, 0 otherwise int, float, string

a>b 1 if a is greater thanb, 0 otherwise int, float, string

a<=b 1 if a is less than or equal tob, 0 otherwise int, float, string

a>=b 1 if a is greater than or equal tob, 0 otherwise int, float, string

a==b 1 if a is equal tob, 0 otherwise int, float, string

a!= b 1 if a is not equal tob, 0 otherwise int, float, string

a&b Bit-wise AND ofa andb int

a^b Bit-wise exclusive OR ofa andb int

a| b Bit-wise OR ofa andb int

a&&b Logical AND: 1 if botha andb are non-zero,
0 otherwise

int, float

a|| b Logical OR: 1 if eithera is non-zero orb is
non-zero, 0 otherwise

int, float

a?b: c Choice: ifa is non-zero thenb, elsec a: int, float

46 Expressions

DRAFT (8/12/93): Distribution Restricted

5.2.2 Relational operators

The operators< (less than),<= (less than or equal),>=(greater than or equal),> (greater
than),== (equal), and!= (not equal) are used for comparing two values. Each operator
produces a result of1 (true) if its operands meet the condition and0 (false) if they don’t.

5.2.3 Logical operators

The logical operators&&, || , and! are typically used for combining the results of rela-
tional operators, as in the expression

($x > 4) && ($x < 10)

Each operator produces a0 or 1 result.&& (logical “and”) produces a1 result if both its
operands are non-zero,|| (logical “or”) produces a1 result if either of its operands is
non-zero, and! (“not”) produces a1 result if its single operand is zero.

In Tcl, as in ANSI C, a zero value is treated as false and anything other than zero is
treated as true. Whenever Tcl generates a true/false value it uses1 for true and0 for false.

5.2.4 Bitwise operators

Tcl provides six operators that manipulate the individual bits of integers:&, | , ^ , <<, >>,
and~. These operators require their operands to be integers. The&, | , and^ operators
perform bitwise and, or, and exclusive or: each bit of the result is generated by applying
the given operation to the corresponding bits of the left and right operands. Note that&
and| do not always produce the same result as&& and|| :

expr 8&&2

⇒ 1

expr 8&2

⇒ 0

The operators<< and>> use the right operand as a shift count and produce a result
consisting of the left operand shifted left or right by that number of bits. During left shifts
zeros are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,
meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This
behavior is different from right-shifting in ANSI C, which is machine-dependent.

The~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa.

5.2.5 Choice operator

The ternary operator?: may be used to select one of two results:

expr {($a < $b) ? $a : $b}

5.3 Math functions 47

DRAFT (8/12/93): Distribution Restricted

This expression returns the smaller of$a and$b . The choice operator checks the value of
its first operand for truth or falsehood. If it is true (non-zero) then the argument following
the? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second and third arguments
is evaluated.

5.3 Math functions

Tcl expressions support a number of mathematical functions such assin andexp . Math
functions are invoked using standard functional notation:

expr 2*sin($x)
expr hypot($x, $y) + $z

The arguments to math functions may be arbitrary expressions, and multiple arguments
are separated by commas. See Table 5.3 for a list of all the built-in functions.

5.4 Substitutions

Substitutions can occur in two ways for expression operands. The first way is through the
normal Tcl parser mechanisms, as in the following command:

expr 2*sin($x)

In this case the Tcl parser substitutes the value of variablex before executing the com-
mand, so the first argument toexpr will have a value such as “2*sin(0.8) ”. The sec-
ond way is through the expression evaluator, which performs an additional round of
variable and command substitution on the expression while evaluating it. For example,
consider the command:

expr {2*sin($x)}

In this case the braces prevent the Tcl parser from substituting the value ofx , so the argu-
ment toexpr is “2*sin($x) ”. When the expression evaluator encounters the dollar-
sign it performs variable substitution itself, using the value of variablex as the argument
to sin .

Having two layers of substitution doesn’t usually make any difference for theexpr
command, but it is vitally important for other commands likewhile that evaluate an
expression repeately and expect to get different results each time. For example, consider
the following script that raises a base to a power:

set result 1
while {$power>0} {

set result [expr $result*$base]
incr power -1

}

48 Expressions

DRAFT (8/12/93): Distribution Restricted

The expression “$power>0 ” gets evaluated bywhile at the beginning of each iteration
to decide whether or not to terminate the loop. It is essential that the expression evaluator
use a new value ofpower each time. If the variable substitution were performed while
parsing thewhile command, for example “while $power>0 ...”, thenwhile ’s
argument would be a constant expression such as “5>0 ”; either the loop would never exe-
cute or it would execute forever.

Table 5.3. The mathematical functions supported in Tcl expressions. In most cases the functions
have the same behavior as the ANSI C library procedures with the same names.

Function Result

abs(x) Absolute value ofx.

acos(x) Arc cosine ofx , in the range 0 toπ.

asin(x) Arc sine ofx , in the range -π/2 toπ/2.

atan(x) Arc tangent ofx , in the range -π/2 toπ/2.

atan2(x , y) Arc tangent ofx /y, in the range -π/2 toπ/2.

ceil(x) Smallest integer not less thanx .

cos(x) Cosine ofx (x in radians).

cosh(x) Hyperbolic cosine ofx .

double(i) Real value equal to integeri .

exp(x) e raised to the powerx .

f loor(x) Largest integer not greater thanx .

fmod(x , y) Floating-point remainder ofx divided byy.

hypot(x , y) Square root of (x2 + y2).

int(x) Integer value produced by truncatingx .

log(x) Natural logarithm ofx .

log10(x) Base 10 logarithm ofx .

pow(x , y) x raised to the powery.

round(x) Integer value produced by roundingx .

sin(x) Sine ofx (x in radians).

sinh(x) Hyperbolic sine ofx .

sqrt(x) Square root ofx .

tan(x) Tangent ofx (x in radians).

tanh(x) Hyperbolic tangent ofx .

5.5 String manipulation 49

DRAFT (8/12/93): Distribution Restricted

Note: When the expression evaluator performs variable or command substitution the value
substituted must be an integer or real number (or a string, as described below). It cannot
be an arbitrary expression.

5.5 String manipulation

Unlike expressions in ANSI C, Tcl expressions allow som simple string operations, as in
the following command:

if {$x == "New York"} {
...
}

In this example the expression evaluator compares the value of variablex to the string
“New York ” using string comparison; the body of theif will be executed if they are
identical. In order to specify a string operand you must either enclose it in quotes or braces
or use variable or command substitution. It is important that the expression in the above
example is enclosed in braces so that the expression evaluator substitutes the value ofx ; if
the braces are left out then the argument toif will be a string like

Los Angeles == "New York"

The expression parser will not be able to parse “Los ” (it isn’t a number, it doesn’t make
sense as a function name, and it can’t be interpreted as a string because it isn’t delimited)
so a syntax error will occur.

If a string is enclosed in quotes then the expression evaluator performs command,
variable, and backslash substitution on the characters between the quotes. If a string is
enclosed in braces then no substitutions are performed. Braces nest for strings in expres-
sions in the same way that they nest for words of a command.

The only operators that allow string operands are<, >, <=, >=, ==, and !=. For all
other operators the operands must be numeric. For operators like< the strings are com-
pared lexicographically using the system’sstrcmp library function; the sorting order
may vary from system to system.

5.6 Types and conversions

Tcl evaluates expressions numerically whenever possible. String operations are only per-
formed for the relational operators and only if one or both of the operands doesn’t make
sense as a number. Most operators permit either integer or real operands but a few, such as
<< and&, allow only integers.

If the operands for an operator have different types then Tcl automatically converts
one of them to the type of the other. If one operand is an integer and the other is a real then
the integer operand is converted to real. If one operand is a non-numeric string and the
other is an integer or real then the integer or real operand is converted to a string. The

50 Expressions

DRAFT (8/12/93): Distribution Restricted

result of an operation always has the same type as the operands except for relational oper-
ators like<, which always produce 0/1 integer results. You can use the math function
double to explicitly promote an integer to a real, andint andround to convert a real
value back to integer by truncation or rounding.

5.7 Precision

During expression evaluation Tcl represents integers internally with the C typeint ,
which provides at least 32 bits of precision on most machines. Real numbers are repre-
sented with with the C typedouble , which is usually represented with 64-bit values
(about 15 decimal digits of precision) using the IEEE Floating Point Standard.

Numbers are kept in internal form throughout the evaluation of an expression and are
only converted back to strings when necessary, such as whenexpr returns its result. Inte-
gers are converted to signed decimal strings without any loss of precision. When a real
value is converted to a string only six significant digits are retained by default:

expr 1.11111111 + 1.11111111

⇒ 2.22222

If you would like more significant digits to be retained when real values are converted to
strings you can set thetcl_precision global variable with the desired number of sig-
nificant digits:

set tcl_precision 12
expr 1.11111111 + 1.11111111

⇒ 2.22222222

Thetcl_precision variable is used not just for theexpr command but anywhere
that a Tcl application converts a real number to a sting.

Note: If you settcl_precision to 17 on a machine that uses IEEE floating point, you will
guarantee that string conversions do not lose information: if an expression result is
converted to a string and then later used in a different expression, the internal form after
conversion back from the string will be identical to the internal form before converting to
the string.

51

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 6
Lists

Lists are used in Tcl to deal with collections of things, such as all the users in a group or all
the files in a directory or all the options for a widget. Lists allow you to collect together
any number of values in one place, pass around the collection as a single entity, and later
get the component values back again. A list is an ordered collection ofelements where
each element can have any string value, such as a number, a person’s name, the name of a
window, or a word of a Tcl command. Lists are represented as strings with a particular
structure; this means that you can store lists in variables, type them to commands, and nest
them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elements (see Table 6.1 for a summary).
There are other Tcl commands besides those described in this chapter that take lists as
arguments or return them as results; these other commands will be described in later chap-
ters.

6.1 Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by
spaces or tabs. For example, the string

John Anne Mary Jim

FIGURE 6

TABLE 6

52 Lists

DRAFT (8/12/93): Distribution Restricted

Table 6.1. A summary of the list-related commands in Tcl.

concat list ?list ...?
Joins multiple lists into a single list (each element of eachlist becomes an
element of the result list) and returns the new list.

join list ?joinString ?
Concatenates list elements together withjoinString as separator and
returns the result.

lappend varName value ?value ...?
Appends eachvalue to variablevarName as a list element and returns the
new value of the variable. Creates the variable if it doesn’t already exist.

lindex list index
Returns theindex ’ th element fromlist .

linsert list index value ?value ...?
Returns a new list formed by inserting all of thevalue arguments as list
elements beforeindex ’ th element oflist .

list value ?value ...?
Returns a list whose elements are thevalue arguments.

llength list
Returns the number of elements inlist .

lrange list f irst last
Returns a list consisting of elementsf irst throughlast of list . If
last is end then it selects all elements up to the end of the list.

lreplace list f irst last ?value value ...?
Returns a new list formed by replacing elementsf irst throughlast of
list with zero or more new elements, each formed from onevalue argu-
ment.

lsearch ?-exact ? ?-glob ? ?-regexp ? list pattern
Returns the index of the first element inlist that matchespattern or -1
if none. The optional switch selects a pattern-matching technique (default:
- glob).

lsort ?-ascii ? ?-integer ? ?-real ? ?-command command? \
?-increasing ? ?-decreasing ? list

Returns a new list formed by sorting the elements oflist . The switches
determine the comparison function and sorted order (default:-ascii
- increasing).

split string ?splitChars ?
Returns a list formed by splittingstring at instances ofsplitChars and
turning the characters between these instances into list elements.

6.2 Creating lists: concat, list, and llength 53

DRAFT (8/12/93): Distribution Restricted

is a list with four elements. There can be any number of elements in a list, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).

The lindex command extracts an element from a list:

lindex {John Anne Mary Jim} 1

⇒ Anne

Lindex takes two arguments, a list and an index, and returns the selected element of the
list. An index of0 corresponds to the first element of the list,1 corresponds to the second
element, and so on. If the index is outside the range of the list then an empty string is
returned.

 When a list is entered in a Tcl command the list is usually enclosed in braces, as in
the above example. The braces are not part of the list; they are needed on the command
line to pass the entire list to the command as a single word. When lists are stored in vari-
ables or printed out, there are no braces around them:

set x {John Anne Mary Jim}

⇒ John Anne Mary Jim

Curly braces and backslashes within list elements are handled by the list commands in
the same way that the Tcl command parser treats them in words. This means that you can
enclose a list element in braces if it contains spaces, and you can use backslash substitu-
tion to get special characters such as braces into list elements. Braces are often used to nest
lists within lists, as in the following example:

lindex {a b {c d e} f} 2

⇒ c d e

In this case element 2 of the list is itself a list with three elements. There is no limit on how
deeply lists may be nested.

6.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to produce lists:concat and
list . Each of these commands accepts an arbitrary number of arguments, and each pro-
duces a list as a result. However, they differ in the way they combine their arguments. The
concat command takes one or more lists as arguments and joins all of the elements of
the argument lists together into a single large list:

concat {a b c} {d e} f {g h i}

⇒ a b c d e f g h i

Concat expects its arguments to have proper list structure; if the arguments are not well-
formed lists then the result may not be a well-formed list either. In fact, all thatconcat
does is to concatenate its argument strings into one large string with space characters
between the arguments. The same effect asconcat can be achieved using double-quotes:

54 Lists

DRAFT (8/12/93): Distribution Restricted

set x {a b c}
set y {d e}
set z [concat $x $y]

⇒ a b c d e

set z "$x $y"

⇒ a b c d e

The list command joins its arguments together so that each argument becomes a
distinct element of the resulting list:

list {a b c} {d e} f {g h i}

⇒ {a b c} {d e} f {g h i}

In this case, the result list contains only four elements. Thelist command will always
produce a list with proper structure, regardless of the structure of its arguments (it adds
braces or backslashes as needed), and thelindex command can always be used to
extract the original elements of a list created withlist . The arguments tolist need not
themselves be well-formed lists.

The llength command returns the number of elements in a list:

llength {{a b c} {d e} f {g h i}}

⇒ 4

llength a

⇒ 1

llength {}

⇒ 0

As you can see from the examples, a simple string like “a” is a proper list with one ele-
ment and an empty string is a proper list with zero elements.

6.3 Modifying lists: linsert, lreplace, lrange, and lappend

The linsert command forms a new list by adding one or more elements to an existing
list:

set x {a b {c d} e}

⇒ a b {c d} e

linsert $x 2 X Y Z

⇒ a b X Y Z {c d} e

linsert $x 0 {X Y} Z

⇒ {X Y} Z a b {c d} e

Linsert takes three or more arguments. The first is a list, the second is the index of an
element within that list, and the third and additional arguments are new elements to insert
into the list. The return value fromlinsert is a list formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-

6.3 Modifying lists: linsert, lreplace, lrange, and lappend 55

DRAFT (8/12/93): Distribution Restricted

ments go at the beginning of the list; if it is one then the new elements go after the first
element in the old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.

The lreplace command deletes elements from a list and optionally adds new ele-
ments in their place. It takes three or more arguments. The first argument is a list and the
second and third arguments give the indices of the first and last elements to be deleted. If
only three arguments are specified then the result is a new list produced by deleting the
given range of elements from the original list:

lreplace {a b {c d} e} 3 3

⇒ a b {c d}

 If additional arguments are specified tolreplace as in the example below, then they
are inserted into the list in place of the elements that were deleted.

lreplace {a b {c d} e} 1 2 {W X} Y Z

⇒ a {W X} Y Z e

Thelrange command extracts a range of elements from a list. It takes as arguments
a list and two indices and it returns a new list consisting of the range of elements that lie
between the two indices (inclusive):

set x {a b {c d} e}

⇒ a b {c d} e

lrange $x 1 3

⇒ b {c d} e

lrange $x 0 1

⇒ a b

The lappend command provides an efficient way to append new elements to a list
stored in a variable. It takes as arguments the name of a variable and any number of addi-
tional arguments. Each of the additional arguments is appended to the variable’s value as a
new list element andlappend returns the variable’s new value:

set x {a b {c d} e}

⇒ a b {c d} e

lappend x XX {YY ZZ}

⇒ a b {c d} e XX {YY ZZ}

set x

⇒ a b {c d} e XX {YY ZZ}

Lappend is similar toappend except that it enforces proper list structure. As with
append, it isn’t strictly necessary. For example, the command

lappend x $a $b $c

could be written instead as

set x "$x [list $a $b $c]"

56 Lists

DRAFT (8/12/93): Distribution Restricted

However, as withappend , lappend is implemented in a way that avoids string copies.
For large lists this can make a big difference in performance.

6.4 Searching lists: lsearch

The lsearch command searches a list for an element with a particular value. It takes
two arguments, the first of which is a list and second of which is a pattern:

set x {John Anne Mary Jim}
lsearch $x Mary

⇒ 2

lsearch $x Phil

⇒ -1

Lsearch returns the index of the first element in the list that matches the pattern, or-1 if
there was no matching element.

One of three different pattern matching techniques can be selected by specifying one
of the switches-exact , -glob , and-regexp before the list argument:

lsearch -glob $x A*

⇒ 1

The-glob switch causes matching to occur with the rules of thestring match com-
mand described in Section 10.1. A-regexp switch causes matching to occur with regu-
lar expression rules as described in Section 10.2, and-exact insists on an exact match
only. If no switch is specified then-glob is assumed by default.

6.5 Sorting lists: lsort

The lsort command takes a list as argument and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:

lsort {John Anne Mary Jim}

⇒ Anne Jim John Mary

You can precede the list with any of several switches to control the sort. For example,
- decreasing specifies that the result should have the “largest” element first and
- integer specifies that the elements should be treated as integers and sorted according
to integer value:

lsort -decreasing {John Anne Mary Jim}

⇒ Mary John Jim Anne

lsort {10 1 2}

⇒ 1 10 2

6.6 Converting between strings and lists: split and join 57

DRAFT (8/12/93): Distribution Restricted

lsort -integer {10 1 2}

⇒ 1 2 10

You can use the-command option to specify your own sorting function (see the reference
documentation for details).

6.6 Converting between strings and lists: split and join

Thesplit command breaks up a string into component pieces so that you can process
the pieces independently. It creates a list whose elements are the pieces, so that you can
use any of the list commands to process the pieces. For example, suppose a variable con-
tains a UNIX file name with components separated by slashes, and you want to convert it
to a list with one element for each component:

set x a/b/c
set y /usr/include/sys/types.h
split $x /

⇒ a b c

split $y /

⇒ {} usr include sys types.h

The first argument tosplit is the string to be split up and the second argument contains
one or moresplit characters. Split locates all instances of any of the split characters in
the string. It then creates a list whose elements consist of the substrings between the split
characters. The ends of the string are also treated as split characters. If there are consecu-
tive split characters or if the string starts or ends with a split character as in the second
example, then empty elements are generated in the result list. The split characters them-
selves are discarded. Several split characters can be specified, as in the following example:

split xbaybz ab

⇒ x {} y z

If an empty string is specified for the split characters then each character of the string is
made into a separate list element:

split {a b c} {}

⇒ a { } b { } c

The join command is approximately the inverse ofsplit . It concatenates list ele-
ments together with a given separator string between them:

join { {} usr include sys types.h } /

⇒ /usr/include/sys/types.h

set x {24 112 5}
expr [join $x +]

⇒ 141

58 Lists

DRAFT (8/12/93): Distribution Restricted

Join takes two arguments: a list and a separator string. It extracts all of the elements from
the list and concatenates them together with the separator string between each pair of ele-
ments. The separator string can contain any number of characters, including zero. In the
first example above a file name is generated by joining the list elements with “/ ”. In the
second example a Tcl expression is generated by joining the list elements with “+”.

One of the most common uses forsplit andjoin is for dealing with file names as
shown above. Another common use is for splitting up text into lines by using newline as
the split character.

6.7 Lists and commands

There is a very important relationship between lists and commands in Tcl. Any proper list
is also a well-formed Tcl command. If a list is evaluated as a Tcl script then it will consist
of a single command whose words are the list elements. In other words, the Tcl parser will
perform no substitutions whatsoever: it will simply extract the list elements with each ele-
ment becoming one word of the command. This property is very important because it
allows you to generate Tcl commands that are guaranteed to parse in a particular fashion
even if some of the command’s words contain special characters like spaces or$.

For example, suppose you are creating a button widget in Tk, and when the user
clicks on the widget you would like to reset a variable to a particular value. You might cre-
ate such a widget with a command like this:

button .b -text "Reset" -command {set x 0}

The Tcl script “set x 0 ” will be evaluated whenever the user clicks on the button. Now
suppose that the value to be stored in the variable is not constant, but instead is computed
just before thebutton command and must be taken from a variableinitValue . Fur-
thermore, suppose thatinitValue could contain any string whatsoever. You might
rewrite the command as

button .b -text "Reset" -command {set x $initValue}

The script “set x $initValue ” will be evaluated when the user clicks on the button.
However, this will use the value ofinitValue at the time the user clicks on the button,
which may not be the same as the value when the button was created. For example, the
same variable might be used to create several buttons, each with a different intended reset
value.

To solve this problem you must generate a Tcl command that contains thevalue of the
initValue variable, not its name, and use this as part of the -command option for the
button command. Unfortunately, a simple approach like

button .b -text "Reset" -command "set x $initValue"

will not work in general. If the value ofinitValue is something simple like47 then
this will work fine: the resulting command will be “set x 47 ”, which will produce the
desired result. However, what if initValue contains “New York ”? In this case the

6.7 Lists and commands 59

DRAFT (8/12/93): Distribution Restricted

resulting command will be “set x New York ”, which has four words;set will gener-
ate an error because there are too many arguments. Even worse, what ifinitValue con-
tains special characters like “$” or “ [”? These characters could cause unwanted
substitutions to occur when the command is evaluated.

The only solution that is guaranteed to work for any value ofinitValue is to use
list commands to generate the command, as in the following example:

button .b -text "Reset" -command [list set x $initValue]

The result of thelist command is a Tcl command whose first word will beset , whose
second word will bex , and whose third word will be the value ofinitValue . The com-
mand will always produce the desired result: whatever value is stored ininitValue at
the timebutton is invoked will be stored inx when the widget is invoked. For example,
suppose that the value ofinitValue is “New York ”. The command generated by
list will be “set x {New York} ”, which will parse and execute correctly. Any of
the Tcl special characters will also be handled correctly bylist :

set initValue {Earnings: $1410.13}
list set x $initValue

⇒ set x {Earnings: $1410.13}

set initValue "{ \\"
list set x $initValue

⇒ set x \{\ \\

60 Lists

DRAFT (8/12/93): Distribution Restricted

61

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 7
Control Flow

This chapter describes the Tcl commands for controlling the flow of execution in a script.
Tcl’s control flow commands are similar to the control flow statements in the C program-
ming language andcsh , includingif , while , for , foreach , switch , andeval .
Table 7.1 summarizes these commands.

7.1 The if command

The if command evaluates an expression, tests its result, and conditionally executes a
script based on the result. For example, consider the following command, which sets vari-
ablex to zero if it was previously negative:

if {$x < 0} {
set x 0

}

In this caseif receives two arguments. The first is an expression and the second is a Tcl
script. The expression can have any of the forms for expressions described in Chapter 5.
The if command evaluates the expression and tests the result; if it is non-zero thenif
evaluates the Tcl script. If the value is zero thenif returns without taking any further
action.

If commands can also include one or moreelseif clauses with additional tests
and scripts, plus a finalelse clause with a script to evaluate if no test succeeds:

FIGURE 7

TABLE 7

62 Control Flow

DRAFT (8/12/93): Distribution Restricted

Table 7.1. A summary of the Tcl commands for controlling the flow of execution.

break
Terminates the innermost nested looping command.

continue
Terminates the current iteration of the innermost looping command and
goes on to the next iteration of that command.

eval arg ?arg arg ...?
Concatenates all of thearg ’s with separator spaces, then evaluates the
result as a Tcl script and returns its result.

for init test reinit body
Executesinit as a Tcl script. Then evaluatestest as an expression. If it
evaluates to non-zero then executesbody as a Tcl script, executesreinit
as a Tcl script, and re-evaluatestest as an expression. Repeats untiltest
evaluates to zero. Returns an empty string.

foreach varName list body
For each element oflist , in order, set variablevarName to that value
and executebody as a Tcl script. Returns an empty string.List must be a
valid Tcl list.

if test1 ?then ? body1 ?elseif test2 ?then ? body2 elseif ...? \
?else ? ?bodyn ?

Evaluatestest as an expression. If its value is non-zero then executes
body1 as a Tcl script and returns its value . Otherwise evaluatestest2 as
an expression; if its value is non-zero then executesbody2 as a script and
returns its value. If no test succeeds then executesbodyn as a Tcl script
and returns its result.

source f ileName
Reads the file whose name isf ileName and evaluates its contents as a Tcl
script. Returns the result of the script.

switch ?options ? string pattern body ?pattern body ...?
switch ?options ? string { pattern body ?pattern body ...?}

Matchesstring against eachpattern in order until a match is found,
then executes thebody corresponding to the matchingpattern . If the
lastpattern is default then it matches anything. Returns the result of
thebody executed, or an empty string if no pattern matches.Options
may be any of-exact , -glob , -regexp , or -- .

while test body
Evaluatestest as an expression. If its value is non-zero then executes
body as a Tcl script and re-evaluatestest . Repeats untiltest evaluates
to zero. Returns an empty string.

7.2 Looping commands: while, for, and foreach 63

DRAFT (8/12/93): Distribution Restricted

if {$x < 0} {
...

} elseif {$x == 0} {
...

} elseif {$x == 1} {
...

} else {
...

}

This command will execute one of the four scripts indicated by “...” depending on the
value ofx . The result of the command will be the result of whichever script is executed. If
an if command has noelse clause and none of its tests succeeds then it returns an
empty string.

The argumentelse is an optional “noise word”. It is also legal to havethen noise
words after any of the expressions to test. Theelseif words are not optional: they are
needed to distinguishelseif clauses fromelse clauses.

Remember that the expressions and scripts forif and other control flow commands
are parsed using the same approach as all arguments to all Tcl commands. It is almost
always a good idea to enclose the expressions and scripts in braces so that substitutions are
deferred until the the command is executed. Furthermore, each open brace must be on the
same line as the preceding word or else the newline will be treated as a command separa-
tor. The following script is parsed as two commands, which probably isn’t the desired
result:

if {$x < 0}
{

set x 0
}

7.2 Looping commands: while, for , and foreach

Tcl provides three commands for looping:while , for , andforeach . While andfor
are similar to the corresponding C statements andforeach is similar to the correspond-
ing feature of thecsh shell. Each of these commands executes a nested script over and
over again; they differ in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhile command takes two arguments: an expression and a Tcl script. It evalu-
ates the expression and if the result is non-zero then it executes the Tcl script. This process
repeats over and over until the expression evaluates to zero, at which point thewhile
command terminates and returns an empty string. For example, the script below copies a
list from variableb to variablea, reversing the order of the elements along the way:

64 Control Flow

DRAFT (8/12/93): Distribution Restricted

set b ""
set i [expr [llength $a] -1]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

Thefor command is similar towhile except that it provides more explicit loop
control. The program to reverse the elements of a list can be rewritten usingfor as fol-
lows:

set b ""
for {set i [expr [llength $a]-1]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

The first argument tofor is an initialization script, the second is an expression that deter-
mines when to terminate the loop, the third is a reinitialization script, which is evaluated
after each execution of the loop body before evaluating the test again, and the fourth argu-
ment is a script that forms the body of the loop.For executes its first argument (the ini-
tialization script) as a Tcl command, then evaluates the expression. If the expression
evaluates to non-zero, thenfor executes the body followed by the reinitialization script
and re-evaluates the expression. It repeats this sequence over and over again until the
expression evaluates to zero. If the expression evaluates to zero on the first test then nei-
ther the body script nor the reinitialization script is ever executed. Likewhile , for
returns an empty string as result.

For andwhile are equivalent in that anything you can write using one command
you can also write using the other command. However, for has the advantage of placing
all of the loop control information in one place where it is easy to see. Typically the initial-
ization, test, and re-initialization arguments are used to select a set of elements to operate
on (integer indices in the above example) and the body of the loop carries out the opera-
tions on the chosen elements. This clean separation between element selection and action
makesfor loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
while loop may make more sense.

Theforeach command iterates over all of the elements of a list. For example, the
following script provides yet another implementation of list reversal:

set b "";
foreach i $a {

set b [linsert $b 0 $i]
}

Foreach takes three arguments. The first is the name of a variable, the second is a list,
and the third is a Tcl script that forms the body of the loop.Foreach will execute the
body script once for each element of the list, in order. Before executing the body in each
iteration,foreach sets the variable to hold the next element of the list. Thus if variablea
has the value “f irst second third ” in the above example, the body will be exe-

7.3 Loop control: break and continue 65

DRAFT (8/12/93): Distribution Restricted

cuted three times. In the first iterationi will have the valuef irst , in the second iteration
it will have the valuesecond , and in the third iteration it will have the valuethird . At
the end of the loop, b will have the value “third second f irst ” and i will have the
value “third ”. As with the other looping commands,foreach always returns an empty
string.

7.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:
break andcontinue . These commands have the same behavior as the corresponding
statements in C. Neither takes any arguments. Thebreak command causes the innermost
enclosing looping command to terminate immediately. For example, suppose that in the
list reversal example above it is desired to stop as soon as an element equal toZZZ is
found in the source list. In other words, the result list should consist of a reversal of only
those source elements up to (but not including) aZZZ element. This can be accomplished
with break as follows:

set b "";
foreach i $a {

if {$i == "ZZZ"} break
set b [linsert $b 0 $i]

}

Thecontinue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the case ofwhile , this means
skipping out of the body and re-evaluating the expression that determines when the loop
terminates; infor loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, whereZZZ elements are simply skipped without copying them to the
result list:

set b "";
foreach i $a {

if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

}

7.4 The switch command

Theswitch command tests a value against a number of patterns and executes one of
several Tcl scripts depending on which pattern matched. The same effect asswitch can
be achieved with anif command that has lots ofelseif clauses, butswitch provides
a more compact encoding. Tcl’s switch command has two forms; here is an example of
the first form:

66 Control Flow

DRAFT (8/12/93): Distribution Restricted

switch $x {a {incr t1} b {incr t2} c {incr t3}}

The first argument toswitch is the value to be tested (the contents of variablex in the
example). The second argument is a list containing one or more pairs of elements. The first
argument in each pair is a pattern to compare against the value, and the second is a script
to execute if the pattern matches. Theswitch command steps through these pairs in
order, comparing the pattern against the value. As soon as it finds a match it executes the
corresponding script and returns the value of that script as its value. If no pattern matches
then no script is executed andswitch returns an empty string. This particular command
increments variablet1 if x has the value a,t2 if x has the valueb, t3 if x has the value
c , and does nothing otherwise.

The second form spreads the patterns and scripts out into separate arguments rather
than combining them all into one list:

switch $x a {incr t1} b {incr t2} c {incr t3}

This form has the advantage that you can invoke substitutions on the pattern arguments
more easily, but most people prefer the first form because you can easily spread the pat-
terns and scripts across multiple lines like this:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}

}

The outer braces keep the newlines from being treated as command separators. With the
second form you would have to use backslash-newlines like this:

switch $x \
a {incr t1} \
b {incr t2} \
c {incr t3} \

}

Theswitch command supports three forms of pattern matching. You can precede
the value to test with a switch that selects the form you want:-exact selects exact com-
parison,-glob selects pattern matching as in thestring match command (see Sec-
tion 10.1 for details) and-regexp selects regular-expression matching as described in
Section 10.2. The default is-glob .

If the last pattern in aswitch command isdefault then it matches any value. Its
script will thus be executed if no other patterns match. For example, the script below will
examine a list and produce three counters. The first,t1 , counts the number of elements in
the list that contain ana. The second,t2 , counts the number of elements that are unsigned
decimal integers. The third,t3 , counts all of the other elements:

7.5 Eval 67

DRAFT (8/12/93): Distribution Restricted

set t1 0
set t2 0
set t3 0
foreach i $x {

switch -regexp $i in {
a {incr t1}
^[0-9]*$ {incr t2}
default {incr t3}

}
}

If a script in aswitch command is “- ” thenswitch uses the script for the next
pattern instead. This makes it easy to have several patterns that all execute the same script,
as in the following example:

switch $x {
a -
b -
c {incr t1}
d {incr t2}

}

This script increments variablet1 if x is a, b, orc and it incrementst2 if x is d.

7.5 Eval

Eval is a general-purpose building block for creating and executing Tcl scripts. It accepts
any number of arguments, concatenates them together with separator spaces, and then exe-
cutes the result as a Tcl script. One use ofeval is for generating commands, saving them
in variables, and then later evaluating the variables as Tcl scripts. For example, the script

set cmd "set a 0"
...
eval $cmd

clears variablea to 0 when theeval command is invoked.
Perhaps the most important use foreval is to force another level of parsing. The Tcl

parser performs only level of parsing and substitution when parsing a command; the
results of one substitution are not reparsed for other substitutions. However, there are
occasionally times when another level of parsing is desirable, andeval provides the
mechanism to achieve this. For example, suppose that a variablevars contains a list of
variables and that you wish to unset each of these variables. One solution is to use the fol-
lowing script:

foreach i $vars {
unset $i

}

68 Control Flow

DRAFT (8/12/93): Distribution Restricted

This script will work just fine, but theunset command takes any number of arguments
so it should be possible to unset all of the variables with a single command. Unfortunately
the following script will not work:

unset $vars

The problem with this script is that all of the variable names are passed tounset as a sin-
gle argument, rather than using a separate argument for each name. The solution is to use
eval , as with the following command:

eval unset $vars

Eval generates a string consisting of “unset ” followed by the list of variable names
and then passes the string to Tcl for evaluation. The string gets re-parsed so each variable
name ends up in a different argument tounset .

Note: This approach works even if some of the variable names contain spaces or special
characters such as$. As described in Section 6.7, the only safe way to generate Tcl
commands is using list operations such aslist andconcat . The command “eval
unset $vars ” is identical to the command “eval [concat unset $vars] ”; in
either case the script evaluated byeval is a proper list whose first element is “unset ”
and whose other elements are the elements ofvars .

7.6 Executing from files: source

Thesource command is similar to the command by the same name in thecsh shell: it
reads a file and executes the contents of the file as a Tcl script. It takes a single argument
that contains the name of the file. For example, the command

source init.tcl

will execute the contents of the fileinit.tcl . The return value fromsource will be
the value returned when the file contents are executed, which is the return value from the
last command in the file. In addition,source allows thereturn command to be used in
the file’s script to terminate the processing of the file. See Section 8.1 for more informa-
tion onreturn .

69

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 8
Procedures

A Tcl procedure is a command that is implemented with a Tcl script rather than C code.
You can define new procedures at any time with theproc command described in this
chapter. Procedures make it easy for you to package up solutions to problems so that they
can be re-used easily. Procedures also provide a simple way for you to prototype new fea-
tures in an application: once you’ve tested the procedures, you can reimplement them in C
for higher performance; the C implementations will appear just like the original proce-
dures so none of the scripts that invoke them will have to change.

Tcl provides special commands for dealing with variable scopes. Among other things,
these commands allow you to pass arguments by reference instead of by value and to
implement new Tcl control structures as procedures. Table 8.1 summarizes the Tcl com-
mands related to procedures.

8.1 Procedure basics: proc and return

Procedures are created with theproc command, as in the following example:

proc plus {a b} {expr $a+$b}

The first argument toproc is the name of the procedure to be created,plus in this case.
The second argument is a list of names of arguments to the procedure (a andb in the
example). The third argument toproc is a Tcl script that forms the body of the new pro-
cedure.Proc creates a new command and arranges that whenever the command is
invoked the procedure’s body will be evaluated. In this case the new command will have
the nameplus ; wheneverplus is invoked it must receive two arguments. While the

FIGURE 8

TABLE 8

70 Procedures

DRAFT (8/12/93): Distribution Restricted

body ofplus is executing the variablesa andb will contain the values of the arguments.
The return value from theplus command is the value returned by the last command in
plus ’s body. Here are some correct and incorrect invocations ofplus :

plus 3 4

⇒ 7

plus 3 -1

⇒ 2

plus 1

∅ no value given for parameter "b" to "plus"

If you wish for a procedure to return early without executing its entire script, you can
invoke thereturn command: it causes the enclosing procedure to return immediately

Table 8.1. A summary of the Tcl commands related to procedures and variable scoping.

global name1 ?name2 ...?
Binds variable namesname1, name2, etc. to global variables. References
to these names will refer to global variables instead of local variables for
the duration of the current procedure. Returns an empty string.

proc name argList body
Defines a procedure whose name isname, replacing any existing command
by that name.ArgList is a list with one element for each of the
procedure’s arguments, andbody contains a Tcl script that is the
procedure’s body. Returns an empty string.

return ?options ? ?value ?
Returns from the innermost nested procedure orsource command with
value as the result of the procedure.Value defaults to an empty string.
Additional options may be used to trigger an exceptional return (see
Section 9.4).

uplevel ?level ? arg ?arg arg ...?
Concatenates all of thearg ’s with spaces as separators, then executes the
resulting Tcl script in the variable context of stack levellevel . Level
consists of a number or a number preceded by#, and defaults to-1 .
Returns the result of the script.

upvar ?level ? otherVar1 myVar1 ?otherVar2 myVar2 ...?
Binds the local variable namemyVar1 to the variable at stack levellevel
whose name isotherVar1 . For the duration of the current procedure,
variable references tomyVar1 will be directed tootherVar1 instead.
Additional bindings may be specified withotherVar2 andmyVar2 , etc.
Level has the same syntax and meaning as foruplevel and defaults to-
1. Returns an empty string.

8.2 Local and global variables 71

DRAFT (8/12/93): Distribution Restricted

and the argument toreturn will be the result of the procedure. Here is an implementa-
tion of factorial that usesreturn :

proc fac x {
if {$x <= 1} {

return 1
}
expr $x * [fac [expr $x-1]]

}

fac 4

⇒ 24

fac 0

⇒ 1

If the argument tofac is less than or equal to one thenfac invokesreturn to return
immediately. Otherwise it executes theexpr command. Theexpr command is the last
one in the procedure’s body, so its result is returned as the result of the procedure.

8.2 Local and global variables

When the body of a Tcl procedure is evaluated it uses a different set of variables from its
caller. These variables are calledlocal variables, since they are only accessible within the
procedure and are deleted when the procedure returns. Variables referenced outside any
procedure are calledglobal variables. It is possible to have a local variable with the same
name as a global variable or a local variable in another active procedure, but these will be
different variables: changes to one will not affect any of the others. If a procedure is
invoked recursively then each recursive invocation will have a distinct set of local vari-
ables.

The arguments to a procedure are just local variables whose values are set from the
words of the command that invoked the procedure. When execution begins in a procedure,
the only local variables with values are those corresponding to arguments. Other local
variables are created automatically when they are set.

A procedure can reference global variables with theglobal command. For exam-
ple, the following command makes the global variablesx andy accessible inside a proce-
dure:

global x y

Theglobal command treats each of its arguments as the name of a global variable and
sets up bindings so that references to those names within the procedure will be directed to
global variables instead of local ones.Global can be invoked at any time during a proce-
dure; once it has been invoked, the bindings will remain in effect until the procedure
returns.

72 Procedures

DRAFT (8/12/93): Distribution Restricted

Note: Tcl does not provide a form of variable equivalent to “static” variables in C, which are
limited in scope to a given procedure but have values that persist across calls to the
procedure. In Tcl you must use global variables for purposes like this. To avoid name
conflicts with other such variables you should include the name of the procedure or the
name of its enclosing package in the variable name, for example
“ Hypertext_numLinks ”.

8.3 Defaults and variable numbers of arguments

In the examples so far, the second argument toproc (which describes the arguments to
the procedure) has taken a simple form consisting of the names of the arguments. Three
additional features are available for specifying arguments. First, the argument list may be
specified as an empty string. In this case the procedure takes no arguments. For example,
the following command defines a procedure that prints out two global variables:

proc printVars {} {
global a b
puts "a is $a, b is $b"

}

The second additional feature is that defaults may be specified for some or all of the
arguments. The argument list is actually a list of lists, with each sublist corresponding to a
single argument. If a sublist has only a single element (which has been the case up until
now) that element is the name of the argument. If a sublist has two arguments, the first is
the argument’s name and the second is a default value for it. For example, here is a proce-
dure that increments a given value by a given amount, with the amount defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment

}

The first element in the argument list,value , specifies a name with no default value. The
second element specifies an argument with nameincrement and a default value of1.
This means thatinc can be invoked with either one or two arguments:

inc 42 3

⇒ 45

inc 42

⇒ 43

If a default isn’t specified for an argument in theproc command then that argument must
be supplied whenever the procedure is invoked. The defaulted arguments, if any, must be
the last arguments for the procedure: if a particular argument is defaulted then all the argu-
ments after it must also be defaulted.

The third special feature in argument lists is support for variable numbers of argu-
ments. If the last argument in the argument list is the special valueargs , then the proce-
dure may be called with varying numbers of arguments. Arguments beforeargs in the

8.4 Call by reference: upvar 73

DRAFT (8/12/93): Distribution Restricted

argument list are handled as before, but any number of additional arguments may be spec-
ified. The procedure’s local variableargs will be set to a list whose elements are all of
the extra arguments. If there are no extra arguments thenargs will be set to an empty
string. For example, the following procedure takes any number of arguments and returns
their sum:

proc sum args {
set s 0
foreach i $args {

incr s $i
}
return $s

}
sum 1 2 3 4 5

⇒ 15

sum

⇒ 0

If a procedure’s argument list contains additional arguments beforeargs then they may
be defaulted as described above. Of course, if this happens there will be no extra argu-
ments soargs will be set to an empty string. No default value may be specified for
args : the empty string is its default.

8.4 Call by reference: upvar

Theupvar command provides a general mechanism for accessing variables outside the
context of a procedure. It can be used to access either global variables or local variables in
some other active procedure. Most often it is used to implement call-by-reference argu-
ment passing. Here is a simple example ofupvar in a procedure that prints out the con-
tents of an array:

proc parray name {
upvar $name a
foreach el [lsort [array names a]] {

puts "$el = $a($el)"
}

}
set info(age) 37
set info(position) "Vice President"
parray info

⇒ age = 37
position = "Vice President"

Whenparray is invoked it is given the name of an array as argument. Theupvar com-
mand then makes this array accessible through a local variable in the procedure. The first
argument toupvar is the name of a variable accessible to the procedure’s caller. This

74 Procedures

DRAFT (8/12/93): Distribution Restricted

may be either a global variable, as in the example, or a local variable in a calling proce-
dure. The second argument is the name of a local variable.Upvar arranges things so that
accesses to local variablea will actually refer to the variable in the caller whose name is
given by variablename. In the example this means that whenparray reads elements of
a it is actually reading elements of theinfo global variable. Ifparray were to writea it
would modifyinfo . Parray uses the “array names ” command to retrieve a list of
all the elements in the array, sorts them withlsort , then prints out each the elements in
order.

Note: In the example it appears as if the output is returned as the procedure’s result; in fact it is
printed directly to standard output and the result of the procedure is an empty string.

The first variable name in anupvar command normally refers to the context of the
current procedure’s caller. However, it is also possible to access variables from any level
on the call stack, including global level. For example,

upvar #0 other x

makes global variableother accessible via local variablex (the#0 argument specifies
thatother should be interpreted as a global variable, regardless of how many nested pro-
cedure calls are active), and

upvar -2 other x

makes variableother in the caller of the caller of the current procedure accessible as
local variablex (-2 specifies that the context ofother is 2 levels up the call stack). See
the reference documentation for more information on specifying a level inupvar .

8.5 Creating new control structures: uplevel

Theuplevel command is a cross betweeneval andupvar . It evaluates its argu-
ment(s) as a script, just likeeval , but the script is evaluated in the variable context of a
different stack level, likeupvar . With uplevel you can define new control structures as
Tcl procedures. For example, here is a new control flow command calleddo :

proc do {varName f irst last body} {
upvar $varName v
for {set v $f irst} {$v <= $last} {incr v} {

uplevel $body
}

}

The first argument todo is the name of a variable.Do sets that variable to consecutive
integer values in the range between its second and third arguments, and executes the
fourth argument as a Tcl command once for each setting. Given this definition ofdo , the
following script creates a list of squares of the first five integers:

8.5 Creating new control structures: uplevel 75

DRAFT (8/12/93): Distribution Restricted

set a {}
do i 1 5 {

lappend a [expr $i*$i]
}
set a

⇒ 1 4 9 16 25

Thedo procedure usesupvar to access the loop variable (i in the example) as local vari-
ablev. Then it uses thefor command to increment the loop variable through the desired
range. For each value it invokesuplevel to execute the loop body in the variable con-
text of the caller; this causes references to variablesa andi in the body of the loop to
refer to variables indo ’s caller. If eval were used instead ofuplevel thena andi
would be treated as local variables indo , which would not produce the desired effect.

Note: This implementation ofdo does not handle exceptional conditions properly. For example,
if the body of the loop contains areturn command it will only cause thedo procedure to
return, which is more like the behavior ofbreak . If a return occurs in the body of a
built-in control-flow command likefor or while then it causes the procedure that
invoked the command to return. In Chapter 9 you will see how to implement this behavior
for do .

As with upvar , uplevel takes an optional initial argument that specifies an
explicit stack level. See the reference documentation for details.

76 Procedures

DRAFT (8/12/93): Distribution Restricted

77

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 9
Errors and Exceptions

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command doesn’t exist, or because it doesn’t
receive the right number of arguments, or because the arguments have the wrong form, or
because some other problem occurs in executing the command, such as an error in a sys-
tem call for file I/O. In most cases errors represent severe problems that make it impossi-
ble for the application to complete the script it is processing. Tcl’s error facilities are
intended to make it easy for the application to unwind the work in progress and display an
error message to the user that indicates what went wrong. Presumably the user will fix the
problem and retry the operation.

Errors are just one example of a more general phenomenon calledexceptions. Excep-
tions are events that cause scripts to be aborted; they include thebreak , continue , and
return commands as well as errors. Tcl allows exceptions to be “caught” by scripts so
that only part of the work in progress is unwound. After catching an exception the script
can ignore it or take steps to recover from it. If the script can’t recover then it can reissue
the exception. Table 9.1 summarizes the Tcl commands related to exceptions.

9.1 What happens after an error?

When a Tcl error occurs the current command is aborted. If that command is part of a
larger script then the script is also aborted. If the error occurs while executing a Tcl proce-
dure, then the procedure is aborted, along with the procedure that called it, and so on until
all the active procedures have aborted. After all Tcl activity has been unwound in this way,
control eventually returns to C code in the application, along with an indication that an

FIGURE 9

TABLE 9

78 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

error occurred and a message describing the error. It is up to the application to decide how
to handle this situation, but most interactive applications will display the error message for
the user and continue processing user input. In a batch-oriented application where the user
can’t see the error message and adjust future actions accordingly, the application might
print the error message into a log and abort.

For example, consider the following script, which is intended to sum the elements of a
list:

set list {44 16 123 98 57}
set sum 0
foreach el $list {

set sum [expr $sum+$element]
}

∅ can’t read "element": no such variable

This script is incorrect because there is no variableelement : the variable nameele-
ment in theexpr command should have beenel to match the loop variable for the
foreach command. When the script is executed an error will occur as Tcl parses the
expr command: Tcl will attempt to substitute the value of variableelement but will not
be able to find a variable by that name, so it will signal an error. This error indication will
be returned to theforeach command, which had invoked the Tcl interpreter to evaluate
the loop body. Whenforeach sees that an error has occurred, it will abort its loop and
return the same error indication as its own result. This in turn will cause the overall script

Table 9.1. A summary of the Tcl commands related to exceptions.

catch command ?varName?
Evaluatescommand as a Tcl script and returns an integer code that
identifies the completion status of the command. IfvarName is specified
then it gives the name of a variable, which will be modified to hold the
return value or error message generated bycommand.

error message ?info ? ?code ?
Generates an error withmessage as the error message. Ifinfo is
specified and is not an empty string then it is used to initialize the
errorInfo variable. Ifcode is specified then it is stored in the
errorCode variable.

return -code code ?-errorinfo info ? ?-errorcode code ? ?string ?
Causes the current procedure to return an exceptional condition.Code
specifies the condition and must beok , error , return , break ,
continue , or an integer. The-errorinfo option may be used to
specify a starting value for theerrorInfo variable, and-errorcode
may be used to specify a value for theerrorCode variable.String
gives the return value or error message associated with the return; it
defaults to an empty string.

9.2 Generating errors from Tcl scripts 79

DRAFT (8/12/93): Distribution Restricted

to be aborted. The error message “can’t read "element": no such vari-
able ” will be returned along with the error, and will probably be displayed for the user.

In many cases the error message will provide enough information for you to pinpoint
where and why the error occurred so you can avoid the problem in the future. However, if
the error occurred in a deeply nested set of procedure calls the message alone may not pro-
vide enough information to figure out where the error occurred. To help pinpoint the loca-
tion of the error, Tcl creates a stack trace as it unwinds the commands that were in
progress, and it stores the stack trace in the global variableerrorInfo . The stack trace
describes each of the nested calls to the Tcl interpreter. For example, after the above error
errorInfo will have the following value:

can’t read "element": no such variable
while executing

"expr $sum+$element"
invoked from within

"set sum [expr $sum+$element]..."
("foreach" body line 2)
invoked from within

"foreach el $list {
set sum [expr $sum+$element]

}"

Tcl provides one other piece of information after errors, in the global variable
errorCode . ErrorCode has a format that is easy to process with Tcl scripts; it is most
commonly used in Tcl scripts that attempt to recover from errors using thecatch com-
mand described below. TheerrorCode variable consists of a list with one or more ele-
ments. The first element identifies a general class of errors and the remaining elements
provide more information in a class-dependent fashion. For example, if the first element of
errorCode is POSIX then it means that an error occurred in a POSIX system call.
ErrorCode will contain two additional elements giving the POSIX name for the error,
such asENOENT, and a human-readable message describing the error. See the reference
documentation for a complete description of all the formserrorCode can take, or refer
to the descriptions of individual commands that seterrorCode , such as those in Chapter
11 and Chapter 12.

TheerrorCode variable is a late-comer to Tcl and is only filled in by a few com-
mands, mostly dealing with file access and child processes. If a command generates an
error without settingerrorCode then Tcl fills it in with the valueNONE.

9.2 Generating errors from T cl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the
built-in commands. However, it is also possible to generate an error by executing the
error Tcl command as in the following example:

80 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

if {($x < 0} || ($x > 100)} {
error "x is out of range ($x)"

}

Theerror command generates an error and uses its argument as the error message.
As a matter of programming style, you should only use theerror command in situ-

ations where the correct action is to abort the script being executed. If you think that an
error is likely to be recovered from without aborting the entire script, then it is probably
better to use the normal return value mechanism to indicate success or failure (e.g. return
one value from a command if it succeeded and another if it failed, or set variables to indi-
cate success or failure). Although it is possible to recover from errors (you’ll see how in
Section 9.3 below) the recovery mechanism is more complicated than the normal return
value mechanism. Thus it’s best to generate errors only in situations where you won’t usu-
ally want to recover.

9.3 Trapping errors with catch

Errors generally cause all active Tcl commands to be aborted, but there are some situations
where it is useful to continue executing a script after an error has occurred. For example,
suppose that you want to unset variablex if it exists, but it may not exist at the time of the
unset command. If you invokeunset on a variable that doesn’t exist then it generates
an error:

unset x

∅ can’t unset "x": no such variable

You can use thecatch command to ignore the error in this situation:

catch {unset x}

⇒ 1

The argument tocatch is a Tcl script, whichcatch evaluates. If the script completes
normally thencatch returns 0. If an error occurs in the script thencatch traps the error
(so that thecatch command itself is not aborted by the error) and returns 1 to indicate
that an error occurred. The example above ignores any errors inunset sox is unset if it
existed and the script has no effect if x didn’t previously exist.

Thecatch command can also take a second argument. If the argument is provided
then it is the name of a variable andcatch modifies the variable to hold either the script’s
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg

⇒ 1

set msg

⇒ can’t unset "x": no such variable

9.4 Exceptions in general 81

DRAFT (8/12/93): Distribution Restricted

In this case theunset command generates an error somsg is set to contain the error mes-
sage. If variablex had existed thenunset would have returned successfully, so the return
value fromcatch would have been0 andmsg would have contained the return value
from theunset command, which is an empty string. This longer form ofcatch is use-
ful if you need access to the return value when the script completes successfully. It’s also
useful if you need to do something with the error message after an error, such as logging it
to a file.

9.4 Exceptions in general

Errors are not the only things in Tcl that cause work in progress to be aborted. Errors are
just one example of a set of events calledexceptions . In addition to errors there are
three other kinds of exceptions in Tcl, which are generated by thebreak , continue ,
andreturn commands. All exceptions cause active scripts to be aborted in the same
way, except for two differences. First, theerrorInfo anderrorCode variables are
only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For example,break andcontinue commands are normally invoked inside a
looping command such asforeach ; foreach will catch break and continue exceptions
and terminate the loop or skip to the next iteration. Similarly, return is normally only
invoked inside a procedure or a file beingsource ’d. Both the procedure implementation
and thesource command catch return exceptions.

Note: If a break or continue command is invoked outside any loop then active scripts
unwind until the outermost script for a procedure is reached or all scripts in progress have
been unwound. At this point Tcl turns the break or continue exception into an error with an
appropriate message.

All exceptions are accompanied by a string value. In the case of an error, the string is
the error message. In the case ofreturn , the string is the return value for the procedure
or script. In the case ofbreak andcontinue the string is always empty.

Thecatch command actually catches all exceptions, not just errors. The return
value fromcatch indicates what kind of exception occurred and the variable specified in
catch ’s second argument is set to hold the string associated with the exception (see Table
9.2). For example:

catch {return "all done"} string

⇒ 2

set string

⇒ all done

Whereascatch provides a general mechanism for catching exception of all types,
return provides a general mechanism for generating exceptions of all types. If its first
argument consists of the keyword-code , as in

82 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

return -code return 42

then its second argument is the name of an exception (return in this case) and the third
argument is the string associated with the exception. The enclosing procedure will return
immediately, but instead of a normal return it will return with the exception described by
thereturn command’s arguments. In the example above the procedure will generate a
return exception, which will then cause the calling procedure to return as well.

In Section 8.5 you saw how a new looping commanddo could be implemented as a
Tcl procedure usingupvar anduplevel . However, the example in Section 8.5 did not
properly handle exceptions within the loop body. Here is a new implementation ofdo that
usescatch andreturn to deal with exceptions properly:

Table 9.2. A summary of Tcl exceptions. The first column indicates the value returned bycatch
in each instance. The second column describes when the exception occurs and the meaning of the
string associated with the exception. The last column lists the commands that catch exceptions of
that type (“procedures” means that the exception is caught by a Tcl procedure when its entire body
has been aborted). The top row refers to normal returns where there is no exception.

Return value
from catch

Description Caught by

0 Normal return. String gives return
value.

Not applicable

1 Error. String gives message describ-
ing the problem.

Catch

2 Thereturn command was
invoked. String gives return value
for procedure orsource com-
mand.

Catch , source , procedures

3 Thebreak command was invoked.
String is empty.

Catch , for , foreach , while ,
procedures

4 Thecontinue command was
invoked. String is empty.

Catch , for , foreach , while ,
procedures

anything else Defined by user or application. Catch

9.4 Exceptions in general 83

DRAFT (8/12/93): Distribution Restricted

proc do {varName f irst last body} {
global errorInfo errorCode
upvar $varName v
for {set v $f irst} {$v <= $last} {incr v} {

switch [catch {uplevel $body} string] {
1 {return -code error -errorinfo $errorInfo \

-errorCode $errorcode $string}
2 {return -code return $string}
3 return

}
}

}

This new implemenation evaluates the loop body inside acatch command and then
checks to see how the body terminates. If no exception occurs (return value 0 from
catch) or if the exception is a continue (return value 4) thendo just goes on to the next
iteration. If an error or return occurs (return value 1 or 2 fromcatch) thendo uses the
return command to reflect the exception upward to the caller. If a break exception
occurs (return value 3 fromcatch) thendo returns to its caller normally, ending the
loop.

Whendo reflects an error upwards it uses the-errorinfo option toreturn to
make sure that a proper stack trace is available after the error. If that option were omitted
then a fresh stack trace would be generated starting withdo ’s error return; the stack trace
would not indicate where inbody the error occurred. The context withinbody is avail-
able in theerrorInfo variable at the timecatch returns, and the- errorinfo
option causes this value to be used as the initial contents of the stack trace whendo
returns an error. As additional unwinding occurs more information gets added to the initial
value, so that the final stack trace includes both the context withinbody and the context
of the call todo . The-errorcode option serves a similar purpose for theerrorCode
variable, retaining theerrorCode value from the original error as theerrorCode
value whendo propagates the error. Without the-errorcode option theerrorCode
variable will always end up with the valueNONE.

84 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

85

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 10
String Manipulation

This chapter describes Tcl’s facilities for manipulating strings. The string manipulation
commands provide pattern matching in two different forms, one that mimics the rules used
by shells for file name expansion and another that uses regular expressions as patterns. Tcl
also has commands for formatted input and output in a style similar to the C procedures
scanf andprintf . Finally, there are several utility commands with functions such as
computing the length of a string, extracting characters from a string, and case conversion.
Tables10.1 and 10.2 summarize the Tcl commands for string processing.

10.1 Glob-style pattern matching

The simplest of Tcl’s two forms of pattern matching is called “glob” style. It is named
after the mechanism used in thecsh shell for file name expansion, which is called “glob-
bing”. Glob-style matching is easier to learn and use than the regular expressions
described in the next two sections, but it only works well for simple cases. For more com-
plex pattern matching you will probably need to use regular expressions.

The commandstring match implements glob-style pattern matching. For exam-
ple, the following script extracts all of the elements of a list that begin with “Tcl ”:

set new {}
foreach el $list {

if [string match Tcl* $el] {
lappend new $el

}
}

FIGURE 10

TABLE 10

86 String Manipulation

DRAFT (8/12/93): Distribution Restricted

Table 10.1. A summary of the Tcl commands for string manipulation (continued in Table 10.2).

format formatString ?value value ...?
Returns a result equal toformatString except that thevalue
arguments have been substituted in place of% sequences in
formatString .

regexp ?-indices ? ?-nocase ? ?-- ? exp string ?matchVar ? \
?subVar subVar ...?

Determines whether the regular expressionexp matches part or all of
string and returns1 if it does,0 if it doesn’t. If there is a match,
information about matching range(s) is placed in the variables named by
matchVar and thesubVar ’s, if they are specified.

regsub ?-all ? ?-nocase ? ?-- ? exp string subSpec varName
Matchesexp againststring as forregexp and returns1 if there is a
match,0 if there is none. Also copiesstring to the variable named by
varName , making substitutions for the matching portion(s) as specified by
subSpec .

scan string format varName ?varName varName ...?
Parses fields fromstring as specified byformat and places the values
that match% sequences into variables named by thevarName arguments.

string compare string1 string2
Returns-1 , 0, or1 if string1 is lexicographically less than, equal to, or
greater thanstring2 .

string f irst string1 string2
Returns the index instring2 of the first character in the leftmost
substring that exactly matches the characters instring1 , or -1 if there is
no such match.

string index string charIndex
Returns thecharIndex ’ th character ofstring , or an empty string if
there is no such character. The first character instring has index 0.

string last string1 string2
Returns the index instring2 of the first character in the rightmost
substring ofstring2 that exactly matchesstring1 . If there is no
matching substring then-1 is returned.

string length string
Returns the number of characters instring .

string match pattern string
Returns1 if pattern matchesstring using glob-style matching rules
(* , ?, [] , and \) and0 if it doesn’t.

string range string f irst last
Returns the substring ofstring that lies between the indices given by
f irst andlast , inclusive. An index of0 refers to the first character in
the string, andlast may beend to refer to the last character of the string.

10.1 Glob-style pattern matching 87

DRAFT (8/12/93): Distribution Restricted

Thestring command is actually about a dozen string-manipulation commands rolled
into one. If the first argument ismatch then the command performs glob-style pattern
matching and there must be two additional arguments, a pattern and a string. The com-
mand returns1 if the pattern matches the string,0 if it doesn’t. For the pattern to match
the string, each character of the pattern must be the same as the corresponding character of
the string, except that a few pattern characters are interpreted specially. For example, a*
in the pattern matches a substring of any length, so “Tcl* ” matches any string whose first
three characters are “Tcl ”. Here is a list of all the special characters supported in glob-
style matching:

Many simple things can be done easily with glob-style patterns. For example,
“*.[ch] ” matches all strings that end with either “.c ” or “ .h ”. However, many interest-
ing forms of pattern matching cannot be expressed at all with glob-style patterns. For
example, there is no way to use a glob-style pattern to test whether a string consists
entirely of digits: the pattern “[0-9] ” tests for a single digit, but there is no way to spec-
ify that there may be more than one digit.

* Matches any sequence of zero or more characters.
? Matches any single character.
[chars] Matches any single character inchars . If chars contains a

sequence of the forma- b then any character betweena andb,
inclusive, will match.

\ x Matches the single characterx . This provides a way to avoid special
interpretation for any of the characters*?[]\ in the pattern.

Table 10.2. A summary of the Tcl commands for string manipulation, cont’d.

string tolower string
Returns a value identical tostring except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical tostring except that all lower case characters
have been converted to upper case.

string trim string ?chars ?
Returns a value identical tostring except that any leading or trailing
characters that appear inchars are removed.Chars defaults to the white
space characters (space, tab, newline, and carriage return).

string trimleft string ?chars ?
Same asstring trim except that only leading characters are removed.

string trimright string ?chars ?
Same asstring trim except that only trailing characters are removed.

88 String Manipulation

DRAFT (8/12/93): Distribution Restricted

10.2 Pattern matching with regular expressions

Tcl’s second form of pattern matching uses regular expressions like those for theegrep
program. Regular expressions are more complex than glob-style patterns but more power-
ful. Tcl’s regular expressions are based on Henry Spencer’s publicly available implemen-
tation, and parts of the description below are copied from Spencer’s documentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are calledatoms, and the simplest form of regular expression consists of one or
more atoms. For a regular expression to match an input string, there must be a substring of
the input where each of the regular expression’s atoms (or other components, as you’ll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular expressionabc matches any
string containingabc , such asabcdef or xabcy .

A number of characters have special meanings in regular expressions; they are sum-
marized in Table 10.3. The characters^ and$ are atoms that match the beginning and end
of the input string respectively; thus^abc matches any string that starts withabc , abc$
matches any string that ends inabc , and^abc$ matchesabc and nothing else. The atom

Table 10.3. The special characters permitted in regular expression patterns.

Character(s) Meaning

. Matches any single character.

^ Matches the null string at the start of the input string.

$ Matches the null string at the end of the input string.

\ x Matches the characterx .

[chars] Matches any single character fromchars . If the first character of
chars is ^ then it matches any single character not in the remain-
der ofchars . A sequence of the forma- b in chars is treated as
shorthand for all of the ASCII characters betweena andb, inclu-
sive. If the first character inchars (possibly following â) is]
then it is treated literally (as part ofchars instead of a termina-
tor). If a - appears first or last inchars then it is treated literally.

(regexp) Matches anything that matches the regular expressionregexp .
Used for grouping and for identifying pieces of the matching sub-
string.

* Matches a sequence of 0 or more matches of the preceding atom.

+ Matches a sequence of 1 or more matches of the preceding atom.

? Matches either a null string or a match of the preceding atom.

regexp1 | regexp2 Matches anything that matches eitherregexp1 or regexp2 .

10.2 Pattern matching with regular expressions 89

DRAFT (8/12/93): Distribution Restricted

“ . ” matches any single character, and the atom\ x , wherex is any single character,
matchesx . For example, the regular expression “.\$ ” matches any string that contains a
dollar-sign, as long as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular
expressions. The first form consists of any regular expression enclosed in parentheses,
such as “(a.b) ”. Parentheses are used for grouping. They allow operators such as* to be
applied to entire regular expressions as well as atoms. They are also used to identify pieces
of the matching substring for special processing. Both of these uses are described in more
detail below.

The final form for an atom is arange, which is a collection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of the forma- b among the characters, then
all of the ASCII characters betweena andb are treated as acceptable. Thus the regular
expression[0-9a-fA-F] matches any string that contains a hexadecimal digit. If the
character after the[is a^ then the sense of the range is reversed: it only matches charac-
tersnot among those specified between the^ and the] .

The three operators* , +, and? may follow an atom to specify repetition. If an atom is
followed by* then it matches a sequence of zero or more matches of that atom. If an atom
is followed by+ then it matches a sequence of one or more matches of the atom. If an
atom is followed by? then it matches either an empty string or a match of the atom. For
example, “̂ (0x)?[0-9a-fA-F]+$ ” matches strings that are proper hexadecimal
numbers, i.e. those consisting of an optional0x followed by one or more hexadecimal
digits.

Finally, regular expressions may be joined together with the| operator. The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the| . For example, the following pattern matches any string that is either a
hexadecimal number or a decimal number:

^((0x)?[0-9a-fA-F]+|[0-9]+)$

 Note that the information between parentheses may be any regular expression, including
additional regular expressions in parentheses, so it is possible to build up quite complex
structures.

Theregexp command invokes regular expression matching. In its simplest form it
takes two arguments: the regular expression pattern and an input string. It returns0 or1 to
indicate whether or not the pattern matched the input string:

regexp {^[0-9]+$} 510

⇒ 1

regexp {^[0-9]+$} -510

⇒ 0

Note: The pattern must be enclosed in braces so that the characters$, [, and] are passed
through to theregexp command instead of triggering variable and command

90 String Manipulation

DRAFT (8/12/93): Distribution Restricted

substitution. In almost always a good idea to enclose regular expression patterns in
braces.

If regexp is invoked with additional arguments after the input string then each addi-
tional argument is treated as the name of a variable. The first variable is filled in with the
substring that matched the entire regular expression. The second variable is filled in with
the portion of the substring that matched the leftmost parenthesized subexpression within
the pattern; the third variable is filled in with the match for the next parenthesized subex-
pression, and so on. If there are more variable names than parenthesized subexpressions
then the extra variables are set to empty strings. For example, after executing the com-
mand

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c

variablea will have the value “10 km ”, b will have the value10 , andc will have the
valuekm. This ability to extract portions of the matching substring allowsregexp to be
used for parsing.

It is also possible to specify two extra switches toregexp before the regular expres-
sion argument. A-nocase switch specifies that alphabetic atoms should match either
upper-case or lower-case letters. For example:

regexp {[a-z]} A

⇒ 0

regexp -nocase {[a-z]} A

⇒ 1

The-indices switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with a list giving the
first and last indices of the substring’s range within the input string. After the command

regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
a b c

variablea will have the value “5 9 ”, b will have the value “5 6 ”, andc will have the
value “8 9 ”.

10.3 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions using theregsub com-
mand. Consider the following example:

regsub there "They live there lives" their x

⇒ 1

The first argument toregsub is a regular expression pattern and the second argument is
an input string, just as forregexp . And, likeregexp , regsub returns1 if the pattern
matches the string,0 if it doesn’t. However, regsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-

10.4 Generating strings with format 91

DRAFT (8/12/93): Distribution Restricted

string. The replacement value is contained in the third argument toregsub , and the new
string is stored in the variable named by the final argument toregsub . Thus, after the
above command completesx will have the value “They live their lives ”. If the
pattern had not matched the string then0 would have been returned andx would have the
value “They live there lives ”.

Two special switches may appear as arguments toregsub before the regular expres-
sion. The first is-nocase , which causes case differences between the pattern and the
string to be ignored just as forregexp . The second possible switch is-all . Normally
regsub makes only a single substitution, for the first match found in the input string.
However, if -all is specified thenregsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x

x will have the valuezzbzzbzz . If -all had been omitted thenx would have been set
to zzbaba .

In the examples above the replacement string is a simple literal value. However, if the
replacement string contains a “&” or “ \0 ” then the “&” or “ \0 ” is replaced in the substitu-
tion with the substring that matched the regular expression. If a sequence of the form\ n
appears in the replacement string, wheren is a decimal number, then the substring that
matched then-th parenthesized subexpression is substituted instead of the\ n. For exam-
ple, the command

regsub -all a|b axaab && x

doubles all of thea’s andb’s in the input string. In this case it setsx to aaxaaaabb . Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x

replaces sequences ofa’s with a singlez if they precede ab but don’t also follow ab. In
this casex is set tozbaabxzb . Backslashes may be used in the replacement string to
allow “&”, “ \0 ”, “ \ n”, or backslash characters to be substituted verbatim without any
special interpretation.

Note: It’s usually a good idea to enclose complex replacement strings in braces as in the
example above; otherwise the Tcl parser will process backslash sequences and the
replacement string received byregsub may not contain backslashes that are needed.

10.4 Generating strings with format

Tcl’s format command provides facilities like those of thesprintf procedure from
the ANSI C library. For example, consider the following command:

format "The square root of 10 is %.3f" [expr sqrt(10)]

⇒ The square root of 10 is 3.162

92 String Manipulation

DRAFT (8/12/93): Distribution Restricted

The first argument toformat is a format string, which may contain any number of con-
version specifiers such as “%.3f ”. For each conversion specifierformat generates a
replacement string by reformatting the next argument according to the conversion speci-
fier. The result of theformat command consists of the format string with each conver-
sion specifier replaced by the corresponding replacement string. In the above example
“%.3f ” specifies that the next argument is to be formatted as a real number with three
digits after the decimal point.Format supports almost all of the conversion specifiers
defined for ANSI Csprintf , such as “%d” for a decimal integer, “%x” for a hexadeci-
mal integer, and “%e” for real numbers in mantissa-exponent form.

Theformat command plays a less significant role in Tcl thanprintf and
sprintf play in C. Many of the uses ofprintf andsprintf are simply for conver-
sion from binary to string format or for string substitution. Binary-to-string conversion
isn’t needed in Tcl because values are already stored as strings, and substitution is already
available through the Tcl parser. For example, the command

set msg [format "%s is %d years old" $name $age]

can be written more simply as

set msg "$name is $age years old"

The%d conversion specifier in theformat command could be written just as well as%s;
with %dformat converts the value of age to a binary integer, then converts the integer
back to a string again.

Format is typically used in Tcl to reformat a value to improve its appearance, or to
convert from one representation to another (e.g. from decimal to hexadecimal). As an
example of reformatting, here is a that script prints the first ten powers ofe in a table:

puts "Number Exponential"
for {set i 1} {i <= 10} {incr i} {

puts [format "%4d %12.3f" $i [expr exp($i)]]
}

This script generates the following output on standard output:

Number Exponential
1 2.718
2 7.389
3 20.085
4 54.598
5 148.413
6 403.429
7 1096.630
8 2980.960
9 8103.080

10 22026.500

The conversion specifier “%4d” causes the integers in the first column of the table to be
printed right-justifed in a field four digits wide, so that they line up under their column
header. The conversion specifier “%12.3f ” causes each of the real values to be printed

10.5 Parsing strings with scan 93

DRAFT (8/12/93): Distribution Restricted

right-justified in a field 12 digits wide, so that the values line up; it also sets the precision
at 3 digits to the right of the decimal point.

The second main use forformat , changing the reprensentation of a value, is illus-
trated by the script below, which prints a table showing the ASCII characters that corre-
spond to particular integer values:

puts "Integer ASCII"
for {set i 95} {$i <= 101} {incr i} {

puts [format "%4d %c" $i $i]
}

This script generates the following output on standard output:

Integer ASCII
95 _
96 `
97 a
98 b
99 c

100 d
101 e

The value ofi is used twice in the format command, once with%4d and once with%c.
The%c specifier takes an integer argument and generates a replacement string consisting
of the ASCII character whose represented by the integer.

10.5 Parsing strings with scan

Thescan command provides almost exactly the same facilities as thesscanf procedure
from the ANSI C library. Scan is roughly the inverse offormat . It starts with a format-
ted string, parses the string under the control of a format string, extracts fields correspond-
ing to% conversion specifiers in the format string, and places the extracted values in Tcl
variables. For example, after the following command is executed variablea will have the
value16 and variableb will have the value24.2 :

scan "16 units, 24.2% margin" "%d units, %f" a b

⇒ 2

The first argument toscan is the string to parse, the second is a format string that controls
the parsing, and any additional arguments are names of variables to fill in with converted
values. The return value of 2 indicates that two conversions were completed successfully.

Scan operates by scanning the string and the format together. Each character in the
format must match the corresponding character in the string, except for blanks and tabs,
which are ignored, and% characters. When a% is encountered in the format, it indicates
the start of a conversion specifier:scan converts the next input characters according to
the conversion specifier and stores the result in the variable given by the next argument to

94 String Manipulation

DRAFT (8/12/93): Distribution Restricted

scan . White space in the string is skipped except in the case of a few conversion specifi-
ers such as%c.

One common use for scan is for simple string parsing, as in the example above.
Another common use is for converting ASCII characters to their integer values, which is
done with the%c specifier. The procedure below uses this feature to return the character
that follows a given character in lexicographic ordering:

proc next c {
scan $c %c i
format %c [expr $i+1]

}
next a

⇒ b

next 9

⇒ :

Thescan command converts the value of thec argument from an ASCII character to the
integer used to represent that character, then the integer is incremented and converted back
to an ASCII character again with theformat command.

10.6 Extracting characters: string index and string range

The remaining string manipulation commands are all implemented as options of the
string command. For example,string index extracts a character from a string:

string index "Sample string" 3

⇒ p

The argument afterindex is a string and the last argument gives the index of the desired
character in the string. An index of0 selects the first character.

Thestring range command is similar tostring index except that it takes
two indices and returns all the characters from the first index to the second, inclusive:

string range "Sample string" 3 7

⇒ ple s

The second index may have the valueend to select all the characters up to the end of the
string:

string range "Sample string" 3 end

⇒ ple string

10.7 Searching and comparison

The commandstring f irst takes two additional string arguments as in the following
example:

10.8 Length, case conversion, and trimming 95

DRAFT (8/12/93): Distribution Restricted

string f irst th "There is the tub where I bathed today"

⇒ 3

It searches the second string to see if there is a substring that is identical to the first string.
If so then it returns the index of the first character in the leftmost matching substring; if not
then it returns-1 . The commandstring last is similar except it returns the starting
index of the rightmost matching substring:

string last th "There is the tub where I bathed today"

⇒ 21

The commandstring compare takes two additional arguments and compares
them in their entirety. It returns0 if the strings are identical,-1 if the first string sorts
before the second, and1 if the first string is after the second in sorting order:

string compare Michigan Minnesota

⇒ -1

string compare Michigan Michigan

⇒ 0

10.8 Length, case conversion, and trimming

Thestring length command counts the number of characters in a string and returns
that number:

string length "sample string"

⇒ 13

Thestring toupper command converts all lower-case characters in a string to
upper case, and thestring tolower command converts all upper-case characters in
its argument to lower-case:

string toupper "Watch out!"

⇒ WATCH OUT!

string tolower "15 Charing Cross Road"

⇒ 15 charing cross road

Thestring command provides three options for trimming:trim , trimleft , and
trimright . Each option takes two additional arguments: a string to trim and an optional
set of trim characters. Thestring trim command removes all instances of the trim
characters from both the beginning and end of its argument string, returning the trimmed
string as result:

string trim aaxxxbab abc

⇒ xxx

Thetrimleft andtrimright options work in the same way except that they only
remove the trim characters from the beginning or end of the string, respectively. The trim

96 String Manipulation

DRAFT (8/12/93): Distribution Restricted

commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

97

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 11
Accessing Files

This chapter describes Tcl’s commands for dealing with files. The commands allow you to
read and write files sequentially or in a random-access fashion. They also allow you to
retrieve information kept by the system about files, such as the time of last access. Lastly,
they can be used to manipulate file names; for example, you can remove the extension
from a file name or find the names of all files that match a particular pattern. See Table
11.1 for a summary of the file-related commands.

Note: The commands described in this chapter are only available on systems that support the
kernel calls defined in the POSIX standard, such as most UNIX workstations. If you are
using Tcl on another system, such as a Macintosh or a PC, then the file commands may not
be present and there may be other commands that provide similar functionality for your
system.

11.1 File names

File names are specified to Tcl using the normal UNIX syntax. For example, the file name
x/y/z refers to a file namedz that is located in a directory namedy, which in turn is
located in a directory namedx , which must be in the current working directory. The file
name/top refers to a filetop in the root directory. You can also use tilde notation to
specify a file name relative to a particular user’s home directory. For example, the name
~ouster/mbox refers to a file namedmbox in the home directory of userouster , and
~/mbox refers to a file namedmbox in the home directory of the user running the Tcl
script. These conventions (and the availability of tilde notation in particular) apply to all
Tcl commands that take file names as arguments.

FIGURE 11

TABLE 11

98 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Table 11.1. A summary of the Tcl commands for manipulating files (continued in Table 11.2).

cd ?dirName ?
Changes the current working directory todirName , or to the home
directory (as given by theHOME environment variable) ifdirName isn’t
given. Returns an empty string.

close ?f ileId ?
Closes the file given byf ileId . Returns an empty string.

eof f ileId
Returns1 if an end-of-file condition has occurred onf ileId , 0 otherwise.

f ile option name ?arg arg ...?
Performs one of several operations on the filename given byname or on
the file that it refers to, depending onoption . See Table 11.3 for details.

f lush f ileId
Writes out any buffered output that has been generated forf ileId .
Returns an empty string.

gets f ileId ?varName?
Reads the next line fromf ileId and discards its terminating newline. If
varName is specified, places the line in that variable and returns a count of
characters in the line (or-1 for end of file). IfvarName isn’t specified,
returns line as result (or an empty string for end of file).

glob ?-nocomplain ? ?-- ? pattern ?pattern ...?
Returns a list of the names of all files that match any of thepattern
arguments (special characters?, * , [] , {}, and \). If -nocomplain
isn’t specified then an error occurs if the return list would be empty.

open name ?access ?
Opens filename in the mode given byaccess . Access may ber , r+ , w,
w+, a, ora+ or a list of flags such asRDONLY; it defaults tor . Returns a
file identifier for use in other commands likegets andclose . If the first
character ofname is “| ” then a command pipeline is invoked instead of
opening a file (see Section 12.2 for more information).

puts ?-nonewline ? ?f ileId ? string
Writesstring to f ileId , appending a newline character unless
- nonewline is specified.FileId defaults tostdout . Returns an
empty string.

pwd
Returns the full path name of the current working directory.

11.2 Basic file I/O 99

DRAFT (8/12/93): Distribution Restricted

11.2 Basic file I/O

The Tcl commands for file I/O are similar to the procedures in the C standard I/O library,
both in their names and in their behavior. Here is a script calledtgrep that illustrates
most of the basic features of file I/O:

#!/usr/local/bin/tclsh
if {$argc != 2} {

error "Usage: tgrep pattern f ileName"
}
set f [open [lindex $argv 1] r]
set pat [lindex $argv 0]
while {[gets $f line] >= 0} {

if [regexp $pat $line] {
puts stdout $line

}
}
close $f

This script behaves much like the UNIXgrep program: you can invoke it from your shell
with two arguments, a regular expression pattern and a file name, and it will print out all of
the lines in the file that match the pattern.

Whentclsh processes evaluates the script it makes the command-line arguments
available as a list in variableargv , with the length of that list in variableargc . After
making sure that it received enough arguments, the script invokes theopen command on
the file to search, which is the second argument.Open takes two arguments, the name of a
file and an access mode. The access mode provides information such as whether you’ll be

Table 11.2. A summary of the Tcl commands for manipulating files, cont’d.

read ?-nonewline ? f ileId
Reads and returns all of the bytes remaining inf ileId . If -nonewline
is specified then the final newline, if any, is dropped.

read f ileId numBytes
Reads and returns the nextnumBytes bytes fromf ileId (or up to the
end of the file, if fewer thannumBytes bytes are left).

seek f ileId offset ?origin ?
Positionf ileId so that the next access starts atoffset bytes from
origin . Origin may bestart , current , orend , and defaults to
start . Returns an empty string.

tell f ileId
Returns the current access position forf ileId .

100 Accessing Files

DRAFT (8/12/93): Distribution Restricted

reading the file or writing it, and whether you want to append to the file or access it from
the beginning. The access mode may have one of the following values:

The access mode may also be specified as a list of POSIX flags likeRDONLY, CREAT, and
TRUNC. See the reference documentation for more information about these flags.

Theopen command returns a string such asf ile3 that identifies the open file. This
file identifier is used when invoking other commands to manipulate the open file, such as
gets , puts , andclose . Normally you will save the file identifier in a variable when
you open a file and then use that variable to refer to the open file. You should not expect
the identifiers returned byopen to have any particular format.

Three file identifiers have well-defined names and are always available to you, even if
you haven’t explicitly opened any files. These arestdin , stdout , andstderr ; they
refer to the standard input, output, and error channels for the process in which the Tcl
script is executing.

After opening the file to search, thetgrep script reads the file one line at a time with
thegets command.Gets normally takes two arguments: a file identifier and the name of
a variable. It reads the next line from the open file, discards the terminating newline char-
acter, stores the line in the named variable, and returns a count of the number of characters
stored into the variable. If the end of the file is reached before reading any characters then
gets stores an empty string in the variable and returns-1 .

Note: Tcl also provides a second form ofgets where the line is returned as the result of the
command, and a commandread for non-line-oriented input.

For each line in the file thetgrep script matches the line against the pattern and
prints it usingputs if it matches. Theputs command takes two arguments, which are a
file identifier and a string to print.Puts adds a newline character to the string and outputs
the line on the given file. The script usesstdout as the file identifier so the line is printed
on standard output.

Whentgrep reaches the end of the filegets will return -1 , which ends thewhile
loop. The script then closes the file with theclose command; this releases the resources
associated with the open file. In most systems there is a limit on how many files may be
open at one time in an application, so it is important to close files as soon as you are fin-

r Open for reading only. The file must already exist. This is the default if
the access mode isn’t specified.

r+ Open for reading and writing; the file must already exist.
w Open for writing only. Truncate the file if it already exists, otherwise

create a new empty file.
w+ Open for reading and writing. Truncate the file if it already exists, oth-

erwise create a new empty file.
a Open for writing only and set the initial access position to the end of the

file. If the file doesn’t exist then create a new empty file.
a+ Open the file for reading and writing and set the initial access position

to the end of the file. If the file doesn’t exist then create a new empty
file.

11.3 Output buffering 101

DRAFT (8/12/93): Distribution Restricted

ished reading or writing them. In this example the close is unnecessary, since the file will
be closed automatically when the application exits.

11.3 Output buffering

Theputs command uses the buffering scheme of the C standard I/O library. This means
that information passed toputs may not appear immediately in the target file. In many
cases (particularly if the file isn’t a terminal device) output will be saved in the applica-
tion’s memory until a large amount of data has accumulated for the file, at which point all
of the data will be written out in a single operation. If you need for data to appear in a file
immediately then you should invoke thef lush command:

f lush $f

Thef lush command takes a file identifier as its argument and forces any buffered output
data for that file to be written to the file.Flush doesn’t return until the data has been writ-
ten. Buffered data is also flushed when a file is closed.

11.4 Random access to files

File I/O is sequential by default: eachgets or read command returns the next bytes
after the previousgets or read command, and eachputs command writes its data
immediately following the data written by the previousputs command. However, you
can use theseek , tell , andeof commands to access files non-sequentially.

Each open file has anaccess position, which is the location in the file where the next
read or write will occur. When a file is opened the access position is set to the beginning or
end of the file, depending on the access mode you specified toopen . After each read or
write operation the access position increments by the number of bytes transferred. The
seek command may be used to change the current access position. In its simplest form
seek takes two arguments, which are a file identifier and an integer offset within the file.
For example, the command

seek $f 2000

changes the access position for the file so that the next read or write will start at byte num-
ber 2000 in the file.

Seek can also take a third argument that specifies an origin for the offset. The third
argument must be eitherstart , current , orend . Start produces the same effect as
if the argument is omitted: the offset is measured relative to the start of the file.Current
means that the offset is measured relative to the file’s current access position, andend
means that the offset is measured relative to the end of the file. For example, the following
command sets the access position to 100 bytes before the end of the file:

seek $f -100 end

102 Accessing Files

DRAFT (8/12/93): Distribution Restricted

If the origin iscurrent or end then the offset may be either positive or negative; for
start the offset must be positive.

Note: It is possible to seek past the current end of the file, in which case the file may contain a
hole. Check the documentation for your operating system for more information on what
this means.

Thetell command returns the current access position for a particular file identifier:

tell $f

⇒ 186

This allows you to record a position and return to that position later on.
Theeof command takes a file identifier as argument and returns0 or 1 to indicate

whether the most recentgets or read command for the file attempted to read past the
end of the file:

eof $f

⇒ 0

11.5 The current working directory

Tcl provides two commands that help to manage the current working directory:pwd and
cd . Pwd takes no arguments and returns the full path name of the current working direc-
tory. Cd takes a single argument and changes the current working directory to the value of
that argument. Ifcd is invoked with no arguments then it changes the current working
directory to the home directory of the user running the Tcl script (cd uses the value of the
HOME environment variable as the path name of the home directory).

11.6 Manipulating file names: glob and file

Tcl has two commands for manipulating filenames as opposed to file contents:glob and
f ile . Theglob command takes one or more patterns as arguments and returns a list of
all the file names that match the pattern(s):

glob *.c *.h

⇒ main.c hash.c hash.h

Glob uses the matching rules of thestring match command (see Section 10.1). In
the above exampleglob returns the names of all files in the current directory that end in
.c or .h . Glob also allows patterns to contain comma-separated lists of alternatives
between braces, as in the following example:

glob {{src,backup}/*.[ch]}

⇒ src/main.c src/hash.c src/hash.h backup/hash.c

11.6 Manipulating file names: glob and file 103

DRAFT (8/12/93): Distribution Restricted

Glob treats this pattern as if it were actually multiple patterns, one containing each of the
strings, as in the following example:

glob {src/*.[ch]} {backup/*.[ch]}

Note: The extra braces around the patterns in these examples are needed to keep the brackets
inside the patterns from triggering command substitution. They are removed by the Tcl
parser in the usual fashion before invoking the command procedure forglob .

If a glob pattern ends in a slash then it only matches the names of directories. For
example, the command

glob */

will return a list of all the subdirectories of the current directory.
If the list of file names to be returned byglob is empty then it normally generates an

error. However, if the first argument toglob , before any patterns, is-nocomplain then
glob will not generate an error if its result is an empty list.

The second command for manipulaing file names isf ile . File is a general-pur-
pose command with many options that can be used both to manipulate file names and also
to retrieve information about files. See Tables 11.3 and 11.4 for a summary of the options
to f ile . This section discusses the name-related options and Section 11.7 describes the
other options.The commands in this section operate purely on file names. They make no
system calls and do not check to see if the names actually correspond to files.

File dirname returns the name of the directory containing a particular file:

f ile dirname /a/b/c

⇒ /a/b

f ile dirname main.c

⇒ .

File extension returns the extension for a file name (all the characters starting
with the last. in the name), or an empty string if the name contains no extension:

f ile extension src/main.c

⇒ .c

File rootname returns everything in a file name except the extension:

f ile rootname src/main.c

⇒ src/main

f ile rootname foo

⇒ foo

Lastly, f ile tail returns the last element in a file’s path name (i.e. the name of the
file within its directory):

f ile tail /a/b/c

⇒ c

f ile tail foo

⇒ foo

104 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Table 11.3. A summary of the options for thef ile command (continued in Table 11.4).

f ile atime name
Returns a decimal string giving the time at which filename was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

f ile dirname name
Returns all of the characters inname up to but not including the last/
character. Returns. if name contains no slashes,/ if the last slash in
name is its first character.

f ile executable name
Returns1 if name is executable by the current user, 0 otherwise.

f ile exists name
Returns1 if name exists and the current user has search privilege for the
directories leading to it,0 otherwise.

f ile extension name
Returns all of the characters inname after and including the last dot.
Returns an empty string if there is no dot inname or no dot after the last
slash inname.

f ile isdirectory name
Returns1 if name is a directory, 0 otherwise.

f ile isf ile name
Returns1 if name is an ordinary file,0 otherwise.

f ile lstat name arrayName
Invokes thelstat system call onname and sets elements of
arrayName to hold information returned bylstat . This option is
identical to thestat option unlessname refers to a symbolic link, in
which case this command returns information about the link instead of the
file it points to.

f ile mtime name
Returns a decimal string giving the time at which filename was last
modified, measured in seconds from 12:00 A.M. on January 1, 1970.

f ile owned name
Returns1 if name is owned by the current user, 0 otherwise.

f ile readable name
Returns1 if name is readable by the current user, 0 otherwise.

f ile readlink name
Returns the value of the symbolic link given byname (the name of the file
it points to).

11.7 File information commands 105

DRAFT (8/12/93): Distribution Restricted

11.7 File information commands

In addition to the options already discussed in Section 11.6 above, thef ile command
provides many other options that can be used to retrieve information about files. Each of
these options exceptstat andlstat has the form

f ile option name

whereoption specifies the information desired, such asexists or readable or
size , andname is the name of the file. Table 11.3 summarizes all of the options for the
f ile command.

Theexists , isf ile , isdirectory , andtype options return information about
the nature of a file.File exists returns1 if there exists a file by the given name and0
if there is no such file or the current user doesn’t have search permission for the directories
leading to it.File isf ile returns1 if the file is an ordinary disk file and0 if it is
something else, such as a directory or device file.File isdirectory returns1 if the
file is a directory and0 otherwise.File type returns a string such asf ile , direc-
tory , orsocket that identifies the file type.

Table 11.4. A summary of the options for thef ile command, cont’d.

f ile rootname name
Returns all of the characters inname up to but not including the last.
character. Returnsname if it doesn’t contain any dots or if it doesn’t
contain any dots after the last slash.

f ile size name
Returns a decimal string giving the size of filename in bytes.

f ile stat name arrayName
Invokesstat system call onname and sets elements ofarrayName to
hold information returned bystat . The following elements are set, each
as a decimal string:atime , ctime , dev , gid , ino , mode, mtime ,
nlink , size , anduid .

f ile tail name
Returns all of the characters inname after the last/ character. Returns
name if it contains no slashes.

f ile type name
Returns a string giving the type of filename. The return value will be one
of f ile , directory , characterSpecial , blockSpecial , f ifo ,
link , orsocket .

f ile writable name
Returns1 if name is writable by the current user, 0 otherwise.

106 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Thereadable , writable , andexecutable options return0 or 1 to indicate
whether the current user is permitted to carry out the indicated action on the file. The
owned option returns1 if the current user is the file’s owner and0 otherwise.

Thesize option returns a decimal string giving the size of the file in bytes.File
mtime returns the time when the file was last modified. The time value is returned in the
standard POSIX form for times, namely an integer that counts the number of seconds
since 12:00 A.M. on January 1, 1970. Theatime option is similar tomtime except that
it returns the time when the file was last accessed.

Thestat option provides a simple way to get many pieces of information about a
file at one time. This can be significantly faster than invokingf ile many times to get the
pieces of information individually. File stat also provides additional information that
isn’t accessible with any other file options. It takes two additional arguments, which are
the name of a file and the name of a variable, as in the following example:

f ile stat main.c info

In this case the name of the file ismain.c and the variable name isinfo . The variable
will be treated as an array and the following elements will be set, each as a decimal string:

Theatime , mtime , andsize elements have the same values as produced by the corre-
spondingf ile options discussed above. For more information on the other elements,
refer to your system documentation for thestat system call; each of the elements is
taken directly from the corresponding field of the structure returned bystat .

The lstat andreadlink options are useful when dealing with symbolic links,
and they can only be used on systems that support symbolic links.File lstat is iden-
tical to f ile stat for ordinary files, but when it is applied to a symbolic link it returns
information about the symbolic link itself, whereasf ile stat will return information
about the file the link points to.File readlink returns the contents of a symbolic link,
i.e. the name of the file that it refers to; it may only be used on symbolic links. For all of
the otherf ile commands, if the name refers to a symbolic link then the command oper-
ates on the target of the link, not the link itself.

atime Time of last access.
ctime Time of last status change.
dev Identifier for device containing file.
gid Identifier for the file’s group.
ino Serial number for the file within its device.
mode Mode bits for file.
mtime Time of last modification.
nlink Number of links to file.
size Size of file, in bytes.
uid Identifier for the user that owns the file.

11.8 Errors in system calls 107

DRAFT (8/12/93): Distribution Restricted

11.8 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopen or f ile stat on a file that doesn’t exist, or if an I/O error occurs in read-
ing a file. The Tcl commands detect these system call errors and in most cases the Tcl
commands will return errors themselves. The error message will identify the error that
occurred:

open bogus

∅ couldn’t open "bogus": no such f ile or directory

When an error occurs in a system call Tcl also sets theerrorCode variable to pro-
vide more precise information. You may find this information useful as part of error recov-
ery so that, for example, you can determine exactly why the the file wasn’t accessible
(Was there no such file? Was it protected to prevent access? ...). If a system call error has
occurred thenerrorCode will consist of a list with three elements:

set errorCode

⇒ POSIX ENOENT {no such f ile or directory}

The first element is alwaysPOSIX to indicate that the error occurred in a POSIX system
call. The second element is the official name for the error (ENOENT in the above exam-
ple). Refer to your system documentation or to the include fileerrno.h for a complete
list of the error names for your system. These names adhere to the POSIX standard as
much as possible. The third element is the error message that corresponds to the error.
This string usually appears in the error message returned by the Tcl command. Tcl uses the
standard list of error messages provided by your system, if there is one, and adheres to the
POSIX standard as much as possible.

108 Accessing Files

DRAFT (8/12/93): Distribution Restricted

109

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 12
Processes

Tcl provides several commands for dealing with processes. You can create new processes
with theexec command, or you can create new processes withopen and then use file
I/O commands to communicate with them. You can access process identifiers with the
pid command. You can read and write environment variables using theenv variable and
you can terminate the current process with theexit command. Like the file commands in
Chapter 11, these commands are only available on systems that support POSIX kernel
calls. Table 12.1 summarizes the commands related to process management.

12.1 Invoking subprocesses with exec

Theexec command creates one or more subprocesses and waits until they complete
before returning. For example,

exec rm main.o

executesrm as a subprocess, passes it the argumentmain.o , and returns afterrm com-
pletes. The arguments toexec are similar to what you would type as a command line to a
shell program such assh or csh . The first argument toexec is the name of a program to
execute and each additional argument forms one argument to that subprocess.

To execute a subprocess,exec looks for an executable file with a name equal to
exec ’s first argument. If the name contains a/ or starts with~ thenexec checks the sin-
gle file indicated by the name. Otherwiseexec checks each of the directories in thePATH
environment variable to see if the command name refers to an executable file in that direc-
tory. Exec uses the first executable that it finds.

FIGURE 12

TABLE 12

110 Processes

DRAFT (8/12/93): Distribution Restricted

Exec collects all of the information written to standard output by the subprocess and
returns that information as its result, as in the following example:

exec echo wc tcl.h

⇒ 618 2641 21825 tcl.h

If the last character of output is a newline thenexec removes the newline. This behavior
may seem strange but it makesexec consistent with other Tcl commands,which don’t
normally terminate the last line of the result; you can retain the newline by specifying
- keepnewline as the first argument toexec .

Exec supports I/O redirection in a fashion similar to the UNIX shells. For example, if
one of the arguments toexec is “>foo ” (or if there is a “>” argument followed by a
“ foo ” argument), then output from the process is placed in filefoo instead of returning
to Tcl asexec ’s result. In this caseexec ’s result will be an empty string.Exec also sup-
ports several other forms of output redirection, such as>> to append to a file,>& to redi-
rect both standard output and standard error, and2> to redirect standard error
independently from standard output.

Standard input may be redirected using either< or <<. The< form causes input to be
taken from a file. In the<< form the following argument is not a file name, but rather an

Table 12.1. A summary of Tcl commands for manipulating processes.

exec ?-keepnewline ? ?-- ? arg ?arg ...?
Executes command pipeline specified byarg ’s using one or more
subprocesses and returns the pipeline’s standard output or an empty string if
output is redirected (the trailing newline, if any, is dropped unless-
keepnewline is specified). I/O redirection may be specified with<, <<,
and> and several other forms and pipes may be specified with| . If the last
arg is & then the pipeline is executed in background and the return value is
a list of its process ids.

exit ?code ?
Terminates process, returningcode to parent as exit status.Code must be
an integer. Code defaults to 0.

open | command ?access ?
Treatscommand as a list with the same structure as arguments toexec
and creates subprocess(es) to execute command(s). Depending onaccess ,
creates pipes for writing input to pipeline and reading output from it.

pid ?f ileId ?
If f ileId is omitted, returns the process identifier for the current process.
Otherwise returns a list of all the process ids in the pipeline associated with
f ileId (which must have been opened using |).

12.1 Invoking subprocesses with exec 111

DRAFT (8/12/93): Distribution Restricted

immediate value to be passed to the subprocess as its standard input. The following com-
mand uses<< to write data to a file:

exec cat << "test data" > foo

The string “test input ” is passed tocat as its standard input;cat copies the string
to its standard ouput, which has been redirected to filefoo . If no input redirection is spec-
ified then the subprocess inherits the standard input channel from the Tcl application.

You can also invoke a pipeline of processes instead of a single process using| , as in
the following example:

exec grep #include tclInt.h | wc

⇒ 8 25 212

Thegrep program extracts all the lines containing the string “#include ” from the file
tclInt.h . These lines are then piped to thewc program, which computes the number of
lines, words, and characters in thegrep output and prints this information on its standard
output. Thewc output is returned as the result ofexec .

If the last argument toexec is & then the subprocess(es) will be executed in back-
ground.Exec will return immediately, without waiting for the subprocesses to complete.
Its return value will be a list containing the process identifiers for all of the processes in
the pipeline; standard output from the subprocesses will go to the standard output of Tcl
application unless redirected. No errors will be reported for abnormal exits or standard
error output, and standard error for the subprocesses will be directed to the standard error
channel of the Tcl application.

If a subprocess is suspended or exits abnormally (i.e., it is killed or returns a non-zero
exit status), or if it generates output on its standard error channel and standard error was
not redirected, thenexec returns an error. The error message will consist of the output
generated by the last subprocess (unless it was redirected with>), followed by an error
message for each process that exited abnormally, followed by the information generated
on standard error by the processes, if any. In addition,exec will set theerrorCode
variable to hold information about the last process that terminated abnormally, if any (see
the reference documentation for details).

Note: Many UNIX programs are careless about the exit status that they return. If you invoke
such a program withexec and it accidentally returns a non-zero status then theexec
command will generate a false error. To prevent these errors from aborting your scripts,
invokeexec inside acatch command.

Althoughexec ’s features are similar to those of the UNIX shells there is one impor-
tant difference:exec does not perform any file name expansion. For example, suppose
you invoke the following command with the goal of removing all.o files in the current
directory:

exec rm *.o

∅ rm: *.o nonexistent

112 Processes

DRAFT (8/12/93): Distribution Restricted

Rm receives “*.o ” as its argument and exits with an error when it cannot find a file by this
name. If you want file name expansion to occur you can use theglob command to get it,
but not in the obvious way. For example, the following command will not work:

exec rm [glob *.o]

∅ rm: a.o b.o nonexistent

This fails because the list of file names thatglob returns is passed torm as a single argu-
ment. If, for example, there exist two.o files,a.o andb.o , then rm’s argument will be
“a.o b.o ”; since there is no file by that namerm will return an error. The solution to
this problem is the one described in Section 7.5: useeval to reparse theglob output so
that it gets divided into multiple words. For example, the following command will do the
trick:

eval exec rm [glob *.o]

In this caseeval concatenates its arguments to produce the string

exec rm a.o b.o

which it then evaluates as a Tcl script. The namesa.o andb.o are passed torm as sepa-
rate arguments and the files are deleted as expected.

12.2 I/O to and from a command pipeline

You can also create subprocesses using theopen command; once you’ve done this you
can then use commands likegets andputs to interact with the pipeline. Here are two
simple examples:

set f1 [open {|tbl | ditroff -ms} w]
set f2 [open |prog r+}

If the first character of the “file name” passed toopen is the pipe symbol| then the argu-
ment isn’t really a file name at all. Instead, it specifies a command pipeline. The remainder
of the argument after the| is treated as a list whose elements have exactly the same mean-
ing as the arguments to theexec command.Open will create a pipeline of subprocesses
just as forexec and it will return an identifier that you can use to transfer data to and from
the pipeline. In the first example the pipeline is opened for writing, so a pipe is used for
standard input to thetbl process and you can invokeputs to write data on that pipe; the
output fromtbl goes toditroff , and the output fromditroff goes to the standard
output of the Tcl application. The second example opens a pipeline for both reading and
writing so separate pipes are created forprog ’s standard input and standard output. Com-
mands likeputs can be used to write data toprog and commands likegets can be
used to read the output fromprog .

Note: When writing data to a pipeline, don’t forget that output is buffered: it probably will not
actually be sent to the child process until you invoke thef lush command to force the
buffered data to be written.

12.3 Process ids 113

DRAFT (8/12/93): Distribution Restricted

When you close a file identifier that corresponds to a command pipeline, theclose
command flushes any buffered output to the pipeline, closes the pipes leading to and from
the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally thenclose returns an error in the same way asexec .

12.3 Process ids

Tcl provides three ways that you can access process identifiers. First, if you invoke a pipe-
line in background usingexec thenexec returns a list containing the process identifiers
for all of the subprocesses in the pipeline. You can use these identifers, for example, if you
wish to kill the processes. Second, you can invoke thepid command with no arguments
and it will return the process identifier for the current process. Third, you can invokepid
with a file identifier as argument, as in the following example:

set f [open {| tbl | ditroff -ms} w]
pid $f

⇒ 7189 7190

If there is a pipeline corresponding to the open file, as in the example, then thepid com-
mand will return a list of identifiers for the processes in the pipeline.

12.4 Environment variables

Environment variables can be read and written using the standard Tcl variable mechanism.
The array variableenv contains all of the environment variables as elements, with the
name of the element inenv corresponding to the name of the environment variable. If you
modify theenv array, the changes will be reflected in the process’s environment variables
and the new values will also be passed to any child process created withexec or open .

12.5 Terminating the T cl process with exit

If you invoke theexit command then it will terminate the process in which the com-
mand was executed.Exit takes an optional integer argument. If this argument is pro-
vided then it is used as the exit status to return to the parent process.0 indicates a normal
exit and non-zero values correspond to abnormal exits; values other than0 and1 are rare.
If no argument is given toexit then it exits with a status of0. Sinceexit terminates the
process, it doesn’t have any return value.

114 Processes

DRAFT (8/12/93): Distribution Restricted

115

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 13
Managing Tcl Internals

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of the Tcl interpreter. For example, you can use these commands to see if
a variable exists, to find out what entries are defined in an array, to monitor all accesses to
a variable, to rename or delete a command, or to handle references to undefined com-
mands. Tables 13.1 and 13.2 summarize the commands.

13.1 Querying the elements of an array

Thearray command provides information about the elements currently defined for an
array variable. It provides this information in several different ways, depending on the first
argument passed to it. The commandarray size returns a decimal string indicating
how many elements are defined for a given array variable and the commandarray
names returns a list whose entries are the names of the elements of a given array variable:

set currency(France) franc
set "currency(Great Britain)" pound
set currency(Germany) mark
array size currency

⇒ 3

array names currency

⇒ {Great Britain} France Germany

For each of these commands the final argument must be the name of an array variable. The
list returned byarray names does not have any particular order.

FIGURE 13

TABLE 13

116 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Thearray names command can be used in conjunction withforeach to iterate
through the elements of an array. For example, the code below deletes all elements of an
array with values that are0 or empty:

foreach i [array names a] {
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}

Table 13.1. A summary of commands for manipulating Tcl’s internal state (continued in Table
13.2).

array anymore name searchId
Returns1 if there are any more elements to process in searchsearchId
of arrayname, 0 if all elements have already been returned.

array donesearch name searchId
Terminates searchsearchId of arrayname and discard any state
associated with the search. Returns an empty string.

array names name
Returns a list containing the names of all the elements of arrayname.

array nextelement name searchId
Returns the name of the next element in searchsearchId of arrayname,
or an empty string if all elements have already been returned in this search.

array size name
Returns a decimal string giving the number of elements in arrayname.

array startsearch name
Initializes a search through all of the elements of arrayname. Returns a
search identifier that may be passed toarray nextelement , array
anymore , orarray donesearch.

auto_mkindex dir pattern
Scans all of the files in diretorydir whose names matchpattern (using
the glob-style rules ofstring match) and generates a filetclIndex
in dir that allows the files to be auto-loaded.

info option ?arg arg ...?
Returns information about the state of the Tcl interpreter. See Table 13.3.

rename old new
Renames commandold to new, or deletesold if new is an empty string.
Returns an empty string.

time script ?count ?
Executesscript count times and returns a string giving the average
elapsed time per execution.Count defaults to 1.

13.2 The info command 117

DRAFT (8/12/93): Distribution Restricted

Note: Thearray command also provides a second way to search through the elements of an
array, using thestartsearch , anymore, nextelement , anddonesearch
options. This approach is more general than theforeach approach given above, and in
some cases it is more efficient, but it is more verbose than theforeach approach and
isn’t needed very often. See the reference documentation for details.

13.2 The info command

The info command provides information about the state of the interpreter. It has more
than a dozen options, which are summarized in Tables 13.3 and 13.4.

13.2.1 Information about variables

Several of theinfo options provide information about variables.Info exists returns
a0 or 1 value indicating whether or not there exists a variable with a given name:

set x 24
info exists x

⇒ 1

Table 13.2. Commands for manipulating Tcl’s internal state, cont’d.

trace variable name ops command
Establishes a trace on variablename such thatcommand is invoked
whenever one of the operations given byops is performd onname. Ops
must consist of one or more of the charactersr , w, oru. Returns an empty
string.

trace vdelete name ops command
If there exists a trace for variablename that has the operations and
command given byops andcommand, removes that trace so that its
command will not be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variable
name. Each element is a sub-list with two elements, which are theops and
command associated with that trace.

unknown cmd ?arg arg ...?
This command is invoked by the Tcl interpreter whenever an unknown
command name is encountered.Cmd will be the unknown command name
and thearg ’s will be the fully-substituted arguments to the command. The
result returned byunknown will be returned as the result of the unknown
command.

118 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Table 13.3. A summary of the options for theinfo command (continued in Table 13.4).

info args procName
Returns a list whose elements are the names of the arguments to procedure
procName , in order.

info body procName
Returns the body of procedureprocName .

info cmdcount
Returns a count of the total number of Tcl commands that have been
executed in this interpreter.

info commands ?pattern ?
Returns a list of all the commands defined for this interpreter, including
built-in commands, application-defined commands, and procedures. If
pattern is specified then only the command names matchingpattern
are returned (string match ’s rules are used for matching).

info default procName argName varName
Checks to see if argumentargName to procedureprocName has a default
value. If so, stores the default value in variablevarName and returns1.
Otherwise, returns0 without modifyingvarName .

info exists varName
Returns1 if there exists a variable namedvarName in the current context,
0 if no such variable is currently accessible.

info globals ?pattern ?
Returns a list of all the global variables currently defined. Ifpattern is
specified, then only the global variable names matchingpattern are
returned (string match ’s rules are used for matching).

info level ?number ?
If number isn’t specified, returns a number giving the current stack level
(0 corresponds to top-level,1 to the first level of procedure call, and so
on). If number is specified, returns a list whose elements are the name and
arguments for the procedure call at levelnumber .

info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

info locals ?pattern ?
Returns a list of all the local variables defined for the current procedure, or
an empty string if no procedure is active. Ifpattern is specified then
only the local variable names matchingpattern are returned (string
match ’s rules are used for matching).

13.2 The info command 119

DRAFT (8/12/93): Distribution Restricted

unset x
info exists x

⇒ 0

The optionsvars , globals , andlocals return lists of variable names that meet
certain criteria.Info vars returns the names of all variables accessible at the current
level of procedure call;info globals returns the names of all global variables, regard-
less of whether or not they are accessible; andinfo locals returns the names of local
variables, including arguments to the current procedure, if any, but not global variables. In
each of these commands an additional pattern argument may be supplied. If the pattern is
supplied then only variable names matching that pattern (using the rules ofstring
match) will be returned.

For example, suppose that global variablesglobal1 andglobal2 have been
defined and that the following procedure is being executed:

proc test {arg1 arg2} {
global global1
set local1 1
set local2 2
...

}

Then the following commands might be executed in the procedure:

Table 13.4. A summary of the options for theinfo command, cont’d.

info procs ?pattern ?
Returns a list of the names of all procedures currently defined. Ifpattern
is specified then only the procedure names matchingpattern are
returned (string match ’s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns the
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the form
major .minor , wheremajor andminor are each decimal integers.
Increments inminor correspond to bug fixes, new features, and
backwards-compatible changes.Major increments only when
incompatible changes occur.

info vars ?pattern ?
Returns a list of all the names of all variables that are currently accessible.
If pattern is specified then only the variable names matchingpattern
are returned (string match ’s rules are used for matching).

120 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

info vars

⇒ global1 arg1 arg2 local2 local1

info globals

⇒ global2 global1

info locals

⇒ arg1 arg2 local2 local1

info vars *al*

⇒ global1 local2 local1

13.2.2 Information about procedures

Another group ofinfo options provides information about procedures. The command
info procs returns a list of all the Tcl procedures that are currently defined. Likeinfo
vars , it takes an optional pattern argument that restricts the names returned to those that
match a given pattern.Info body , info args , andinfo default return informa-
tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {
if {$a < $b}{

puts stdout "c is $c"
}

}
info body maybePrint

⇒
 if {$a < $b} {
 puts stdout "c is $c"
 }

info args maybePrint

⇒ a b c

info default maybePrint a x

⇒ 0

info default maybePrint c x

⇒ 1

set x

⇒ 24

Info body returns the procedure’s body exactly as it was specified to theproc com-
mand.Info args returns a list of the procedure’s argument names, in the same order
they were specified toproc . Info default returns information about an argument’s
default value. It takes three arguments: the name of a procedure, the name of an argument
to that procedure, and the name of a variable. If the given argument has no default value
(e.g.a in the above example),info default returns0. If the argument has a default

13.2 The info command 121

DRAFT (8/12/93): Distribution Restricted

value (c in the above example) theninfo default returns1 and sets the variable to
hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,
here is a Tcl procedure that writes a Tcl script file. The script will contain Tcl code in the
form of proc commands that recreate all of the procedures in the interpreter. The file can
then besource ’d in some other interpreter to duplicate the procedure state of the origi-
nal interpreter. The procedure takes a single argument, which is the name of the file to
write:

proc printProcs f ile {
set f [open $f ile w]
foreach proc [info procs] {

set argList {}
foreach arg [info args $proc] {

if [info default $proc $arg default] {
lappend argList [list $arg $default]

} else {
lappend argList $arg

}
}
puts $f [list proc $proc $argList \

[info body $proc]]
}
close $f

}

Info provides one other option related to procedures:info level . If info
level is invoked with no additional arguments then it returns the current procedure invo-
cation level:0 if no procedure is currently active,1 if the current procedure was called
from top-level, and so on. Ifinfo level is given an additional argument, the argument
indicates a procedure level andinfo level returns a list whose elements are the name
and actual arguments for the procedure at that level. For example, the following procedure
prints out the current call stack, showing the name and arguments for each active proce-
dure:

proc printStack {} {
set level [info level]
for {set i 1} {$i < $level} {incr i} {

puts "Level $i: [info level $i]"
}

}

13.2.3 Information about commands

Info commands is similar toinfo procs except that it returns information about all
existing commands, not just procedures. If invoked with no arguments, it returns a list of
the names of all commands; if an argument is provided, then it is a pattern in the sense of
string match and only command names matching that pattern will be returned.

122 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

The commandinfo cmdcount returns a decimal string indicating how many com-
mands have been executed in this Tcl interpreter. It may be useful during peformance tun-
ing to see how many Tcl commands are being executed to carry out various functions.

The commandinfo script indicates whether or not a script file is currently being
processed. If so then the command returns the name of the innermost nested script file that
is active. If there is no active script file theninfo script returns an empty string. This
command is used for relatively obscure purposes such as disallowing command abbrevia-
tions in script files.

13.2.4 Tclversion and library

Info tclversion returns the version number for the Tcl interpreter in the form
major . minor . Each ofmajor andminor is a decimal string. If a new release of Tcl
contains only backwards-compatible changes such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If a new
release contains changes that are not backwards-compatible, so that existing Tcl scripts or
C code that invokes Tcl’s library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to 0.

The commandinfo library returns the full path name of the Tcl library direc-
tory. This directory is used to hold standard scripts used by Tcl, such as a default definition
for theunknown procedure described in Section 13.6 below.

13.3 Timing command execution

Thetime command is used to measure the performance of Tcl scripts. It takes two argu-
ments, a script and a repetition count:

time {set a xyz} 10000

⇒ 92 microseconds per iteration

Time will execute the given script the number of times given by the repetition count,
divide the total elapsed time by the repetition count, and print out a message like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To
make accurate timing measurements, I suggest experimenting with the repetition count
until the total time for thetime command is a few seconds.

13.4 Tracing operations on variables 123

DRAFT (8/12/93): Distribution Restricted

13.4 Tracing operations on variables

Thetrace command allows you to monitor the usage of one or more Tcl variables. Such
monitoring is calledtracing. If a trace has been established on a variable then a Tcl com-
mand will be invoked whenever the variable is read or written or unset. Traces can be used
for a variety of purposes:

• monitoring the variable’s usage (e.g. by printing a message for each read or write oper-
ation)

• propagating changes in the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

• restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variable’s value to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

Here is a simple example that causes a message to be printed when either of two vari-
ables is modified:

trace variable color w pvar
trace variable a(length) w pvar
proc pvar {name element op} {

if {$element != ""} {
set name ${name}($element)

}
upvar $name x
puts "Variable $name set to $x"

}

The firsttrace command arranges for procedurepvar to be invoked whenever variable
color is written:variable specifies that a variable trace is being created,color
gives the name of the variable,w specifies a set of operations to trace (any combination of
r for read,w for write, andu for unset), and the last argument is a command to invoke.
The second trace command sets up a trace for elementlength of arraya.

Whenevercolor or a(length) is modified, Tcl will invoke pvar with three
additional arguments, which are the variable’s name, the variable’s element name (if it is
an array element, or an empty string otherwise), and an argument indicating what opera-
tion was actually invoked (r for read,w for write, oru for unset). For example, if the com-
mand “set color purple ” is executed, Tcl will evaluate the command
“pvar color {} purple ” because of the trace. If “set a(length) 108 ” is
invoked, the trace command “pvar a length w” will be evaluated.

Thepvar procedure does three things. First, if the traced variable is an array element
thenpvar generates a complete name for the variable by combining the array name and
the element name. Second, the procedure usesupvar to make the variable’s value acces-
sible inside the procedure as local variablex . Finally, it prints out the variable’s name and
value on standard output. For the two accesses in the previous paragraph the following
messages will be printed:

124 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Variable color set to purple
Variable a(length) set to 108

The example above set traces on individual variables. It’s also possible to set a trace
on an entire array, as with the command

trace variable a w pvar

wherea is the name of an array variable. In this casepvar will be invoked whenever any
element ofa is modified.

Write traces are invoked after the variable’s value has been modified but before
returning the new value as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. Read traces are invoked just
before the variable’s result is read. The trace command can modify the variable to affect
the result returned by the read operation. Tracing is temporarily disabled for a variable
during the execution of read and write trace commands. This means that a trace command
can access the variable without causing traces to be invoked recursively.

If a read or write trace returns an error of any sort then the traced operation is aborted.
This can be used to implement read-only variables, for example. Here is a script that
forces a variable to have a positive integer value and rejects any attempts to set the vari-
able to a non-integer value:

trace variable size w forceInt
proc forceInt {name element op} {

upvar $name x ${name}_old x_old
if ![regexp {^[0-9]*$} $x] {

set x $x_old
error "value must be a postive integer"

}
set x_old $x

}

By the time the trace command is invoked the variable has already been modified, so if
forceInt wants to reject a write it must restore the old value of the variable. To do this
it keeps a shadow variable with a suffix “_old ” to hold the previous value of the variable.
If an illegal value is stored into the variable,forceInt restores the variable to its old
value and generates an error:

set size 47

⇒ 47

set size red

∅ can’t set "size": value must be a postive integer

set size

⇒ 47

Note: TheforceInt procedure only works for simple variables, but it could be extended to
handle array elements as well.

13.5 Renaming and deleting commands 125

DRAFT (8/12/93): Distribution Restricted

It is legal to set a trace on a non-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set a read trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove the variable and any traces associated with the variable,
then invoke any unset traces for the variable. It is legal, and not unusual, for an unset trace
to immediately re-establish itself on the same variable so that it can monitor the variable if
it should be re-created in the future.

To delete a trace, invoketrace vdelete with the same arguments passed to
trace variable . For example, the trace created oncolor above can be deleted with
the following command:

trace vdelete color w pvar

If the arguments totrace vdelete don’t match the information for any existing trace
exactly then the command has no effect.

The commandtrace vinfo returns information about the traces currently set for a
variable. It is invoked with an argument consisting of a variable name, as in the following
example:

trace vinfo color

⇒ {w pvar}

The return value fromtrace vinfo is a list, each of whose elements describes one
trace on the variable. Each element is itself a list with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will be invoked. If the variable specified totrace vinfo is an element of an array,
then only traces on that element will be returned; traces on the array as a whole will not be
returned.

13.5 Renaming and deleting commands

Therename command can be used to change the command structure of an application. It
takes two arguments:

rename old new

Rename does just what its name implies: it renames the command that used to have the
nameold so that it now has the namenew. New must not already exist as a command
whenrename is invoked.

Rename can also be used to delete a command by invoking it with an empty string as
thenew name. For example, the following script disables file I/O from an application by
deleting the relevant commands:

foreach cmd {open close read gets puts} {
rename $cmd {}

}

126 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably a bad idea in general, since it will break scripts that depend on the
command, but in some situations it can be useful. For example, theexit command as
defined by Tcl just exits the process immediately (see Section 12.5). If an application
wants to have a chance to clean up its internal state before exiting, then it can create a
“wrapper” aroundexit by redefining it:

rename exit exit.old
proc exit status {

application-specific cleanup
...
exit.old $status

}

In this example theexit command is renamed toexit.old and a newexit proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scripts that callexit to be
used without change while still giving the application an opportunity to clean up its state.

13.6 Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If
the interpreter discovers that the command name specified in a Tcl command doesn’t exist,
then it checks for the existence of a command namedunknown . If there is such a com-
mand then the interpreter invokesunknown instead of the original command, passing the
name and arguments for the non-existent command tounknown . For example, suppose
that you type the following commands:

set x 24
createDatabase library $x

If there is no command namedcreateDatabase then the following command is
invoked:

unknown createDatabase library 24

Notice that substitutions are performed on the arguments to the original command before
unknown is invoked. Each argument tounknown will consist of one fully-substituted
word from the original command.

Theunknown procedure can do anything it likes to carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

13.6 Unknown commands 127

DRAFT (8/12/93): Distribution Restricted

proc unknown {name args} {
set cmds [info commands $name*]
if {[llength $cmds] != 1} {

error "unknown command \"$name\""
}
uplevel $cmds $args

}

Note that when the command is re-invoked with an expanded name, it must be invoked
usinguplevel so that the command executes in the same variable context as the original
command.

The Tcl script library includes a default version ofunknown that peforms the follow-
ing functions, in order:

1. If the command is a procedure that is defined in a library file, source the file to define
the procedure, then re-invoke the command. This is calledauto-loading; it is described
in the next section.

2. If there exists a program with the name of the command, use theexec command to
invoke the program. This feature is calledauto-exec. For example, you can type “ls ”
as a command andunknown will invoke “exec ls ” to list the contents of the current
directory. If the command doesn’t specify redirection then auto-exec will arrange for
the command’s standard input, standard output, and standard error to be redirected to
the corresponding channels of the Tcl application. This is different than the normal
behavior ofexec but it allows interactive programs such asmore andvi to be
invoked directly from a Tcl application.

3. If the command name has one of several special forms such as “!! ” then compute a
new command using history substitution and invoke it. For example, the if the com-
mand is “!! ” then the previous command is re-invoked. See Chapter 14 for more infor-
mation on history substitution.

4. If the command name is a unique abbreviation for an existing command, then the
abbreviated command name is expanded and the command is re-invoked.

The last three actions are intended as conveniences for interactive use, and they only occur
if the command was invoked interactively. You should not depend on these features when
writing scripts. For example, you should not try to use auto-exec in scripts: always use the
exec command explicitly.

If you don’t like the default behavior of theunknown procedure then you can write
your own version or modify the library version to provide additional functions. If you
don’t want any special actions to be taken for unknown commands you can just delete the
unknown procedure, in which case errors will occur whenever unknown commands are
invoked.

128 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

13.7 Auto-loading

One of the most useful functions performed by theunknown procedure isauto-loading.
Auto-loading allows you to write collections of Tcl procedures and place them in script
files in library directories. You can then use these procedures in your Tcl applications
without having to explicitlysource the files that define them. You simply invoke the
procedures. The first time that you invoke a library procedure it won’t exist, sounknown
will be called.Unknown will find the file that defines the procedure, source the file to
define the procedure, and then re-invoke the original command. The next time the proce-
dure is invoked it will exist so the auto-loading mechanism won’t be triggered.

Auto-loading provides two benefits. First, it makes it easy to build up large libraries
of useful procedures and use them in Tcl scripts. You need not know exactly which files to
source to define which procedures, since the auto-loader takes care of that for you. The
second benefit of auto-loading is efficiency. Without auto-loading an appliation must
source all of its script files when it starts up. Auto-loading allows an application to start
up without loading any script files at all; the files will be loaded later when their proce-
dures are needed, and some files may never be loaded at all. Thus auto-loading reduces
startup time and saves memory.

Using the auto-loader is straightforward and involves three steps. First, create a
library as a set of script files in a single directory. Normally these files have names that end
in “.tcl ”, for exampledb.tcl orstretch.tcl . Each file can contain any number of
procedure definitions. I recommend keeping the files relatively small, with just a few
related procedures in each file. In order for the auto-loader to handle the files properly, the
proc command for each procedure definition must be at the left edge of a line, and it
must be followed immediately by white space and the procedure’s name on the same line.
Other than this the format of the script files doesn’t matter as long as they are valid Tcl
scripts.

The second step is to build an index for the auto-loader. To do this, start up a Tcl
application such astclsh and invoke theauto_mkindex command as in the follow-
ing example:

auto_mkindex . *.tcl

Auto_mkindex isn’t a built-in command but rather a procedure in Tcl’s script library.
Its first argument is a directory name and the second argument is a glob-style pattern that
selects one or more script files in the directory. Auto_mkindex scans all of the files
whose names match the pattern and builds an index that indicates which procedures are
defined in which files. It stores the index in a file calledtclIndex in the directory. If you
modify the files to add or delete procedures then you should regenerate the index.

The third step is to set the variableauto_path in the applications that wish to use
the library. Theauto_path variable contains a list of directory names. When the auto-
loader is invoked it searches the directories inauto_path in order, looking in their
tclIndex files for the desired procedure. If the same procedure is defined in several

13.7 Auto-loading 129

DRAFT (8/12/93): Distribution Restricted

libraries then the auto-loader will use the one from the earliest directory inauto_path .
Typically auto_path will be set as part of an application’s startup script. For example,
if an application uses a library in directory/usr/local/tcl/lib/shapes then it
might include the following command in its startup script:

set auto_path \
[linsert $auto_path 0 /usr/local/tcl/lib/shapes]

This will add/usr/local/tcl/lib/shapes to the beginning of the path, retaining
all the existing directories in the path such as those for the Tcl and Tk script libraries but
giving higher priority to procedures defined in/usr/local/tcl/lib/shapes .
Once a directory has been properly indexed and added toauto_path , all of its proce-
dures become available through auto-loading.

130 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

131

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 14
History

This chapter describes Tcl’s history mechanism. In applications where you type com-
mands interactively, the history mechanism keeps track of recent commands and makes it
easy for you to re-execute them without having to completely re-type them. You can also
create new commands that are slight variations on old commands without having to com-
pletely retype the old commands, for example to fix typos. Tcl’s history mechanism pro-
vides many of the features available incsh , but not with the same syntax in all cases.
History is implemented by thehistory command, which is summarized in Table 14.1 .
Only a few of the most commonly used history features are described in this chapter; see
the reference documentation for more complete information.

14.1 The history list

Each command that you type interactively is entered into ahistory list. Each entry in the
history list is called anevent; it contains the text of a command plus a serial number iden-
tifying the command. The command text consists of exactly the characters you typed,
before the Tcl parser peforms substitutions for$, [] , etc. The serial number starts out at1
for the first command you type and is incremented for each successive command.

Suppose you type the following sequence of commands to an interactive Tcl program:

set x 24
set y [expr $x*2.6]
incr x

At this point the history list will contain three events. You can examine the contents of the
history list by invokinghistory with no arguments:

FIGURE 14

TABLE 14

132 History

DRAFT (8/12/93): Distribution Restricted

history

⇒ 1 set x 24
 2 set y [expr $x*2.6]
 3 incr x
 4 history

The value returned byhistory is a human-readable string describing what’s on the his-
tory list, which also includes thehistory command. The result ofhistory is intended
for printing out, not for processing in Tcl scripts; if you want to write scripts that process
the history list, you’ll probably find it more convenient to use otherhistory options
described later in the reference documentation, such ashistory event .

The history list has a fixed size, which is initially 20. If more commands than that
have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with thehistory keep command:

history keep 100

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

Table 14.1. A summary of some of the options for thehistory command. Several options have
been omitted; see the reference documentation for details.

history
Returns a string giving the event number and command for each event on
the history list.

history keep count
Changes the size of the history list so that thecount most recent events
will be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the history list.

history redo ?event ?
Re-executes the command recorded forevent and returns its result.

history substitute old new ?event ?
Retrieve the command recorded forevent , replace any occurrences of
old by new in it, execute the resulting command, and returns its result.
Bothold andnew are simple strings. The substitution uses simple equality
checks: no wild cards or regular expression features are supported.

14.2 Specifying events 133

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events

Several of the options of thehistory command require you to select an event from the
history list; the symbolevent is used for such arguments in Table 14.1. Events are spec-
ified as strings with one of the following forms:

Suppose that you had just typed the three commands from page 131 above. The command
“ incr x ” can be referred to as event-1 or3 or inc , and “set y [expr $x*2.6] ”
can be referred to as event-2 or 2 or *2* . If an event specifier is omitted then it defaults
to -1 .

14.3 Re-executing commands from the history list

Theredo andsubstitute options tohistory will replay commands from the his-
tory list.History redo retrieves a command and re-executes it just as if you had
retyped the entire command. For example, after typing the three commands from page
131, the command

history redo

replays the most recent command, which isincr x ; it will increment the value of vari-
ablex and return its new value (26). If an additional argument is provided forhistory
redo , it selects an event as described in Section 14.2; for example,

history redo 1

⇒ 24

replays the first command,set x 24 .
Thehistory substitute command is similar tohistory redo except that

it modifies the old command before replaying it. It is most commonly used to correct typo-
graphical errors:

set x "200 illimeters"

⇒ 200 illimeters

history substitute ill mill -1

⇒ 200 millimeters

Positive number: Selects the event with that serial number.
Negative number: Selects an event relative to the current event.-1 refers to

the last command,-2 refers to the one before that, and so
on.

Anything else: Selects the most recent event that matches the string. The
string matches an event either if it is the same as the first
characters of the event’s command, or if it matches the
event’s command using the matching rules forstring
match .

134 History

DRAFT (8/12/93): Distribution Restricted

History substitute takes three arguments: an old string, a new string, and an event
specifier (the event specifier can be defaulted, in which case it defaults to-1). It retrieves
the command indicated by the event specifier and replaces all instances of the old string in
that command with the new string. The replacement is done using simple textual compari-
son with no wild-cards or pattern matching. Then the resulting command is executed and
its result is returned.

14.4 Shortcuts implemented by unknown

Thehistory redo andhistory substitute commands are quite bulky; in the
examples above it took more keystrokes to type thehistory commands than to retype
the commands being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:

All of these shortcuts are implemented by theunknown procedure described in Section
13.6.Unknown detects commands that have the forms described above and invokes the
correspondinghistory commands to carry them out.

Note: If your system doesn’t use the default version ofunknown provided by Tcl then these
shortcuts may not be available.

14.5 Current event number: history nextid

The commandhistory nextid returns the number of the next event to be entered into
the history list:

history nextid

⇒ 3

It is most commonly used for generating prompts that contain the event number. Many
interactive applications allow you to specify a Tcl script to generate the prompt; in these
applications you can include ahistory nextid command in the script so that your
prompt includes the event number of the command you are about to type.

!! Replays the last command: same as “history redo ”.
! event Replays the command given byevent ; same as

“history redo event ”.
^old ^new Replay the last command, substituting new for old; same as

“history substitute old new”.

1

DRAFT (3/11/93): Distribution Restricted

Chapter 14 An Introduction to Tk 133
14.1 Widgets and windows 134

14.2 Screens, decorations, and toplevel windows136

14.3 Applications and processes137

14.4 Scripts and events138

14.5 Wish: a windowing shell 138

14.6 Widget creation commands139

14.7 Geometry managers140

14.8 Widget commands 141

14.9 Commands for interconnection142

Chapter 15 Tour Of The Tk Widgets 145
15.1 Frames and toplevels145

15.2 Labels, buttons, checkbuttons, and radiobuttons146

15.3 Menus and menubuttons148
15.3.1 Pull-down menus 150
15.3.2 Pop-up menus 150
15.3.3 Cascaded menus 150
15.3.4 Keyboard traversal and accelerators 151

15.4 Listboxes 151

15.5 Entries 152

15.6 Scrollbars 153

15.7 Text 154

15.8 Canvases 155

15.9 Scales 157

15.10 Messages 157

Chapter 16 Configuration Options 159
16.1 How options are set159

16.2 Colors 161

16.3 Screen distances163

16.4 Reliefs 164

2

DRAFT (3/11/93): Distribution Restricted

16.5 Fonts 164

16.6 Bitmaps 166

16.7 Cursors 166

16.8 Anchors 167

16.9 Script options and scrolling169

16.10 Variables 171

16.11 Time intervals 171

16.12 The configure widget command171

16.13 The option database173
16.13.1Patterns 173
16.13.2RESOURCE_MANAGER property and .Xdefaults file 175
16.13.3Priorities 175
16.13.4The option command 176

Chapter 17 Geometry Managers: The Placer179
17.1 An overview of geometry management179

17.2 Controlling positions with the placer182

17.3 Controlling the size of a slave185

17.4 Selecting the master window185

17.5 Border modes 186

17.6 More on the place command186

17.7 Controlling the size of the master187

Chapter 18 The Packer 189
18.1 Packer basics 189

18.2 Packer configuration options193

18.3 Hierarchical packing 196

18.4 Other options to the pack command197

Chapter 19 Bindings 199
19.1 An overview of the bind command199

19.2 Event patterns 201

3

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events203

19.4 Conflict resolution 203

19.5 Substitutions in scripts 204

19.6 When are events processed?205

19.7 Background errors: tkerror205

19.8 Other uses of bindings206

Chapter 20 The Selection 207
20.1 Selections, retrievals, and targets 207

20.2 Locating and clearing the selection209

20.3 Supplying the selection with Tcl scripts 210

Chapter 21 The Input Focus 213
21.1 Focus model: explicit vs. implicit 213

21.2 Setting the input focus214

21.3 Clearing the focus 215

21.4 The default focus 215

21.5 Keyboard accelerators216

Chapter 22 Window Managers 217
22.1 Window sizes 219

22.2 Gridded windows 220

22.3 Window positions 222

22.4 Window states 222

22.5 Decorations 223

22.6 Window manager protocols223

22.7 Special handling: transients, groups, and override-redirect224

22.8 Session management225

22.9 A warning about window managers225

4

DRAFT (3/11/93): Distribution Restricted

Chapter 23 The Send Command227
23.1 Basics 227

23.2 Hypertools 228

23.3 Application names 229

23.4 Security issues 229

Chapter 24 Modal Interactions 231
24.1 Grabs 231

24.2 Keyboard handling during grabs233

24.3 Waiting: the tkwait command233

Chapter 25 Odds and Ends 237
25.1 Destroying windows 237

25.2 Time delays 238

25.3 The update command239

25.4 Information about windows 240

25.5 The tk command: color models240

25.6 Variables managed by Tk241

Chapter 26 Examples 243
26.1 A procedure that generates dialog boxes243

26.2 A remote-control application 247

Part II:

Writing Scripts for Tk

132

DRAFT (3/11/93): Distribution Restricted

133

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 14
An Intr oduction to Tk

Tk is a toolkit that allows you to create graphical user interfaces for the X11 window sys-
tem by writing Tcl scripts. Like Tcl, Tk is a C library package that can be included in C
applications. Tk extends the built-in Tcl command set described in Part I with several
dozen additional commands that you can use to create user interface elements calledwid-
gets, arrange them into interesting layouts on the screen usinggeometry managers, and
connect them with each other, with the enclosing application, and with other applications.
This part of the book describes Tk’s Tcl commands.

In addition to its Tcl commands, Tk also provides a collection of C library functions
that can be invoked from C code in a Tk-based application. The library functions allow
you to implement new widgets and geometry managers in C. They are discussed in Part IV
of the book.

This chapter introduces the basic structures used for creating user interfaces with Tk,
including the hierarchical arrangements of widgets that make up interfaces and the main
groups of Tcl commands provided by Tk. Later chapters will go over the individual facili-
ties in more detail.

Note: I’ve taken the liberty of describing things in the way I expect them to be when the book is
finally published, so the descriptions in this draft do not always correspond to the current
version of Tk (3.2). The following discrepancies exist between this draft and Tk 3.2: (a) the
pack command syntax as described here is different than what exists in 3.2, although it
provides almost exactly the same set of features; (b) Tk 3.2 doesn’t contain all of the built-
in bitmaps listed here (c)groove andridge reliefs are not supported in Tk 3.2, and (d)
embedded widgets are not yet supported in text widgets. As new versions of Tk are
released the discrepancies should gradually disappear.

FIGURE 14

TABLE 14

134 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

14.1 Widgets and windows

The basic user interface elements in Tk are calledwidgets. Examples of widgets are labels,
buttons, pull-down menus, scrollbars, and text entries (see Figure 14.1). Widgets are
grouped intoclasses, where all of the widgets in a class have a similar appearance on the
screen and similar behavior when manipulated with the mouse and keyboard. For exam-
ple, widgets in the button class display a text string or bitmap as shown in Figure 14.1(a).
Dif ferent buttons may display their strings or bitmaps in different ways (e.g. in different
fonts and colors), but each one displays a single string or bitmap. Each button also has a
Tcl script associated with it, which is invoked whenever mouse button 1 is pressed with
the mouse cursor over the widget. Different button widgets may have different commands
associated with them but each one has an associated command. When you create a widget
you select its class and provide additional class-specificoptions, such as a string or bitmap
to display or a command to invoke.

Tk’s built-in widget classes implement the MotifTM look-and-feel standard specified
by the Open Software Foundation. The Motif standard determines the three-dimensional
look that you’ll see in the Tk widgets and many aspects of their behavior.

Each widget is implemented using one window in the X window system, and the
terms “window” and “widget” are used interchangeably in this book. Widgets may be
nested in hierarchical arrangements with widgets containing other widgets that contain
still other widgets. The result is a tree-like structure such as the one shown in Figure 14.2.
Each widget can contain any number of children and the widget tree can have any depth.
The widgets with behavior that is meaningful to the user are usually at the leaves of the
widget tree; the higher-level widgets are usually just containers for organizing and arrang-
ing the leaf widgets.

Figure 14.1.Examples of widgets in Tk: (a) a button widget displays a text string and invokes a
given Tcl command when a mouse button is clicked over it; (b) an entry widget displays a one-line
text string and allows the text to be edited with the mouse and keyboard; (c) a scrollbar widget
displays a slider and two arrows, which can be manipulated with the mouse to adjust the view in
some other widget.

(a)

(b)

(c)

14.1 Widgets and windows 135

DRAFT (3/11/93): Distribution Restricted

Figure 14.2.Widgets are arranged hierarchically. A collection of widgets is shown in (a) as it
appears on the screen, and the hierarchical structure of the collection is shown in (b). An exploded
view of the screen is shown in (c) to clarify the widget structure. The topmost widget in the
hierarchy (“.”) contains three children: a menu bar across the top, a scrollbar along the right side,
and a listbox filling the remainder. The menu bar contains two children of its own, aFile menu
button on the left anda Help menu button on the right. Each widget has a name that reflects its
position in the hierarchy, such as.menu.help for theHelp menu button.

(a)

.

.menu .scroll.listbox

.menu.f ile .menu.help

(b)

(c)

136 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

Each widget/window has a textual name that is used to refer to it in Tcl commands.
Window names are similar to the hierarchical path names used to name files in Unix,
except that “. ” is used as the separator character instead of “/ ”. The name “.” refers to the
topmost window in the hierarchy, which is called themain window. The name.a.b.c
refers to a windowc that is a child of window.a.b , which in turn is a child of.a , which
is a child of the main window.

14.2 Screens, decorations, and toplevel windows

Tk creates the main window of an application as a child of the root window of a particular
screen. This causes the main window to appear on that screen. Your window manager will
then create a decorative frame around the main window, which usually displays a title and
provides controls that you can use to move and resize the window. A given window man-
ager will decorate all applications in the same way, but different window managers may
use different styles of decoration. Figure 14.2 showed a main window without any win-
dow manager decoration; other figures will show decorations as provided by themwm win-
dow manager (e.g. see Figure 14.3).

X clips each window to the area of its parent: it will not display any part of a window
that lies outside the area of its parent. The descendants of the main window are called
internal windows to reflect the fact that they appear inside the area of the main window.
However, applications often need to create widgets that are don’t lie inside the main win-
dow. For example, it might be useful to position a dialog box in the center of the screen
regardless of the position of the main window, or an application might wish to post several
panels that the user can move around on the screen independently. For situations like this
Tk provides a third kind of window called atop-level window. A top-level window
appears like an internal window in the application’s widget hierarchy (e.g. it might have a
name like.a.b) but its X window is created as a child of the screen’s root rather than its
parent in the Tk widget hierarchy. The window manager will treat top-level windows just
like main windows, so the user will be able to move and resize and iconify each top-level
window separately from the main window and other top-level windows. Top-level win-
dows are typically used for panels and dialog boxes. See Figure 14.3 for an example.

It is not necessary for all of the widgets of an application to appear on the same screen
or even the same display. When you create a top-level widget you can specify a screen for
it. The screen defaults to the screen of the widget’s parent in the Tk hierarchy, but you can
specify any screen whose X server will accept a connection from the application. For
example, it’s possible to create a Tk application that broadcasts an announcement to a
number of wokstations by opening a top-level window on each of their screens.

Once a widget is created on a particular screen, it cannot be moved to another screen.
This is a limitation imposed by the X window system. However, you can achieve the same
effect as moving the widget by deleting it and recreating it on a different screen.

14.3 Applications and processes 137

DRAFT (3/11/93): Distribution Restricted

14.3 Applications and processes

In Tk the termapplication refers to a single widget hierarchy (one main window and any
number of internal and top-level windows descended from it), a single Tcl interpreter
associated with the widget hierarchy, plus all the commands provided by that interpreter.
Each application is usually a separate process, but Tk also allows a single process to man-
age several applications, each with its own widget hierarchy and Tcl interpreter. Tk does

Figure 14.3.Top-level widgets appear in the Tk widget hierarchy just like internal widgets, but
they are positioned on the screen independently from their parents in the hierarchy. In this example
the dialog box.dlg is a top-level window. Figure (a) shows how the windows appear on the screen
(with decorations provided by themwm window manager) and Figure (b) shows Tk’s widget
hierarchy for the application.

.menu .scroll.listbox

.menu.f ile .menu.help

.dlg

.

.dlg.msg .dlg.yes .dlg.no

(b)

(a)

138 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

not provide any particular support for multi-threading (using a collection of processes to
manage a single application); it is conceivable that Tk could be used in a multi-threaded
environment but it would not be trivial and I know of no working examples.

14.4 Scripts and events

Tk applications are controlled by two kinds of Tcl scripts: aninitialization script andevent
handlers. The initialization script is executed when the application starts up. It creates the
application’s user interface, loads the application’s data structures, and performs any other
initialization needed by the application. Once initialization is complete the application
enters anevent loop to wait for user interactions. Whenever an interesting event occurs,
such as the user invoking a menu entry or moving the mouse, a Tcl script is invoked to
process that event. These scripts are called event handlers; they can invoke application-
specific Tcl commands (e.g. enter an item into a database), modify the user interface (e.g.
post a dialog box), or do many other things. Some event handlers are created by the initial-
ization script, but event handlers can also be created and modified by other event handlers.

Most of the Tcl code for a Tk application is in the event handlers and the procedures
that they invoke. Complex applications may contain hundreds of event handlers, and the
handlers may create other panels and dialogs that have additional event handlers. Tk appli-
cations are thusevent-driven. There is no well-defined flow of control within the applica-
tion’s scripts, since there is no clear task for the application to carry out. The application
presents a user interface with many features and the user decides what to do next. All the
application does is to respond to the events corresponding to the user’s actions. The event
handlers implement the responses; they tend to be short scripts, and they are mostly inde-
pendent of each other.

14.5 Wish: a windowing shell

While you’re reading this book you may find it useful to experiment with a program called
wish (for “windowing shell”).Wish is the simplest possible Tk application. The only Tcl
commands it contains are the Tcl built-ins and the additional commands provided by Tk. If
you invokewish with no arguments then it creates a main window and acts like a shell,
reading Tcl commands from its standard input and executing them. For example, try typ-
ing the following commands towish :

button .b -text "Hello, world!" -command "destroy ."
pack .b

This creates the application shown in Figure 14.4, consisting of a single button that dis-
plays the text “Hello, world ”. It also creates one event handler: if the user clicks
mouse button 1 over the widget then Tk will invoke the command “destroy . ”, which

14.6 Widget creation commands 139

DRAFT (3/11/93): Distribution Restricted

destroys the application’s main window and all its descendants and thereby causeswish
to exit.Wish responds to events for the application’s windows as well as to commands
typed on its standard input.

You can also usewish to invoke scripts that have been saved in files. For example,
you could create a file namedhello that contains the above two commands. Then you
could start upwish and type

source hello

to process the file. Or, you could invokewish with the following shell command:

wish -f hello

In this casewish will not read commands from standard input. Instead, it will execute the
script contained in the filehello and then enter an event loop where it responds only to
events from the application’s windows.

Wish scripts can also be invoked using the same mechanism that’s used for shell
scripts in UNIX. To do this, enter the following comment as the first line ofhello :

#!/usr/local/bin/wish -f

Then mark the script file as executable. You can now invokehello directly from the
shell like any other executable program:

hello

This will runwish and cause it to process the script file just as if you’d typed “wish -f
hello ”.

See thewish reference documentation for details on other features provided by
wish , such as command-line arguments forwish scripts. Ifwish isn’t installed in/
usr/local/bin on your system then you’ll need to use a different comment in your
script files that reflects the location ofwish .

14.6 Widget creation commands

Tk provides four main groups of Tcl commands; they create widgets, arrange widgets on
the screen, communicate with existing widgets, and interconnect widgets within and

Figure 14.4.A simple Tk application created by typing commands towish .

140 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

between applications. This section and the three following sections introduce the groups
of commands to give you a general feel for Tk’s features. All of the commands are dis-
cussed in more detail in later chapters.

To create a widget, you invoke a command named after the widget’s class:button
for button widgets,scrollbar for scrollbar widgets, and so on.. For example, the fol-
lowing command creates a button that displays the text “Press me ” in red:

button .b -text "Press me" -foreground red

All of the widget creation commands have a form similar to this. The command’s name is
the same as the name of the class of the new widget. The first argument is a name for the
new widget in the widget hierarchy, .b in this case. This widget must not already exist but
its parent must exist. The command will create the widget and its corresponding X win-
dow.

The widget name is followed by any number of pairs of arguments, where the first
argument of each pair specifies the name of aconfiguration option for the widget (e.g.
- text or -foreground) and the second argument specifies a value for that option (e.g.
“Press me ” or red). Each widget class supports a different set of configuration options
but many options, such as-foreground , are used in the same way by different classes.
You need not specify a value for every option supported by a widget; defaults will be cho-
sen for the options you don’t specify. For example, buttons support about twenty different
options but only two were specified in the example above. Chapter 16 discusses configura-
tion options in more detail.

14.7 Geometry managers

Widgets don’t determine their own sizes and locations on the screen. This function is car-
ried out bygeometry managers. Each geometry manager implements a particular style of
layout. Given a collection of widgets to manage and some controlling information about
how to arrange them, a geometry manager assigns a size and location to each widget. For
example, you might tell a geometry manager to arrange a set of widgets in a vertical col-
umn. It would then position the widgets so that they are adjacent but don’t overlap. If one
widget should suddenly need more space (e.g. its font is changed to a larger one) it will
notify the geometry manager and the geometry manager will move other widgets down to
preserve the proper column structure.

The second main group of Tk commands consists of those for communicating with
geometry managers. Tk currently contains four geometry managers. Theplacer is a sim-
ple fixed-placement geometry manager. You give it instructions like “place window.x at
location (10,100) in its parent and make it 2 cm wide and 1 cm high.” The placer is simple
to understand but limited in applicability because it doesn’t consider interactions between
widgets. Chapter 17 describes the placer in detail.

14.8 Widget commands 141

DRAFT (3/11/93): Distribution Restricted

The second geometry manager is called thepacker. It is constraint-based and allows
you to implement arrangements like the column example from above. It is more complex
than the placer but much more powerful and hence more widely used. The packer is the
subject of Chapter 18.

Two other geometry managers are implemented as part of the canvas and text wid-
gets. The canvas geometry manager allows you to mix widgets with structured graphics,
and the text geometry manager mixes widgets with text. See the reference documentation
for canvas and text widgets for descriptions of these geometry managers.

When you invoke a widget creation command likebutton the new widget will not
immediately appear on the screen. It will only be displayed after you have asked a geome-
try manager to manage it. If you want to experiment with widgets before reading the full
discussion of geometry managers, you can make a widget appear by invoking thepack
command with the widget’s name as argument. For example, the following script creates a
button widget and displays it on the screen:

button .b -text "Hello, world!"
pack .b

This will size the main window so that it is just large enough to hold the button and it will
arrange the button so that it fills the space of the main window. If you create other widgets
and pack them in a similar fashion, the packer will arrange them in a column inside the
main window, making the main window just large enough to accommodate them all. See
Figure 14.5 for an example.

14.8 Widget commands

Whenever a new widget is created Tk also creates a new Tcl command whose name is the
same as the widget’s name. This command is called awidget command, and the set of all
widget commands (one for each widget in the application) constitutes the third major

button .top -text "Top button"
pack .top
button .bottom -text "Bottom button"
pack .bottom

(a) (b)

Figure 14.5.The script in (a) creates two button widgets and arranges them in a vertical column
with the first widget above the second. The application’s appearance on the screen is shown in (b).

142 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

group of Tk’s commands. Thus after the abovebutton command was executed above, a
widget command whose name is.b appeared in the application’s interpreter. This com-
mand will exist as long as the widget exists; if the widget is deleted then the command will
be deleted too.

Widget commands are used to communicate with existing widgets. Here are some
commands that could be invoked after thebutton command from Section 14.6:

.b conf igure -foreground blue

.b f lash

.b invoke

The first command changes the color of the button’s text to blue, the second command
causes the button to flash briefly, and the third command invokes the button just as if the
user had clicked mouse button 1 on it. In widget commands the command name is the
name of the widget and the first argument specifies an operation to invoke on the widget,
such asconf igure . Some widget commands, likeconf igure , take additional argu-
ments; the nature of these arguments depends on the specific command.

The set of widget commands supported by a given widget is determined by its class.
All widgets in the same class support the same set of commands, but different classes have
different command sets. Some common commands are supported by multiple classes. For
example, every widget class supports aconf igure widget command, which can be used
to query and change any of the configuration options associated with the widget.

14.9 Commands for interconnection

The fourth group of Tk commands is used for interconnection. These commands are used
to make widgets work together, to make them work cooperatively with the objects defined
in the application, and to allow different applications sharing the same display to work
together in interesting ways.

Some of the interconnection commands are implemented as event handlers. For
example, each button has a-command option that specifies a Tcl script to invoke when-
ever mouse button 1 is clicked over the widget. This option was used in Section 14.5 to
terminate the application. Scrollbars provide another example of interconnection via event
handlers. Each scrollbar is used to control the view in some other widget: when you click
in the scrollbar or drag its slider, the view in the associated widget should change. This
connection between widgets is implemented by specifying a Tcl command for the scroll-
bar to invoke whenever the slider is dragged. The command invokes a widget command
for the asscociated widget to change its view. In addition to event handlers that are defined
by widgets, you can create custom event handlers using thebind command described in
Chapter 19.

Tk supports five other forms of interconnection in addition to event handlers: the
selection, the input focus, the window manager, thesend command, and grabs. The

14.9 Commands for interconnection 143

DRAFT (3/11/93): Distribution Restricted

selection is a distinguished piece of information on the screen, such as a range of text or a
graphic. The X window system provides a protocol for applications to claim ownership of
the selection and retrieve the contents of the selection from whichever application owns it.
Chapter 20 discusses the selection in more detail and describes Tk’s select command,
which is used to manipulate it.

At any given time, keystrokes typed for an application are directed to a particular
widget, regardless of the mouse cursor’s location. This widget is referred to as thefocus
widget or input focus. Chapter 21 describes thefocus command, which is used to move
the focus among the widgets of an application.

Chapter 22 describes Tk’s wm command, which is used for communicating with the
window manager. The window manager acts as a geometry manager for main windows
and top-level windows, and thewm command can be used to make specific geometry
requests from the window manager, such as “don’t let the user make this window smaller
than 20 pixels across.” In addition,wm can be used to specify a title to appear in the win-
dow’s decorative border, a title and/or icon to display when the window is iconified, and
many other things.

Chapter 23 describes thesend command, which provides a general-purpose means
of communication between applications. With send , you can issue an arbitrary Tcl com-
mand to any Tk application on the display; the command will be transmitted to the target
application, executed there, and the result will be returned to the original application.
Send allows one application to control another application in intimate and powerful
ways. For example, a debugger can send commands to an editor to highlight the current
line of execution, or a spreadsheet can send commands to a database application to
retrieve new values for cells in the spreadsheet, or a mail reader can send commands to a
video application to play a video clip identifying the sender of a message.

The last form of interconnection isgrabs, which are described in Chapter 24. A grab
restricts keyboard and mouse events so that they are only processed in a subtree of the
widget hierarchy; windows outside the grab subtree become lifeless until the grab is
released. Grabs are used to disable parts of an application and force the user to deal imme-
diately with a high-priority window such as a dialog box.

144 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

145

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 15
Tour Of The Tk Widgets

This chapter introduces the fifteen widget classes that are currently implemented by Tk.
The descriptions are not intended to explain every feature of every class; for that you
should refer to the reference documentation for the individual widget classes. In fact, no
specific Tk commands will be mentioned in this chapter. This chapter gives an overview
of the behavior of the widgets as seen by users and the features provided by the widgets to
interface designers. The purpose of this chapter is to provide you with general information
about the capabilities of Tk’s widgets so that it will be easier to understand the specific
commands described in later chapters.

The widget behavior described in this chapter is not hard-coded into the widgets.
Instead, Tk contains a startup script that generates default behaviors for the widgets using
the binding mechanism described in Chapter 19. The descriptions in this chapter corre-
spond to the default behaviors, and most widgets in most applications will use the default
behaviors. However, it is possible to extend or override the defaults, so some Tk applica-
tions may contain widgets that behave differently than described here.

If you have access to thewish program and the Tk demonstration scripts (both of
which are included in the Tk distributions) then you can experiment with real widgets as
you read through the chapter. To do this, execute thewidget demonstration script and
use the menus to bring up various examples.

15.1 Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting properties.
A frame appears as a rectangular region with a color and possibly a border that gives the

FIGURE 15

TABLE 15

146 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

frame a raised or sunken appearance as shown in Figure 15.1. Frames serve two purposes.
First, they can be used to generate decorations such as a block of color or a raised or
sunken border around a group of widgets. Second, they serve as containers for grouping
other widgets; most of the non-leaf widgets in the widget hierarchy are frames, and you’ll
see in Chapter 18 that frames are particularly important for building up nested layouts
with geometry managers. When used in this way, frames are often invisible to the user.
Frames do not normally respond to mouse or keyboard actions.

Toplevel widgets are identical to frames except that, as the name implies, they are
top-level widgets whereas frames (and almost all other widgets) are internal widgets. This
means that a toplevel widget can be positioned anywhere on its screen, independent of its
parent in the widget hierarchy, and it need not even appear on the same screen as its par-
ent. Toplevels are typically used as the outermost containers for panels and dialog boxes.
When you create a toplevel you can specify a screen for it to be displayed on.

15.2 Labels, buttons, checkbuttons, and radiobuttons

Labels, buttons, checkbuttons, and radiobuttons make up a family of widget classes with
similar characteristics. Each member of the family builds on the behavior of earlier mem-
bers. Labels are the simplest member of the family. They are similar to frames except that
each one can display a text string or a bitmap (see Figure 15.2). Like frames, labels do not
normally respond to the mouse or keyboard; they simply provide decoration in the form of
a text string or bitmap.

Buttons are similar to labels except that they also respond to the mouse. When the
mouse cursor moves over a button, the button lights up. This indicates that pressing a
mouse button will cause something to happen. It is a general property of Tk widgets that
they light up if the mouse cursor passes over them when they are prepared to respond to

Figure 15.1.Frame and toplevel widgets have no visual characteristics except for a color and an
optional three-dimensional border that can give the widget one of several appearances, such as
raised as in (a), flat as in (b), or sunken as in (c).

(a) (b) (c)

15.2 Labels, buttons, checkbuttons, and radiobuttons 147

DRAFT (3/11/93): Distribution Restricted

button presses. A button or other widget lit up in this way it is said to beactive. Buttons
become inactive again when the mouse cursor leaves them.

If mouse button 1 is pressed when a button is active then the button’s appearance
changes to make it look sunken, as if a real button had been pressed. When the mouse but-
ton is released, the widget’s original appearance is restored. Furthermore, when the mouse
button is released a Tcl script associated with the button is automatically executed. The
script is a configuration option for the button.

Checkbuttons allow users to make binary choices such as enabling or disabling under-
lining or grid-alignment. They are similar to regular buttons except for two things. First,
whenever mouse button 1 is clicked over a checkbutton a Tcl variable toggles between two
values, one representing an “on” state and the other representing an “off” state. The name
of the variable and the values corresponding to the “on” and “off” states are configuration
options for the widget. Second, the checkbutton displays a small rectangularselector to
the left of its text or bitmap. If the variable has the “on” value then the selector is displayed
in a bright color and the button is said to beselected. If the variable has the “off” value
then the selector box appears empty. Each checkbutton monitors the value of its associated
variable and if the variable’s value changes (e.g. because of aset command) the check-
button updates the selector display.

The last member of the label/button family is the radiobutton class. Radiobuttons are
typically arranged in groups and used to select one from among several mutually-exclu-
sive choices, such as one of several colors or one of several styles of dashed lines.
Radiobuttons are named after the radio selector buttons on older cars, where pressing the
button for one station caused all the other buttons to be released. When mouse button 1 is

Figure 15.2.Members of the label/button family of widgets. Two labels are shown in (a); the top
one displays a bitmap and the bottom one displays a text string. Figure (b) shows a button widget.
Three checkbuttons appear in (c); any combination of the checkbuttons may be selected at once. A
group of three radiobuttons appears in (d); only one of the radiobuttons may be selected at anygiven
time. Although a bitmap only appears in (a), any of the classes can display a bitmap as well as a
string.

(a) (b) (c) (d)

148 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

clicked over a radiobutton, the widget sets the variable to the “on” value associated with
that radiobutton. All of the radiobuttons in a group will share the same variable but each
will have a different “on” value. A radiobutton displays a diamond-shaped selector to the
left of its text or bitmap and lights up the selector when the widget is selected. Each
radiobutton monitors its variable so if some other radiobutton resets the variable to select
itself the previously-selected widget can turn off its selector diamond. If you change the
value of the variable using the Tcl set command then all of the associated radiobuttons
will redisplay their selectors to match the new value of the variable.

The members of the label/button family also have two additional features. First, you
can specify that the string to be displayed in the widget should be taken from a Tcl vari-
able. The widget will monitor the variable and update its display to reflect the current con-
tents of the variable. Second, you candisable the widget. While a widget is disabled it is
displayed in dimmer colors, it doesn’t activate when the mouse cursor passes over it, and it
doesn’t respond to button presses.

15.3 Menus and menubuttons

Tk’s menu widget provides a general-purpose facility for implementing pull-down menus,
pop-up menus, cascading menus, and many other things. A menu is a top-level widget that
contains a collection ofentries arranged in a column (see Figure 15.3(a)). Menu entries
are not distinct widgets but they behave much like the members of the label/button family
described in Section 15.2 above. The following types of entries may be used in menus:

Command: similar to a button widget. Displays a textual string or bitmap and invokes
a Tcl script when mouse button 1 is released over it.

Checkbutton: similar to a checkbutton widget. Displays a string or bitmap and toggles
a variable between “on” and “off” values when button 1 is released over the entry. Also
displays a square selector indicating whether the variable is currently in its “on” or
“off” state.

Radiobutton: similar to a radiobutton widget. Displays a string or bitmap and sets a
variable to an “on” value associated with the enry when button 1 is released over it.
Also displays a diamond-shaped selector indicating whether or not the variable has the
value for this entry.

Cascade: similar to a menubutton widget. Posts a cascaded sub-menu when the mouse
passes over it. See below for more details.

Separator: Displays a horizontal line for decoration. Does not respond to the mouse.
Unlike most other widgets, menus do not normally appear on the screen. They spend

most of their time in an invisible state calledunposted. When a user wants to invoke a
menu entry, he or sheposts the menu, which makes it appear on the screen. Then the user
moves the mouse over the desired entry and releases button 1 to invoke that entry. Once

15.3 Menus and menubuttons 149

DRAFT (3/11/93): Distribution Restricted

the menu has been invoked it is usually unposted until it is needed again. Menus are
posted or unposted by invoking their widget commands, which gives the interface

Figure 15.3.Examples of menus. Figure (a) shows a single menu with three checkbutton entries,
three radiobutton entries, and two command entries. The groups of entries are separated by separator
entries. Figure (b) shows the menu being used in pull-down fashion with a menu bar and several
menubutton widgets. Figure (c) shows a cascaded series of menus; cascade entries in the parent
(leftmost) menu display => at their right edges, and theLine Width entry is currently active.
Figure (d) contains a menu that supports keyboard traversal and shortcuts. The underlined characters
in the menubuttons and menu entries can be used to invoke them from the keyboard, and the key
sequences at the right sides of some of the menu entries (such asCtrl+X) can be used to invoke the
same functions as menu entries without even posting the menu.

(a) (b)

(d)(c)

150 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

designer a lot of flexibility in deciding when to post and unpost them. The subsections
below describe four of the most common approaches.

15.3.1 Pull-down menus

Menus are most commonly used in apull-down style. In this style the application displays
amenu bar near the top of its main window. A menu bar is a frame widget that contains
several menubutton widgets as shown in Figure 15.3(b). Menubuttons are similar to but-
ton widgets except that instead of executing Tcl scripts when they are invoked they post
menu widgets. When a user presses mouse button 1 over a menubutton it posts its associ-
ated menu underneath the menubutton widget. Then the user can slide the mouse down
over the menu with the button still down and release the mouse button over the desired
entry. When the button is released the menu entry is invoked and the menu is unposted.
The user can release the mouse button outside the menu to unpost it without invoking any
entry.

If the user releases the mouse button over the menubutton then the menu stays posted
and the user will not be able to do anything else with the application until the menu is
unposted either by clicking on one of its entries (which invokes that entry and unposts the
menu) or clicking outside of the menu (which unposts the menu without invoking any
entry). Situations like this where a user must respond to a particular part of an application
and cannot do anything with the rest of the application until responding are calledmodal
user interface elements. Menus and dialog boxes are examples of modal interface ele-
ments. Modal interface elements are implemented using the grab mechanism described in
Chapter 24.

15.3.2 Pop-up menus

The second common style of menu usage is calledpop-up menus. In this approach, press-
ing one of the mouse buttons in a particular widget causes a menu to post next to the
mouse cursor and the user can slide the mouse over the desired entry and release it there to
invoke the entry and unpost the menu. As with pull-down menus, releasing the mouse but-
ton outside the menu causes it to unpost without invoking any of its entries.

15.3.3 Cascaded menus

The third commonly used approach to posting menus is calledcascaded menus. Cascaded
menus are implemented using cascade menu entries in other menus, such as pull-down
and pop-up menus. Each cascade menu entry is similar to a menubutton in that it is associ-
ated with a menu widget. When the mouse cursor passes over the cascade entry, its associ-
ated menu is posted just to the right of the cascade entry, as shown in Figure 15.3(c). The
user can then slide the mouse to the right onto the cascaded menu and select an entry in the
cascaded menu. Menus can be cascaded to any depth.

15.4 Listboxes 151

DRAFT (3/11/93): Distribution Restricted

15.3.4 Keyboard traversal and accelerators

Pull-down menus can also be posted from the keyboard using a technique calledkeyboard
traversal. One of the letters in each menubutton is underlined to indicate that it is the tra-
versal character for that menubutton. If that letter is typed while holding theAlt key
down then the menubutton’s menu will be posted. Once a menu has been posted the arrow
keys can be used to move among the menus and their entries. The left and right arrow keys
move left or right among the menubuttons, unposting the menu for the previous menubut-
ton and posting the menu for the new one. The up and down keys move among the entries
in a menu, activating the next higher or lower entry. TheReturn key can be used to
invoke the active menu entry. In addition, the labels in menu entries are typically drawn
with one character underlined; if this character is typed when the menu is posted then the
entry is invoked immediately.

Lastly, in many cases it is possible to invoke the function of a menu entry without
even posting the menu by typingkeyboard shortcuts. If there is a shortcut for a menu entry
then the keystroke for the shortcut will be displayed at the right side of the menu entry
(e.g.Ctrl+X is displayed in theDelete menu entry in Figure 15.3(d)). This key combi-
nation may be typed in the application to invoke the same function as the menu entry (e.g.
typex while holding theControl key down to invoke theDelete operation without
going through the menu).

15.4 Listboxes

A listbox is a widget that allows the user to select one or more possibilities from a range of
alternatives, such as a file name from those in the current directory or a color from a data-
base of defined colors. A listbox contains one or more entries, each of which displays a
one-line string as shown in Figure 15.4. The widget commands for listboxes allow entries
to be created, destroyed, and queried.

If there are more entries than there are lines in the listbox’s window then only a few of
them are displayed at a time; the user can control which portion is displayed by using a
separate scrollbar widget associated with the listbox (see Section 15.6). The view in a list-
box can also be controlled by pressing mouse button 2 in the widget and dragging up or
down. This is calledscanning: it has the effect of dragging the listbox contents past the
window at high speed. Most Tk widgets that support scrollbars also support scanning. If
the strings in the listbox are too long to fit in the window then the listbox can also be
scrolled and scanned in the horizontal direction.

Typically listboxes are configured so that the user can select an entry by clicking on it
with mouse button 1. In some cases the user can also select a range of entries by pressing
and dragging with button 1. Selected entries appear in a different color and usually have a
raised 3-D effect. Once the desired entries have been selected, the user will typically use
those entries by invoking another widget, such as a button widget or menu entry. For

152 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

example, the user might select one or more file names from a listbox and then click on a
button widget to delete the selected files; the Tcl command associated with the button wid-
get can read out the strings from the selected listbox entries. It’s also common for listboxes
to support double-clicking, which both selects an entry and invokes some operation on it.
For example, in a file-open dialog box, double-clicking on a file name might cause that
file to be opened by the application.

15.5 Entries

An entry is a widget that allows the user to type in and edit a one-line text string. For
example, if a document is being saved to disk for the first time then the user will have to
provide a file name to use. The user might type the file name in an entry widget, then click
on a button widget whose Tcl command retrieves the file name from the entry and saves
the document in that file. Figure 15.5 shows an example of an entry widget.

To enter text into an entry the user clicks mouse button 1 in the entry. This makes a
blinking vertical bar appear, called theinsertion cursor. The user can then type characters

Figure 15.4.An example of a listbox widget displaying the names of all the states in the U.S.A.
Only a few of the entries are visible in the window at one time. TheOhio entry is selected.

Figure 15.5.An example of an entry widget. The vertical bar is the insertion cursor ,which
identifies the point at which new text will be inserted.

15.6 Scrollbars 153

DRAFT (3/11/93): Distribution Restricted

and they will be inserted into the entry at the point of the insertion cursor. The insertion
cursor can be moved by clicking anywhere in the entry’s text. Text in an entry can be
selected by pressing and dragging with mouse button 1, and it can be edited with a variety
of keyboard actions; see the reference documentation for details.

If the text for an entry is too long to fit in its window then only a portion of it is dis-
played and the view can be adjusted using an associated scrollbar widget or by scanning
with mouse button 2. Entries can be disabled so that no insertion cursor will appear and
the text in the entry cannot be modified. The text in an entry can be associated with a Tcl
variable so that changes to the variable are reflected in the entry and changes made in the
entry are reflected in the variable.

15.6 Scrollbars

Scrollbar widgets are used to control what is displayed in other widgets. Each scrollbar is
associated with some other widget such as a listbox or entry. The scrollbar is typically dis-
played next to the other widget and when the user clicks and drags on the scrollbar the
view in the associated widget will change. A scrollbar appears as shown in Figure 15.6
with an arrow at each end and a slider in the middle. The size and position of the slider
correspond to the portion of the associated widget’s document that is currently visible in
its window. For example, if the slider covers the rightmost 20% of the region between the
two arrows as in Figure 15.6 it means that the rightmost 20% of the document is visible in
the window. Scrollbars can be oriented either vertically or horizontally.

Users can adjust the view by clicking mouse button 1 on the arrows, which moves the
view a small amount in the direction of the arrow, or by clicking in the empty space on
either side of the slider, which moves the view by one screenful in that direction. The view
can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget using Tcl scripts. One of a scrollbar’s
configuration options is a Tcl script to invoke to change the view; typically this script
invokes the widget command for the associated widget. When the user manipulates the

Figure 15.6.A horizontal scrollbar widget. The rectangular slider indicates how much of the
document in an associated widget is visible in its window (in this case the rightmost 20% is visible).
The user can adjust the view in the associated widget by dragging the slider with mouse button 1 or
by clicking on the arrows or the slider region.

154 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

scrollbar, the scrollbar invokes the script, including additional information about the new
view that the user requested. The associated widget changes its view and then invokes
another Tcl script (one of its configuration options) that tells the scrollbar exactly what
information is now displayed in the window, so the scrollbar can display the slider cor-
rectly. The scrollbar doesn’t update its slider until told to do so by the associated widget;
this makes it possible for the associated widget to reject or modify the user’s request (e.g.
to prevent the user from scrolling past the ends of the information in the widget).

15.7 Text

A text widget is similar to an entry except that it allows the text to span more than one line
(see Figure 15.7 for an example). Text widgets are optimized to handle large amounts of
text, such as files containing thousands of lines. As with entries, the user can click mouse
button 1 to set the insertion cursor and then type new information into a text. Information
in a text widget can be selected with the mouse just as for entries, and a number of mouse
and keyboard actions are defined to assist in editing (see the reference documentation for
details). Text widgets support scrolling and scanning, and they can be disabled to tempo-
rarily prevent edits.

In addition to the basic features described above, text widgets support three kinds of
annotations on the text: marks, tags and embedded widgets. A mark associates a name

Figure 15.7.An example of a text widget. This widget displays the contents of a structure as part of
a symbolic debugger. Tags are used to display field names in bold and to underline the name of the
structure.

15.8 Canvases 155

DRAFT (3/11/93): Distribution Restricted

with a particular position in the text (the gap between two adjacent characters). Marks are
used to keep track of interesting locations in the text as characters are added and deleted.

A tag is a string that is associated with ranges of characters in a text widget. Each tag
may be associated with any number of ranges of characters in the text, and the ranges of
different tags may overlap. Tags are different from marks in that they are associated with
particular characters, so they disappear when the characters are deleted. Tags are used for
two purposes in texts: formatting and binding.

Each tag may contain formatting information such as background and foreground col-
ors, font, and stippling and underlining information. If a character has been tagged then
the formatting information in the tag overrides the default formatting information for the
widget as a whole. This makes it possible to display text with multiple fonts and colors. In
addition, the formatting information for a tag can be changed at any time. For example,
you can apply a tag to all instances of a particular word in the text, then modify the tag’s
formatting information to make the words blink on and off.

The second use of tags is forbindings. A binding specifies a Tcl script to be invoked
when certain events occur; each tag may have one or more bindings associated with it. For
example, you can arrange for a script to be invoked whenever the mouse cursor passes
over text with a particular tag, or whenever a mouse button is clicked over a particular
item (see Chapter 19 for more information on bindings). This can be used to produce
hypertext effects such as displaying a figure whenever the user clicks on the name of the
figure in a text widget.

The third form of annotation in texts consists of embedded widgets. It is possible to
embed other widgets in a text so that the other widgets are displayed at particular positions
in the text. For example, you can arrange for a button widget to appear in a text widget as
another way of getting hypertext-like capabilities, or you can embed canvas widgets to
include figures inside texts, and so on.

Note: Embedded widgets are not supported in Tk version 3.2.
Text annotations allow you to configure a given text widget in a variety of interesting

ways, so different text widgets may have very different behavior. For example, a file editor
might use a text widget to display an entire file in a single font with no special formatting
or bindings. In contrast, a debugger might use a text widget to display a structure as shown
in Figure 15.7, where the names of the structure’s fields are formatted differently than their
values and bindings are set up so that the user can click on fields to open new windows on
the structures pointed to by the fields.

15.8 Canvases

A canvas is a widget that displays a drawing surface and any number of graphical and tex-
tual items. The items can include rectangles, ellipses, arcs, lines, curves, polygons, cur-
vagons, editable text, bitmaps, and embedded widgets. See Figure 15.8 for examples.

156 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

Items can be created and deleted at any time, and their display attributes (such as line
width and color) can also be modified dynamically. Items can be moved and scaled but
rotations are not currently supported.

Canvases also provide a tagging mechanism similar to the tags in text widgets. Each
item may have any number of textual tags associated with it. Tags serve two purposes in
canvases. First, they make it easy to operate on groups of items all at once; for example, in
a single command you can move or delete or recolor all items with a given tag. Second,
tags can have bindings associated with them just as in texts. This allows you to achieve

Figure 15.8.Canvas widget examples. Figure (a) shows a ruler with a tab well to the right. The
user can create new tab stops by pressing mouse button 1 in the tab well and dragging out a new tab
stop. Four existing tab stops appear underneath the ruler; they can be repositioned by dragging them
with the mouse. Figure (b) shows an editor for arrowhead shapes. The user can edit the arrowhead
shape and line width by dragging the three small squares attached to the oversized arrow. Changes to
this shape are reflected in the normal-size arrows on the right side of the canvas, in the dimensions
displayed next to the oversize arrow, and in the configuration option strings in the bottom left corner.

(a)

(b)

15.9 Scales 157

DRAFT (3/11/93): Distribution Restricted

hypergraphic effects such as invoking some operation whenever a mouse button is clicked
over an item, or allowing some items to be dragged with the mouse.

As with texts, the features provided by canvases are flexible enough to achieve many
different effects, so different canvases may appear and behave very differently. Canvases
can be used to provide non-interactive graphical displays, such as pie-charts or figures, or
they can be used to create new kinds of editors and interactive widgets.

15.9 Scales

A scale is a widget that displays a numerical value and allows the user to edit the value
(see Figure 15.9). A scale widget appears as a linear scale with optional numerical labels
and a slider that shows the current value. The user can adjust the value by clicking mouse
button 1 in the scale or by dragging the slider with mouse button 1. Each scale can be con-
figured with a Tcl script to invoke whenever its value changes; the script can propagate the
new value to other parts of the application. For example, three scales might be used to edit
the hue, saturation, and intensity values for a color; as the user modifies the scale values,
the new values can be used to update the color for an item in a canvas so that the item is
always displayed in the color selected by the scales.

15.10 Messages

A message widget displays a multi-line string of text like the one shown in Figure 15.10.
Messages are less powerful than texts (e.g. they don’t allow their text to be selected or
edited, they don’t provide annotations, they don’t support scrolling, and they don’t handle
large amounts of text efficiently), but they are simpler to create and configure. Messages
are typically used for simple things like multi-line messages in dialog boxes.

Figure 15.9.A scale widget. The scale’s value can be adjusted by dragging the slider with the
mouse.

158 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

Figure 15.10.A message widget displays a string, breaking it into multiple lines if necessary.
Messages provide little other functionality (e.g. no edit capability).

159

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 16
Configuration Options

Most of the state of a widget exists as a set ofconfiguration options for the widget. For
example, the colors and font and text for a button widget are configuration options, as is
the Tcl script to invoke when the user clicks on the button. Each configuration option has a
name (e.g.,-relief) and a value (e.g.raised). Widgets typically have 15-30 configu-
ration options. For widgets such as texts and canvases that have complex internal struc-
tures, the configuration options don’t provide complete access to the internal structures;
special widget commands exist for this purpose. However, state that is shared among all
the objects in the internal structures (such as a default font for text widgets) is still repre-
sented as configuration options.

This chapter describes Tk’s mechanisms for dealing with configuration options. Sec-
tion 16.1 gives an overview of how the values of options are set. Sections 16.2-16.11
describe some of the common configuration options that are used in the Tk widget set.
Finally, Sections 16.12 and 16.13 explain theconf igure widget command and the
option database in more detail. Table 16.1 summarizes the commands for manipulating
configuration options. For a complete list of the options available for a given class, see the
reference documentation for the command that creates widgets of that class (e.g. thebut-
ton command)

16.1 How options are set

Configuration options may be specified in four ways. First, you can specify configura-
tion options in the command that creates a widget. For example, the command

FIGURE 16

TABLE 16

160 Configuration Options

DRAFT (3/11/93): Distribution Restricted

button .help -text Help -foreground red

creates a new button widget and specifies the-text and-foreground options for it.
Every widget creation command has this form, where the command name is the name of
the widget class, the first argument is the name of the new widget in the Tk widget hierar-
chy, and additional arguments (if any) are name-value pairs specifying options.

The second way to specify configuration options is through theoption database. If no
value is given for a configuration option on the command line that creates a widget, then
Tk checks the option database to see if a value has been specified for the option. The
option database is similar to the resource database in other X toolkits. It allows users to
specify values for options in theRESOURCE_MANAGER property on the root window or

Table 16.1.The commands for manipulating widget configuration options.

class window ?optionName value optionName value ...?
Create a new widget with classclass and path namewindow, and set
options for the new widget as given byoptionName-value pairs.
Unspecified options are filled in using the option database or widget defaults.
Returnswindow as result.

window conf ig
Returns a list whose elements are sublists describing all of the options for
window. Each sublist describes one option in the form described below.

window conf ig optionName
Returns a list describing optionoptionName for window. The list will
normally contain five values:optionName, the option’s name in the option
database, its class, its default value, and its current value. If the option is a
synonym for another option, then the list contains two values: the option
name and the database name for the synonym.

window conf ig optionName value
Set the value for optionoptionName of window to value.

option add pattern value ?priority?
Add a new option to the option database as specified bypattern and
value. Priority must be either a number between0 and100 or a sym-
bolic name (see the reference documentation for details on symbolic names).

option clear
Remove all entries from the option database.

option get window name class
If the option database contains a pattern that matcheswindow, name, and
class, return the value for the highest priority matching pattern. Otherwise
return an empty string.

option readf ile fileName ?priority?
ReadfileName, which must have the standard format for a.Xdefaults
file, and add all the options specified in that file to the option database at pri-
ority levelpriority.

16.2 Colors 161

DRAFT (3/11/93): Distribution Restricted

in a.Xdefaults file. Entries in the database can contain wildcard characters so that, for
example, a single entry in the option database can set the background color for all buttons
to blue. See Section 16.13 for more information on the option database.

The third way that configuration options are specified is through default values for
each widget class. Class defaults are used for options that aren’t specified in the widget
creation command and aren’t defined in the option database. The class defaults are
intended to produce a reasonable effect so that you don’t need to specify most options
either on the command line or in the option database. The class defaults are compiled into
the Tk library so you can’t change them without recompiling Tk, but you can always over-
ride them with values in the option database.

The final way to specify configuration options for a widget is with itsconf igure
widget command. Every widget class supports aconf igure widget command. For
example, the following command changes the text in the button widget created above and
also specifies a Tcl script to invoke when the user clicks on the widget:

.help conf igure -text Quit -command exit

Theconf igure widget command allows you to change the configuration options for a
widget at any time and it also allows you to query the current state of the configuration
options (see Section 16.12 for details on this).

16.2 Colors

Although each widget class defines its own set of configuration options, the options tend
to be used in a consistent fashion by different classes. This section and the ones that follow
provide an overview of the most common options. These options have the same names
and legal values in many different widget classes.

The most common options are those for specifying colors. Every widget class sup-
ports a-background option, which determines the background color of the widget and
is also used to compute the light and dark shadows if there is a 3D border drawn around
the widget. Nearly every widget class also supports a-foreground option, which is
used when displaying text and graphics in the widget. Table 16.2 lists all of the common
color options.

Color values may be specified either symbolically or numerically. A symbolic color
value is a name such aswhite or red or SeaGreen2 . The valid color names are
defined in a file namedrgb.txt in your X library directory. Common names such as
black andwhite andred should be defined in every X environment, but names like
SeaGreen2 might not be available everywhere. Color names are not case-sensitive:
black is the same asBlack or bLaCk .

Colors can also be specified numerically in terms of their red, green, and blue compo-
nents. Four forms are available, in which the components are specified with 4-bit, 8-bit,
12-bit, or 16-bit vales:

162 Configuration Options

DRAFT (3/11/93): Distribution Restricted

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

EachR, G, orB in the above examples represents one hexadecimal digit of red, green, or
blue intensity, respectively. The first character of the specification must be #, and the same
number of digits must be provided for each component. If fewer than 16 bits are given for
the color components, they represent the most significant bits of the values. For example,
#3a7 is equivalent to#3000a0007000 . A value of all ones represents “full on” for that
color, and a value of zero represents “off.” Thus#000 is black,#f00 is red,#ff0 is yel-
low, and#fff is white.

If you specify a color other than black or white for a monochrome display, then Tk
will use black or white instead, depending on the overall intensity of the color you
requested. Furthermore, if you are using a color display and all of the entries in its color
map are in use (e.g. because you’re displaying a complex image on the screen) then Tk
will treat the display as if it were monochrome.

Table 16.2.Commonly-used color options. The left column gives the name of the option as
specified in widget creation commands andconf igure widget commands. The right column
describes how the option is used.

Name on
Command Line

Usage

-background Background areas of widgets.

-foreground Text and graphics.

-activebackground Background color when widget is active (mouse
cursor is over widget and pressing a mouse button
will invoke some action).

-activeforeground Foreground color when widget is active.

-selectbackground Background color for areas occupied by selected
information within widget.

-selectforeground Foreground color for selected text and graphics.

-insertbackground Color for insertion cursor.

-disabledforeground Foreground color when widget has been disabled.

16.3 Screen distances 163

DRAFT (3/11/93): Distribution Restricted

16.3 Screen distances

Several options are used to specify distances on the screen. The most common of these
options is-borderwidth , which determines the width of the 3D border drawn around a
widget. Every widget class supports the-borderwidth option. Table 16.3 lists several
other common distance options.

Ultimately, each distance option must reduce to a distance in screen pixels. However,
Tk allows distances to be specified either in pixels or in absolute units that are independent
of the screen resolution. A distance is specified as an integer or floating-point value fol-
lowed optionally by a single character giving the units. If no unit specifier is given then the
units are pixels. Otherwise the unit specifier must be one of the following characters:

c centimeters
i inches
m millimeters
p printer’s points (1/72 inch)

Table 16.3.Common options for specifying distances. The left column gives the name of the
option as specified in widget creation commands andconf igure widget commands. The right
column describes how the option is used.

Name on
Command Line

Usage

-borderwidth Width of 3D border drawn around widget.

-activeborderwidth Width of 3D border drawn around active elements
within widget.

-selectborderwidth Width of 3D border drawn around selected text.

-insertwidth Total width of insertion cursor including its border,
if any.

-insertborderwidth Width of 3D border for insertion cursor.

-padx Additional space to leave on left and right sides of
information displayed in widget.

-pady Additional space to leave above and below infor-
mation displayed in widget.

164 Configuration Options

DRAFT (3/11/93): Distribution Restricted

For example, a distance specified as2.2c will be rounded to the number of pixels that
most closely approximates 2.2 centimeters; this may be a different number of pixels on
different screens.

16.4 Reliefs

Every widget class supports an option named-relief , which determines the three-
dimensional appearance of the widget. The option must have one of the valuesraised ,
f lat , sunken , ridge , orgroove . Figure 16.1 illustrates the effect produced by each
value. Tk draws widget borders with combinations of light and dark shadows to produce
the different effects. For example, if a widget’s relief israised then Tk draws the top
and left borders in a lighter color than the widget’s background and it drawns the lower
and right borders in a darker color. This makes the widget appear to protrude from the
screen.

The width of a widget’s 3D border is determined by its-borderwidth option. If
the border width is 0 then the widget will appear flat regardless of its-relie f option.

16.5 Fonts

The-font option is used to specify a font for widgets that display text, such as buttons,
listboxes, entries, and texts. Tk uses standard X font names, which are illustrated in Figure
16.2 The name of a font consists of twelve fields separated by hyphens. The fields have the
following meanings:

foundry The type foundry that supplied the font data.
family Identifies a group of fonts with a similar typeface design.

raised grooveridgesunkenf lat

Figure 16.1.The three-dimensional effects produced by different values for the-relief option.

16.5 Fonts 165

DRAFT (3/11/93): Distribution Restricted

When-font values you can use* and? wildcards:? matches any single character in a
font name, and* matches any group of characters. For example, the font name

-times-medium-r-normal---100-*

requests a 10-point Times Roman font in a medium (normal) weight and normal width. It
specifies “don’t care” for the foundry, the pixel size, and all fields after the point size. If
multiple fonts match this pattern then the X server will pick one of them. I recommend
specifying the point size for fonts but not the pixel size, so that characters will be the same
size regardless of the display resolution.

weight Typographic weight of font, such asmedium, normal , or
bold .

slant Posture of font, such asr for roman or upright,i for italic, or
o for oblique.

set width Proportionate width of font, such asnormal or con-
densed or narrow .

pixels Size of font in pixels.
points Size of font in tenths of points, assuming screen has x-res and

y-res specified for font.
x-res Horizontal resolution of screen for which font was designed,

in dots per inch.
y-res Vertical resolution of screen for which font was designed, in

dots per inch.
spacing Escapement class of font, such asm for monospace (fixed-

width) orp for proportional (variable-width).
width Average width of characters in font, in tenths of pixels.
char. set Character set that identifies the encoding of characters in the

font.

foundry

family

weight

slant

set width

pixels

points

x-res

y-res

spacing

width

char. set

Figure 16.2.The fields of an X font name.

-adobe- times -bold- r -normal- -18- 180-75- 75-p- 99- iso8859-1

166 Configuration Options

DRAFT (3/11/93): Distribution Restricted

16.6 Bitmaps

Many widgets, such as labels and menubuttons, can displaybitmaps. A bitmap is an image
with two colors, foreground and background. Bitmaps are specified using the- bitmap
option, whose values may have two forms. If the first character of the value is@ then the
remainder of the value is the name of a file containing a bitmap in the standard X11 bitmap
file format. Such files are generated by thebitmap program, among others. Thus
“ - bitmap @face.bit ” specifies a bitmap contained in the fileface.bit .

If the first character of the value isn’t @ then the value must be the name of a bitmap
defined internally. Tk defines several internal bitmaps itself (see Figure 16.3) and individ-
ual applications may define additional ones.

The-bitmap option only determines the pattern of 1’s and 0’s that make up the bit-
map. The foreground and background colors used to display the bitmap are determined by
other options (typically-foreground and-background). This means that the same
bitmap can appear in different colors at different places in an application, or the colors of a
given bitmap may be changed by modifying the options that determine them.

16.7 Cursors

Every widget class in Tk supports a-cursor option, which determines the image to dis-
play in the mouse cursor when it is over that widget. If the-cursor option isn’t speci-
fied or if its value is an empty string then the widget will use its parent’s cursor. Otherwise
the value of the-cursor option must be a proper Tcl list with one of the following
forms:

name fgColor bgColor
name fgColor

Figure 16.3.Bitmaps defined internally by Tk.

error gray25 gray50 hourglass

info questhead question warning

16.8 Anchors 167

DRAFT (3/11/93): Distribution Restricted

name
@sourceFile maskFile fgColor bgColor
@sourceFile fgColor

In the first three formsname refers to one of the cursors in the standard X cursor font. You
can find a complete list of all the legal names in the X include filecursorfont.h . The
names in that file all start withXC_, such asXC_arrow or XC_hand2; when using one
of these names in a-cursor option, omit theXC_, e.g.arrow or hand2 . Most of the
Xlib reference manuals also include a table showing the names and images of all the cur-
sors in the X cursor font; for example, see Appendix B ofX Window System: The Com-
plete Reference to Xlib, X Protocol, ICCM, and XLFD, by Scheifler and Gettys, Second
Edition. If name is followed by two additional list elements as in the following widget
command:

.f conf ig -cursor {arrow red white}

then the second and third elements give the foreground and background colors to use for
the cursor; as with all color values, they may have any of the forms described in Section
16.2. If only one color value is supplied then it gives the foreground color for the cursor;
the background will be transparent. If no color values are given then black will be used for
the foreground and white for the background.

If the first character in the-cursor value is@ then the image(s) for the cursor are
taken from files in bitmap format rather than the X cursor font. If two file names and two
colors are specified for the value, as in the following widget command:

.f conf ig -cursor {@cursors/bits cursors/mask red white}

then the first file is a bitmap that contains the cursor’s pattern (1’s represent foreground
and 0’s background) and the second file is a mask bitmap. The cursor will be transparent
everywhere that the mask bitmap has a 0 value; it will display the foreground or back-
ground wherever the mask is 1. If only one file name and one color are specified then the
cursor will have a transparent background.

16.8 Anchors

An anchor position indicates how to attach one object to another. For example, if the win-
dow for a button widget is larger than needed for the widget’s text, a- anchor option
may be specified to indicate where the text should be positioned in the window. Anchor
positions are also used for other purposes, such as telling a canvas widget where to posi-
tion a bitmap relative to a point or telling the packer geometry manager where to position
a window in its frame.

Anchor positions are specified using one of the following points of the compass:

n Center of object’s top side.
ne Top right corner of object.

168 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The anchor position specifiesthe point on the object by which it is to be attached, as if a
push-pin were stuck through the object at that point and then used to pin the object some-
place. For example, if a-anchor option ofw is specified for a button, it means that the
button’s text or bitmap is to be attached by the center of its left side, and that point will be
positioned over the corresponding point in the window. Thusw means that the text or bit-
map will be centered vertically and aligned with the left edge of the window. For bitmap
items in canvas widgets, the-anchor option indicates where the bitmap should be posi-
tioned relative to a point associated with the item; in this case,w means that the center of
the bitmap’s left side should be positioned over the point, so that the bitmap actually lies to
the east of the point. Figure 16.4 illustrates these uses of anchor positions.

e Center of object’s right side.
se Lower right corner of object.
s Center of object’s bottom side.
sw Lower left corner of object.
w Center of object’s left side.
nw Top left corner of object.
center Center of object.

Figure 16.4.Examples of anchor positions used for button widgets and for bitmap items within
canvases. Figure (a) shows a button widget with text anchoredw, and (b) shows the same widget
with an anchor position ofne . Figure(c) shows a canvas containing a bitmap with an anchor
position ofw relative to its point (the point appears as a cross, even though it wouldn’t appear in
an actual canvas). Figure (d) shows the same bitmap item with an anchor point ofne .

(a) (b)

(c) (d)

16.9 Script options and scrolling 169

DRAFT (3/11/93): Distribution Restricted

16.9 Script options and scrolling

Script options are used in many places in Tk widgets. The most common usage is for wid-
gets like buttons and menus that are supposed to take action when invoked by the user.
This is handled by specifying a Tcl script as a configuration option for the widget. For
example, button widgets support a-command option, which should contain a Tcl script.
When the user invokes the widget by clicking over it with the mouse button, the widget
causes the script to be executed. Similarly, each entry in a menu widget has a script associ-
ated with it, which is executed when the user invokes the menu entry.

Script options are also used for communicating between widgets. Typically, one wid-
get will be configured withpart of a Tcl command (e.g. the name of another widget’s wid-
get command and the first argument to that command). At appropriate times, the widget
will invoke the command. Before invoking the command the widget will augment it with
additional information that is relevant to the specific invocation. The best example of this
is the communication between scrollbars and other widgets, which is described in the rest
of this section.

When a scrollbar is associated with another widget and used to change its view, the
communication between the scrollbar and the associated widget is controlled by two
options, one for the associated widget and one for the scrollbar. In normal usage, each of
these options invokes a widget command for the other widget.

The associated widget must inform the scrollbar about what it is currently displaying,
so that the scrollbar can display the slider in the correct position. To do this, the scrollbar
provides a widget command of the following form:

window set totalUnits windowUnits first last

Window is the name of the scrollbar widget (i.e. the name of the widget command for the
scrollbar).TotalUnits indicates the total size of the information being displayed in the
associated widget in the dimension being scrolled, such as the number of lines in a listbox
or the number of characters in a text entry. WindowUnits indicates how much of the
information can be displayed in the widget at one time given the current size of its win-
dow, andfirst andlast give the indices of the top and bottom elements currently vis-
ible in the widget’s window (for horizontal scrollbarsfirst andlast refer to the
leftmost and rightmost visible elements).

The associated widget invokes the scrollbar’s set command whenever information
of interest to the scrollbar changes in the widget. To do this, scrollable widgets provide a
- xScrollCommand option if they support horizontal scrolling and a
- yScrollCommand option if they support vertical scrolling. For example, a listbox
might be created with a vertical scrollbar using the following commands:

listbox .l -yscrollcommand {.vscroll set}
scrollbar .vscroll -orient vertical
pack .l -side left
pack .vscroll -side right

170 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The value of the-yscrollcommand option is a Tcl command prefix. When the view in
the listbox changes (e.g. because elements were deleted), the listbox takes the value of the
- yscrollcommand option (“.vscroll set ” in this case) and appends four integer
values corresponding the thetotalUnits , windowUnits , f irst , andlast argu-
ments described above. This will produce a Tcl command such as

.vscroll set 100 20 38 57

Then the listbox invokes the command, which causes the scrollbar to redraw its slider to
reflect the new view. If horizontal scrolling is desired for the listbox as well, an additional
scrollbar could be created and a-xscrollcommand option could be specified for the
listbox.

A similar form of communication is used by the scrollbar to notify the associated wid-
get when the user manipulates the scrollbar to request a new view. Each scrollbar provides
a- command option, which specifies a Tcl command prefix for communicating new views
to the associated widget. It can be set for the.vscroll widget above using the follow-
ing command:

.vscroll conf ig -command {.l yview}

Then when the user clicks in the scrollbar to change the view the scrollbar takes the
- command option and appends the index of the element that should now appear at the top
of the window. The result is a command like the following:

.l yview 39

The scrollbar widget then invokes this command. Listboxes and other widgets that support
scrolling provide ayview widget command with exactly the above syntax that causes the
widget to adjust its view. After adjusting its view, the listbox uses its-yscrollcom-
mand option to notify the scrollbar of the new view so the scrollbar can redraw its slider.

This scheme has the advantage that neither widget needs any built-in information
about the other; both the name of the other widget and the widget command to invoke are
provided with options that can be configured by the application designer. In fact, the com-
mand options need not even correspond to widget commands. For example, a single
scrollbar could be made to control two widgets simultaneously by using a Tcl procedure
name as its-command option:

.vscroll conf ig -command scrollProc
proc scrollProc index {

.l yview $index

.l2 yview $index
}

Then the commands invoked by the scrollbar will look like

scrollProc 39

andscrollProc will invoke yview widget commands in each of the two associated
widgets.

16.10 Variables 171

DRAFT (3/11/93): Distribution Restricted

16.10 Variables

Another common form for options is variable names. These options are used to associate
one or more Tcl global variables with a widget so that the widget can set the variable
under certain conditions or monitor its value and react to changes in the variable.

For example, many of the widgets that display text, such as labels and buttons and
messages and entries, support a-textvariable option. The value of the option is the
name of a global variable that contains the text to display in the widget. The widget moni-
tors the value of the variable and updates the display whenever the variable changes value.
In addition, for widgets like entries that can modify their text, the widget updates the vari-
able to track changes made by the user.

Checkbuttons and radiobuttons also support a-variable option, which contains
the name of a global variable. For checkbuttons there are two additional options
(- onvalue and-offvalue) that specify values to store in the variable when the
checkbutton is “on” and “off.” As the user clicks on the checkbutton with the mouse, it
updates the variable to reflect the checkbutton’s state. The checkbutton also monitors the
value of the variable and changes its on/off state if the variable’s value is changed exter-
nally. Each checkbutton typically has its own variable.

With radiobuttons a group of widgets shares the same variable but each radiobutton
has a distinct value that it stores into the variable (the-value option). When the user
clicks on a radiobutton it sets the variable to its value and selects itself. The radiobutton
monitors the variable so that it can deselect itself when some other radiobutton stores a
different value into the variable. If the variable’s value is changed externally then all of the
radiobuttons associated with the variable update their selected/deselected state to reflect
the variable’s new value.

16.11 Time intervals

Several widget classes provide options that specify time intervals, such as the blink rate
for the insertion cursor or the rate at which mouse buttons should auto-repeat. Table 16.4
summarizes the most commonly used options for specifying intervals. Time intervals are
always specified as integer numbers of milliseconds: an interval of100 means 100ms,
1000 means one second, and so on.

16.12 The configure widget command

Every widget class supports aconf igure widget command. This command comes in
three forms, which can be used both to change the values of options and also to retrieve
information about the widget’s options. See Table 16.1 for a summary of these forms.

172 Configuration Options

DRAFT (3/11/93): Distribution Restricted

If conf igure is given two additional arguments then it changes the value of an
option as in the following example:

.button conf igure -text Quit

If the conf igure widget command is given just one extra argument then it returns
information about the named option. The return value is normally a list with five elements:

.button conf igure -text

-text text Text { } Quit

The first element of the list is the name of the option as you’d specify it on a Tcl command
line when creating or configuring a widget. The second and third elements are a name and
class to use for looking up the option in the option database (see Section 16.13 below).
The fourth element is the default value provided by the widget class (a single space char-
acter in the above example), and the fifth element is the current value of the option.

Some widget options are just synonyms for other options (e.g. the-bg option for but-
tons is the same as the-background option). Configuration information for a synonym
is returned as a list with two elements consisting of the option’s command-line name and
the option database name of its synonym:

.button conf igure -bg

-bg background

If the conf igure widget command is invoked with no additional arguments then it
returns information about all of the widget’s options as a list of lists with one sub-list for
each option:

Table 16.4.Commonly-used time interval options. The left column gives the name of the option as
specified in widget creation commands andconf igure widget commands. The right column
describes how the option is used.

Name on
Command Line

Usage

-insertoffTime How long to leave insertion cursor turned off in
each blink cycle. Zero means cursor doesn’t blink.

-insertOnTime How long to leave insertion cursor turned on in
each blink cycle.

-repeatDelay How long to wait before auto-repeating a button or
keystroke.

-repeatInterval Once auto-repeat starts, how long to wait from one
auto-repeat to the next.

16.13 The option database 173

DRAFT (3/11/93): Distribution Restricted

.button conf igure

{-activebackground activeBackground Foreground Black
Black} {-activeforeground activeForeground Background
White White} {-anchor anchor Anchor center center}
{- background background Background White White} {-bd
borderWidth} {-bg background} {-bitmap bitmap Bitmap {}
{}} {-borderwidth borderWidth BorderWidth 2 2} {-command
command Command {} {}} {-cursor cursor Cursor {} {}}
{- disabledforeground disabledForeground
DisabledForeground {} {}} {-fg foreground} {-font font
Font -Adobe-Helvetica-Bold-R-Normal-*-120-* -Adobe-
Helvetica-Bold-R-Normal-*-120-*} {-foreground
foreground Foreground Black Black} {-height height
Height 0 0} {-padx padX Pad 1 1} {-pady padY Pad 1 1}
{- relief relief Relief raised raised} {-state state
State normal normal} {-text text Text { } Quit}
{- textvariable textVariable Variable {} {}} {-width
width Width 0 0}

16.13 The option database

The option database supplies values for configuration options that aren’t specified explic-
itly by the application designer. The option database is consulted when widgets are cre-
ated: for each option not specified on the command line, the widget queries the option
database and uses the value found there, if any. If there is no value in the option database
then the widget supplies a default value. Values in the option database are usually pro-
vided by the user to personalize applications, e.g. by using consistently larger fonts. Tk
supports theRESOURCE_MANAGER property and.Xdefaults file in the same way as
other X toolkits like Xt.

16.13.1 Patterns

The option database contains any number of entries, where each entry consists of two
strings: apattern and avalue. The pattern determines whether the entry applies to a given
option for a given widget, and the value is a string to use for options that match the pat-
tern.

In its simplest form, a pattern consists of an application name, a window name, and an
option name, all separated by dots. For example, here are two options in this form:

wish.a.b.foreground
wish.background

174 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The first pattern applies to theforeground option in the window.a.b in the applica-
tion wish , and the second pattern applies to thebackground option in the main win-
dow forwish . Each of these patterns applies to only a single option for a single widget.

Patterns may also contain classes or wildcards, which allow them to match many dif-
ferent options or widgets. Any of the window names in the pattern may be replaced by a
class, in which case the pattern matches any widget that is an instance of that class. For
example, the pattern below applies to all children of.a that are buttons:

wish.a.Button.foreground

Application and option names may also be replaced with classes. The class for an applica-
tion is the class of its main window; names and classes for applications are discussed in
more detail in Chapter 22. Individual options also have classes. For example, the class for
theforeground option isForeground . Several other options, such asactive-
Background andinsertBackground , also have the classForegound , so the fol-
lowing pattern applies to any of these options for any button widget that is a child of.a in
wish :

wish.a.Button.Foreground

Lastly, patterns may contain* wildcard characters. A* matches any number of win-
dow names or classes, as in the following examples:

*Foreground
wish*Button.foreground

The first pattern applies to any option in any widget of any application as long as the
option’s class isForeground . The second pattern applies to theforeground option
of any button widget in thewish application. The* wildcard may only be used for win-
dow or application names; it cannot be used for the option name (it wouldn’t make much
sense to specify the same value for all options of a widget).

This syntax for patterns is the same as that supported by the standard X resource data-
base mechanisms in the X11R3 and X11R4 releases. The? wildcard, which was added in
the X11R5 release, is not yet supported by Tk’s option database.

In order to support the above matching rules, each option has three names:

1. the name that can be typed on a command line, which always starts with a- and has no
upper-case letters, as in-activeborderwidth ;

2. the name of the option in the database, which is typically the same as the command-line
name except that it contains no- and uses capital letters to mark internal word bound-
aries, as inactiveBorderWidth ;

3. the class of the option, which always starts with a capital letter and may contain addi-
tional capital letters to mark internal boundaries, as inBorderWidth .

When you query an option with theconf igure widget command all three of these
names are returned. It’s important to remember that in Tk classesalways start with an ini-
tial capital letter, and any name starting with an initial capital letter is assumed to be a
class.

16.13 The option database 175

DRAFT (3/11/93): Distribution Restricted

16.13.2 RESOURCE_MANAGER property and .Xdefaults file

When a Tk application starts up, Tk automatically initializes the option database. If there
is aRESOURCE_MANAGER property on the root window, then the database is initialized
from it. Otherwise Tk checks the user’s home directory for a.Xdefaults file and uses
it if it exists. The initialization information has the same form whether it comes from the
RESOURCE_MANAGER property or the.Xdefaults file. The syntax described below is
the same as that supported by other toolkits such as Xt.

Each line of the initialization data specifies one entry in the resource database in a
form like the following:

*Foreground: blue

The line consists of a pattern (*Foreground in the example) followed by a colon fol-
lowed by whitespace and then a value to associate with that pattern (blue in the exam-
ple). If the value is too long to fit on one line then it can be placed on multiple lines with
each line but the last ending in a backslash-newline sequence:

*Gizmo.text: This is a very long initial \
value to use for the text option in all \
"Gizmo" widgets.

The backslashes and newlines will not be part of the value.
Blank lines are ignored, as are lines whose first non-blank character is# or ! .

16.13.3 Priorities

It is possible for several patterns in the option database to match a particular option. When
this happens Tk uses a two-part priority scheme to determine which pattern applies. Tk’s
mechanism for resolving conflicts is different than the standard mechanism supported by
the Tk toolkit, but I think it’s simpler and easier to work with.

For the most part the priority of an option in the database is determined by the order in
which it was entered into the database: newer options take priority over older ones. When
specifying options (e.g. by typing them into your.Xdefaults file) you should specify
the more general options first, with more specific overrides following later. For example, if
you want button widgets to have a background color ofBisque1 and all other widgets to
have white backgrounds, then put the following lines in your.Xdefault s file:

*background: white
*Button.background: Bisque1

The*background pattern will match any option that the*Button.background
pattern matches, but the*Button.background pattern has higher priority since it was
specified last. If the order of the patterns had been reversed then all widgets (including
buttons) would have white backgrounds and the*Button.background pattern would
have no effect.

In some cases it may not be possible to specify general patterns before specific ones
(e.g. you might add a more general pattern to the option database after it has already been

176 Configuration Options

DRAFT (3/11/93): Distribution Restricted

initialized with a number of specific patterns from theRESOURCE_MANAGER property).
To accommodate these situations, each entry also has an integer priority level between 0
and 100, inclusive. An entry with a higher priority level takes precedence over entries with
lower priority levels, regardless of the order in which they were inserted into the option
database. Priority levels are not used very often in Tk; for complete details on how they
work, please refer to the reference documentation.

Tk’s priority scheme is different that the scheme used by other X toolkits such as Xt.
Xt gives higher priority to the most specific pattern, e.g..a.b.foregroun d is more
specific than*foreground so it receives higher priority regardless of the order in which
the patterns appear. In most cases this won’t be a problem: specify options for Xt applica-
tions using the Xt rules, and for Tk applications using the Tk rules. In cases where you
want to specify options that apply both to Tk applications and Xt applications, use the Xt
rules but also make sure that the patterns considered higher-priority by Xt also appear later
in your.Xdefaults file. In general, you shouldn’t need to specify very many options to
Tk applications (if you do, it suggests that the applications haven’t been designed well), so
the issue of pattern priority shouldn’t come up often.

It’s important to remember that the option database is only queried for options not
specified explicitly in the widget creation command. This means that the user will not be
able to override any option that was specified on the command line. If you want to specify
a value for an option but allow the user to override that value through the
RESOURCE_MANAGER property, you should specify the value for the option using the
option command described below.

16.13.4 The option command

Theoption command allows you to manipulate the option database while an application
is running. The commandoption add will create a new entry in the database. It takes
two or three arguments. The first two arguments are the pattern and value for the new
entry and the third argument, if specified, is a priority level for the new entry. For example,

option add *Button.background Bisque1

adds an entry that sets the background color for all button widgets toBisque1 .
The command

option clear

will remove all entries from the option database. Theoption readf ile command
will read a file in the format described above for theRESOURCE_MANAGER property and
make entries in the option database for each line. For example, the following script dis-
cards any existing options (including those loaded automatically from the
RESOURCE_MANAGER property) and reloads the database from filenewOptions :

option clear
option readf ile newOptions

16.13 The option database 177

DRAFT (3/11/93): Distribution Restricted

Theoption readf ile command can also be given a priority level as an extra argu-
ment after the file name.

To query whether there is an entry in the option database that applies to a particular
option, use theoption get command:

option get .a.b background Background

This command takes three arguments, which are the path name of a widget (.a.b), the
database name for an option (background) and the class for that option
(Background). The command will search the option database to see if any entries match
the given window, option, and class. If so, the value of the highest-priority matching
option is returned. If no entry matches then an empty string is returned.

178 Configuration Options

DRAFT (3/11/93): Distribution Restricted

179

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 17
Geometry Managers: The Placer

Geometry managers are the entities that determine the dimensions and locations of wid-
gets. Tk is similar to other X11 toolkits in that it doesn’t allow individual widgets to deter-
mine their own geometry. A widget will not even appear on the screen unless it is
managed by a geometry manager. This separation of geometry management from internal
widget behavior allows multiple geometry managers to exist simultaneously and it allows
any widget to be used with any geometry manager. If widgets selected their own geometry
then this flexibility would be lost: every existing widget would have to be modified to
introduce a new style of layout.

This chapter describes the overall structure for geometry management and then pre-
sents the placer, which is Tk’s simplest geometry manager . The placer manages windows
independently without considering other related windows, so it isn’t very flexible in the
layouts it produces. Because of this, the placer tends to be used only in special situations.
Chapter 18 describes a more powerful geometry manager called the packer. The packer
lays out groups of windows together, considering the needs of each of the windows when
laying out the group. This produces more flexible layouts but also makes the packer harder
to understand.

17.1 An overview of geometry management

A geometry manager’s job is to arrange one or moreslave windows relative to amaster
window. For example, it might arrange three slaves in a row from left to right across the
area of the master, or it might arrange two slaves so that they split the space of the master
with one slave occupying the top half and the other occupying the bottom half. Different

FIGURE 17

TABLE 17

180 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

geometry managers embody different styles of layout. The master is often the parent of the
slave but there are times when it’s convenient to use other windows as masters (you’ll see
examples of this later).

A geometry manager receives three sorts of information for its use in computing a
layout (see Figure 17.1). First, each slave widget requests a particular width and height.
These are usually the minimum dimensions needed by the widget to display its informa-
tion. For example, a button widget requests a size just large enough to display its text or
bitmap along with the border specified for the widget. Although geometry managers aren’t
obliged to satisfy the requests made by their slave widgets, they usually do.

The second kind of input for a geometry manager comes from the application
designer and is used to control the layout algorithm. The nature of this information varies
from geometry manager to geometry manager. In some cases the information is very spe-
cific. For example, with the placer an application designer can specify the precise location
and dimensions for a given slave; all the placer does is to apply the given geomety to the
slave window. In other cases the information is more abstract. For example, with the
packer an application designer can name three slaves and request that they be arranged in
a row from left to right within the master; the packer will then check the requested sizes of
the slaves and position them so that they abut in a row, with each slave given just as much
space as it needs.

The third kind of information used by geometry managers is the geometry of the mas-
ter window. For example, the geometry manager might position a slave at the lower left

Geometry
Manager

Geometry ofParameters from
application designer

Requested size
from slave master

Size and location
of slave

Requested size
for master

Figure 17.1.A geometry manager receives three kinds of inputs: a requested size for each slave
(which usually reflects the information to be displayed in the slave), commands from the application
designer (such as “arrange these three windows in a row”), and the actual geometry of the master
window. The geometry manager then assigns a size and location to each slave. It may also set the
requested size for the master window, which can be used by a higher-level geometry manager to
manager the master.

17.1 An overview of geometry management 181

DRAFT (3/11/93): Distribution Restricted

corner of its master, or it might divide the space of the master among one or more slaves,
or it might refuse to display a slave altogether if it doesn’t fit within the area of its master.

Once it has received all of the above information, the geometry manager executes a
layout algorithm to determine the dimensions and position of each of its slaves. If the size
of a widget isn’t what it requested then the widget must make do in the best way it can.
Geometry managers usually try to give widgets the space they requested, but they may
produce better layouts by giving widgets extra space in some situations. If there isn’t
enough space in a master for all of its slaves, then some of the slaves may get less space
than they asked for. In extreme cases the geometry manager may choose not to display
some slaves at all.

The controlling information for geometry management may change while an applica-
tion runs. For example, a button might be reconfigured with a different font or bitmap, in
which case it will change its requested dimensions. Or, the geometry manager might be
told to use a different approach (e.g., arrange a collection of windows from top to bottom
instead of left to right) or some of the slave windows might be deleted, or the user might
interactively resize the master window. When any of these things happens the geometry
manager recomputes the layout.

Some geometry managers (e.g. the packer) will set the requested size for the master
window. For example, the packer computes how much space is needed in the master to
accommodate all of its slaves in the fashion requested by the application designer. It then
sets the requested size for the master to these dimensions, overriding any request made by
the master widget itself. This approach allows for hierarchical geometry management,
where each master is itself the slave of another higher-level master. Size requests pass up
through the hierarchy from each slave to its master, resulting ultimately in a size request
for a top-level window, which is passed to the window manager. Then actual geometry
information passes down through the hierarchy, with the geometry manager at each level
accepting the geometry of a master and using it to compute the geometry of one or more
slaves. As a result, the entire hierarchy sizes itself to just meet the needs of the lowest-
level slaves (the master windows “shrink-wrap” around their slaves).

Each widget can be managed by at most one geometry manager at a time, although it
is possible to switch geometry managers during the life of a slave. A widget can act as
master to any number of slaves, and it is even possible for different geometry managers to
control different groups of slaves associated with the same master. A single geometry
manager can simultaneously manage different groups of slaves associated with different
masters.

Only internal windows may be slaves for geometry management. The techniques
described here do not apply to top-level or main windows. These windows are managed
by the window manager for the display; see Chapter 22 for information on how to control
their geometry.

182 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

17.2 Controlling positions with the placer

The placer is a simple geometry manager that implements fixed placements. The applica-
tion designer specifies the position and size of each slave relative to its master, and the
placer simply implements the requested placement. The placer treats each slave indepen-
dently, so changes in the placement of one slave have no effect on any other slave.

Theplace command is used to communicate with the placer; see Table 17.1 for a
summary of its features. In its simplest form its arguments consist of a window name and
one or more configuration options specified as name-value pairs:

place .x -x 0 -y 0

This command positions window.x so that its upper-left corner appears at the upper-left
corner of its master, which defaults to its parent. The placer supports about a dozen config-
uration options in all; Table 17.2 summarizes the options and Figure 17.2 shows some
examples of using the placer.

The placer determines the position of a slave window in two steps. First, it uses the
- x , -y , -relx , and-rely options to choose an anchor point, then it positions the slave
relative to that anchor point using the-anchor option. The anchor point is specified rel-
ative to the upper left corner of the master window. If the-x and-y options are used then
the position is given with absolute distances in any of the forms described in Section 16.3.
If the -relx and-rely options are used then the position is specified as a fraction of the
size of the master; for example, “-relx .75 ” specifies that the anchor point should lie

Table 17.1.A summary of theplace command.

place window option value ?option value ...?
Same asplace conf igure command described below.

place conf igure window option value ?option value ...?
Arranges for the placer to manage the geometry ofwindow. Theoption
andvalue arguments determine the dimensions and position ofwindow.

place dependents window
Returns a list whose elements are the slave windows managed by the placer
for whichwindow is the master.

place forget window
Causes the placer to stop managingwindow and unmap it from the screen.
Has no effect if window isn’t currently managed by the placer.

place info window
Returns a list giving the current configuration ofwindow. The list consists
of option-value pairs in exactly the same form as might be specified to
theplace conf igure command. Returns an empty string ifwindow
isn’t currently managed by the placer.

17.2 Controlling positions with the placer 183

DRAFT (3/11/93): Distribution Restricted

Table 17.2.A summary of the configuration options supported by the placer.

-x distance
Specifies the horizontal distance of the slave’s anchor point from the left
edge of its master.

-y distance
Specifies the vertical distance of the slave’s anchor point from the top edge
of its master.

-relx fraction
Specifies the horizontal position of the slave’s anchor point in a relative fash-
ion as a floating-point number. If fraction is 0.0 it refers to the master’s
left edge, and1.0 refers to the right edge.Fraction need not lie between
0.0 and 1.0.

-rely fraction
Specifies the vertical position of the slave’s anchor point in a relative fashion
as a floating-point number. If fraction is 0.0 it refers to the master’s top
edge, and1.0 refers to the bottom edge.Fraction need not lie between
0.0 and 1.0.

-anchor anchor
Specifies which point on the slave window is to be positioned over the
anchor point.

-width distance
Specifies the width of the slave.

-height distance
Specifies the height of the slave.

-relwidth fraction
Specifies the slave’s width as a fraction of the width of its master.

-relheight fraction
Specifies the slave’s height as a fraction of the height of its master.

-in window
Specifies the master window for the slave. Must be the slave’s parent or a
descendant of the parent.

-bordermode mode
Specifies how the master’s borders are to be used in placing the slave.Mode
must beinside , outside , or ignore .

184 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

three-fourths of the way from the left edge of the master to its right edge. These forms can
be mixed for a given slave, as in Figure 17.2(b).

The-anchor option indicates which point on the slave window should be posi-
tioned over the anchor point. It can have any of the anchor names described in Section
16.8. For example, an anchor position ofs positions the slave so that the center of its bot-
tom edge lies over the anchor point.

It is possible to position a slave outside the area of its master, for example by giving a
negative-x option or a-rely option greater than 1.0. However, X clips each window to
the dimensions of its parent, so the portions of the slave that lie outside its parent will not

place .x -x 0 -y 0 place .x -relx 0.5 -y 1c \

place .x -relx 0.5 -rely 0.5 \ place .x -relx 0 -rely 0.5 \
-anchor center -height 3c relwidth 0.5 -relheight 0.5

-anchor n

(a) (b)

(d)(c)

Figure 17.2.Examples of using the placer to manage a window. Each figure shows aplace
command and the layout that results. The larger window is the master and the smaller shaded
window is.x , the slave being managed. In (a) and (b) the slave is given the size it requested. In (c)
the height of the slave is specified in theplace command, and in (d) both the width and height of
the slave are specified in theplace command.

17.3 Controlling the size of a slave 185

DRAFT (3/11/93): Distribution Restricted

appear on the screen. In the normal case where the parent is the master it probably isn’t
very useful to position the slave outside its master. However, if the master is a sibling or
nephew of the slave then the slave can be positioned outside its master and still be visible
on the screen. See Section 17.4 for information on changing the master window.

17.3 Controlling the size of a slave

By default, a slave window managed by the placer is given the size it requests. However,
the-width , -height , -relwidth , and-relheight options may be used to over-
ride either or both of the slave’s requested dimensions. The-width and-height
options specify the dimensions in absolute terms, and-relwidth and-relheight
specify the dimensions as a fraction of the size of the master. For example, the following
command sets the width of.x to 50 pixels and the height to half the height of its master:

place .x -width 50 -relheight 0.5

17.4 Selecting the master window

In most cases the master window for a given slave will be its parent in the window hierar-
chy. If no master is specified, the placer uses the parent by default. However, it is some-
times useful to use a different window as the master for a slave. For example, it might be
useful to attach one window to a sibling so that whenever the sibling is moved the window
will follow . This can be accomplished using the-in configuration option. For example,
the following command arranges for.x always to be displayed with its upper-left corner
“glued” to the upper right corner of.y :

place .x -in .y -relx 1.0 -rely 0

In this example,.x won’t actually be “in”.y ; .y will be .x ’s master and.x will be dis-
played outside.y but adjacent to it.

Note: The master for a slave must be either the parent of the slave or a descendant of the parent.
The reason for this restriction has to do with X’s clipping rules. Each window is clipped to
the boundaries of its parent; no portion of a child that lies outside of its parent will be
displayed. Tk’s restriction on master windows gurantees that the slave will be visible and
unclipped if its master is visible and unclipped. Suppose that the restriction were not
enforced, so that window .x.y could have .a as its master. Suppose also that.a and .x
do not overlap at all. If you asked the placer to position.x.y at the center of.a , the
placer would set.x.y’ s position as requested, but this would cause.x.y to be outside
the area of.x so X would not display it, even though.a is fully visible. This behavior
would be confusing to application designers so Tk restricts mastership to keep it from
occurring. The restriction applies to all of Tk’s geometry managers.

186 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

17.5 Border modes

The last configuration option for the placer is-bordermode ; it determines how the mas-
ters borders are used in placing the slave, and it must have one of the valuesinside ,
outside , or ignore . A border mode ofinside is typically used when placing the
slave inside the master, and it is the default. In this case, the placer considers the area of
the master to be its innermost area, inside any borders. The anchor point is specified rela-
tive to the upper-left corner of this area, and the-relx , -rely , -relwidth , and
- relheight options use the dimensions of this inner area.

A border mode ofoutside is typically used when positioning the slave outside the
area of its master. In this case the placer considers the area of the master to be its outer-
most area including all borders.

The final border mode,ignore , causes the placer to completely ignore any borders
and use the master’s official X area. This area includes the 3D borders drawn by widgets,
which are drawn inside a window’s X area, but excludes any external borders. The
ignore option is provided for completeness but probably isn’t very useful.

17.6 More on the place command

So far theplace command has been discussed in its simplest form, where its first argu-
ment is the name of a slave window to manage.Place also has several other forms,
where the first argument selects a particular command option.Place conf igure has
the same effect as the short form that’s been used so far. For example, the following two
commands have the same effect:

place .x -x 0 -y 0
place conf igure .x -x 0 -y 0

Place conf igure (or place without a specific option) can be invoked at any time to
change the configuration of a slave window. When invoked on a window already managed
by the placer, unspecified options retain their previous values.

The commandplace dependents returns a list of all the slave windows man-
aged by the placer for a given master window:

place dependents .

.x .y .z

Place info returns information about the current configuration of a slave window
managed by the placer:

place info .x

-x 0 -y 0 -anchor nw

17.7 Controlling the size of the master 187

DRAFT (3/11/93): Distribution Restricted

The return value is a list containing name-value pairs in exactly the same form that you
would specify them toplace conf igure . It can be used to record the placement of a
window so that it can be restored later.

Lastly, place forget causes the placer to stop managing a given slave window:

place forget .x

As a side effect, it unmaps the window so that it no longer appears on the screen.Place
forget is useful if you decide that a window should be managed by a different geometry
manager: you can tell the placer to forget it, then ask a different geometry manager to take
over. You don’t need to invokeplace forget before deleting a widget: the placer (like
all geometry managers) automatically forgets about widgets when they are deleted.

17.7 Controlling the size of the master

Although it is possible for a geometry manager to set the requested size for the master
windows it manages, the placer does not do this. It simply uses whatever size is provided
for a given master, without attempting to influence that size at all. Thus you’ll need to use
some other mechanism to specify the master’s size (e.g. if the master is a frame widget
you can request particular dimensions with the-width and-height configuration
options).

188 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

189

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 18
The Packer

The packer is the second geometry manager provided by Tk. Although it is slightly more
complicated than the placer described in Chapter 17, it is more powerful because it
arranges groups of slaves together, taking into account the needs of one slave when choos-
ing the geometry for the others. With the packer it is easy to achieve effects such as
“arrange the following three windows in a row” or “put the menu bar across the top of the
window, then the scrollbar across the right side, then fill the remaining space with a text
widget.” Because of this, the packer is much more commonly used than the placer, and the
placer tends to be used only for special purposes. Thepack command, summarized in
Table 18.1, is used to communicate with the packer.

Note: Thepack command syntax described in this chapter is what will eventually exist in a
future release of Tk. No existing release supports this syntax. The current Tk release
provides essentially all of the features described in this chapter but with a clumsier syntax.
The only difference in features has to do with padding. Please refer to the manual entry for
thepack command before writing any scripts that use it.

18.1 Packer basics

The packer maintains a list of all the slaves for a given master window, called thepacking
list. The packer arranges the slaves by processing the packing list in order, packing one
slave in each step. At the time a particular slave is processed, part of the area of the master
window has already been allocated to earlier slaves on the list, leaving a rectangular unal-
located area left for this and all remaining slaves, as shown in Figure 18.1(a). The slave is
positioned in three steps: allocate a frame, stretch the slave, and position it in the frame.

FIGURE 18

TABLE 18

190 The Packer

DRAFT (3/11/93): Distribution Restricted

In the first step a rectangular region called aframe is allocated from the available
space. This is done by “slicing” off a piece along one side of the available space. For
example, in Figure 18.1(b) the frame has been sliced from the right side of the available
space. The packer allows you to control the width of the frame (if it is on the left or right)
or the height of the frame (if it is on the top or bottom) and which side to slice it from. By
default, the controllable dimension of the frame is taken from the window’s requested size
in that dimension.

In the second step the packer chooses the dimensions of the slave. By default the
slave will get the size it requested, but you can specify instead that it should be stretched in
one or both dimensions to fill the space of the frame. If the slave’s requested size is larger
than the frame then it is reduced to fit the size of the frame. In Figure 18.1(c) the slave has
been stretched horizontally but not vertically.

The third step is to position the slave inside its frame. If the slave is smaller than the
frame then you can specify an anchor position for the slave such asn, s , orcenter . In
Figure 18.1(c) the slave has been positioned in the center of the frame, which is the
default.

Once the slave has been positioned, a smaller rectangular region is left for the next
slave to use, as shown in Figure 18.1(d). If a slave doesn’t use all of the space in its frame,
as in Figure 18.1, the leftover space is unused; it won’t be used for later slaves. Thus each
step in the packing starts with a rectangular region of available space and ends up with a
smaller rectangular region.

Table 18.1.A summary of thepack command.

pack window ?window ...? option value ?option value ...?
Same aspack conf igure command described below.

pack conf igure window ?window ...? option value ?option value ...?
Arrange for the packer to manage the geometry of thewindows. The
option andvalue arguments provide information that determines the
dimensions and position of thewindows.

pack forget window
Causes the packer to stop managingwindow and unmap it from the screen.
Has no effect if window isn’t currently managed by the packer. Returns an
empty string.

pack info window
Returns a list giving the current configuration ofwindow. The list consists
of option-value pairs in exactly the same form as might be specified to
thepack conf igure command. Returns an empty string ifwindow isn’t
currently managed by the packer.

pack slaves window
Returns a list of the slaves on window’s packing list, in order.

18.1 Packer basics 191

DRAFT (3/11/93): Distribution Restricted

Thepack command is used to communicate with the packer. In its simplest form, a
pack command takes one or more window names as arguments, followed by one or more
pairs of additional arguments that indicate how to manage the windows. For example, con-
sider the following command:

pack .ok .cancel .help -side left

This command asks the packer to manage.ok , .cancel , and.help as slaves and to
pack them in that order. The master for the slaves defaults to their parent. The “- side
left ” option indicates that the frame for each slave should be allocated on the left side of
the available space. By default, the frame for each slave is allocated just wide enough for
the slave’s requested width, and the slave is centered in its frame without any stretching.
The result is that the slaves will be arranged in a row from left to right across the master,
as shown in Figure 18.2 (b).

Master Slave

Available
Space

(a) (b)

(c) (d)

Frame for
Slave

Figure 18.1.The steps taken to pack a single slave. Figure (a) shows the situation before packing a
slave. Part of the master’s area has already been allocated for previous slaves, and a rectangular
region is left for the remaining slaves. The current slave is shown in its requested size. The packer
allocates a frame for the slave along one side of the available space, as shown in (b). The packer may
stretch the slave to partially or completely fill the frame, then it positions the slave over the frame as
in (c). This leaves a smaller rectangular region for the next slave to use, as shown in (d).

Available
Space for

Next Slave

192 The Packer

DRAFT (3/11/93): Distribution Restricted

The result in Figure 18.2(b) assumes that the master window is fixed in size. How-
ever, this isn’t usually the case. As part of its layout computation the packer computes the
minimum dimensions the master would need so that all of its slaves just barely fit, and it
sets the requested size of the master to those dimensions. In most cases the geometry man-
ager for the master will set the master’s size from those dimensions, so that the master
“shrink wraps” around the slaves. For example, top-level windows resize themsleves to
their requested dimensions unless other directions have been given with thewm command
described in Chapter 22. Thus the result from thepack command above is more likely to
be as shown in Figure 18.2(c). You can choose between the scenarios in Figure 18.2(b)
and Figure 18.2(c) with the way you manage the master’s geometry.

Figure 18.3 shows another simple packer example, which uses the following script to
arrange three windows:

pack .label -side top -f ill x
pack .scrollbar -side right -f ill y
pack .listbox

The three windows are configured differently so a separatepack command is used for
each one. The order of thepack commands determines the order of the windows in the
packing list. The.menubar widget is packed first, and it occupies the top part of the
master window. The “-f ill x ” option specifies that the window should be stretched
horizontally so that it fills its frame. The scrollbar widget is packed next, in a similar fash-
ion except that it is arranged against the right side of the window and stretched vertically.
The widget.listbox is packed last. No options need to be specified for.listbox : it
gets all the remaining space regardless of which side it is packed against.

Figure 18.2.A simple example of packing. Figure (a) shows a master window and the requested
sizes for three slaves. Figure (b) shows the arrangement that is produced by the command “pack
.ok .cancel .help -side left ” if the master’s size is fixed. In most cases, however, the
master will resize so that it just meets the needs of its slaves, producing the result in (c).

(a) (b) (c)

.ok .cancel .help

.

18.2 Packer configuration options 193

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options

The examples in the previous section illustrated a few of the configuration options pro-
vided by the packer; Table 18.2 contains a complete listing. The options fall into three
groups: those that determine the location and size of a slave’s frame; those that determine
the size and position of the slave within its frame; and those that select a master for the
slave and determine the slave’s position in the master’s packing list.

The location of a slave’s frame is determined by the-side option as already dis-
cussed. For slaves packed on the top or bottom, the width of the frame is always the width
of the available space left in the master. The height of the frame is usually the requested
height of the slave; however, the options-padx , -ipadx , -pady , and-ipady cause
the packer to pretend that the slave’s requested size is larger than what the slave specified.
Slaves packed on the left and right sides are handled in an analogous fashion.

Figure 18.3.Another packer example. Figure (a) shows a master window (.) and the requested
sizes for three slaves. Figure (b) shows the result of packing the slaves with the script

pack .label - side top -f ill x
pack .scrollbar -side right -f ill y
pack .listbox

under the assumption that the master window resizes to just meet the needs of its slaves.

.scrollbar.label.

.listbox

(a) (b)

194 The Packer

DRAFT (3/11/93): Distribution Restricted

Table 18.2.A summary of the configuration options supported by the packer.

-after window
Usewindow’s master as the master for the slave and insert the slave into the
packing list just afterwindow.

-anchor position
If the frame is larger than the slave’s final size, this option determines where
in the frame the slave will be positioned.

-before window
Usewindow’s master as the master for the slave and insert the slave into the
packing list just beforewindow.

-expand boolean
If boolean is a true value then the slave’s frame will be grown to absorb
any extra space left over in the master.

-f ill style
Specifies whether (and how) to grow the slave if its frame is larger than the
slave’s requested size.Style must be eithernone , x , y, orboth .

-in window
Usewindow as the master for slave.Window must be the slave’s parent or a
descendant of the slave’s parent. If no master is specified then it defaults to
the slave’s parent.

-ipadx distance
Distance specifies internal padding for the slave, which is extra horizontal
space to allow inside the slave on each side, in addition to what the slave
requests.

-ipady distance
Distance specifies internal padding for the slave, which is extra vertical
space to allow inside the slave on each side, in addition to what the slave
requests.

-padx distance
Distance specifies external padding for the slave, which is extra horizon-
tal space to allow outside the slave but inside its frame on each side.

-pady distance
Distance specifies external padding for the slave, which is extra vertical
space to allow outside the slave but inside its frame on each side.

-side side
Side specifies which side of the master the slave should be packed against.
Must betop , bottom , left , or right .

18.2 Packer configuration options 195

DRAFT (3/11/93): Distribution Restricted

The-expand option allows a frame to absorb leftover space in the master. If the
master ends up with more space than its slaves need (e.g. because the user has interac-
tively stretched a top-level window), and if the-expand option has been set to true for
one of the slaves, then that slave’s frame will be expanded to use up all the extra horizontal
or vertical space (for left/right and top/bottom slaves, respectively). If multiple slaves
have the-expand option set, then the extra space is divided evenly among them. See
Figure 18.4 for an example that uses-expand and the padding options.

The size and location of a slave within its frame are determined by the-f ill and
- anchor options in conjunction with the padding options. The-f ill option can select
no filling, filling in a single direction, or filling in both directions. If internal padding has
been specified for a slave (-ipadx or -ipady) then the slave will be stretched by the
amount of the internal padding even if no filling has been requested in that dimension. If
external padding has been specified for a slave (-padx or -pady), then the packer will
leave the specified amount of space between the window and the edge of the frame even if
filling is requested.

If the final size of the slave is smaller than the frame, then the-anchor option con-
trols where to place the slave in the frame. This option may have any of the values
described in Section 16.8, such asnw to indicate that the northwest (upper-left) corner of
the slave should be positioned at the northwest corner of the frame. If external padding has
been specified with-padx or -pady , thennw really refers to a point inset from the cor-
ner of the frame by the pad amounts.

The third group of options,-in , -before , and-after , controls the master for a
slave and the position of the slave in the packing list. By default the master for a slave is
its parent and the order of slaves in the packing list is determined by the order of their
pack commands. However, the- in option may be used to specify a different master. As

Figure 18.4.An example of the padding and-expand options. When thepack command in the
figure is applied to the windows shown in Figure 18.2(a), the resulting layout is as shown in the
figure, assuming that the master’s size is fixed. Internal padding causes each window’s size to be
increased beyond what it requested, and the-expand option causes the extra space in the master to
be distributed among the slaves’ frames.

pack .ok .cancel .help -side left -ipadx 3m -ipady 2m -expand 1

196 The Packer

DRAFT (3/11/93): Distribution Restricted

with the placer, the master must be either the slave’s parent or a descendant of the slave’s
parent (see page 185 for an explanation of this restriction). The- before and-after
options allow you to control the order in which slaves are packed. When one of these
options is used, the master for the slave is automatically set to the master for the window
named in the option.

18.3 Hierarchical packing

The packer is often used in hierarchical arrangements where slave windows are also mas-
ters for other slaves. Figure 18.5 shows an example of hierarchical packing. The resulting
layout has a column of radio buttons on the left and a column of check buttons on the
right, with each group of buttons centered vertically in its column. To achieve this effect
two extra frame widgets,.left and.right , are packed side by side in the main win-
dow, then the buttons are packed inside them. The packer sets the requested sizes for
.left and.right to provide enough space for the buttons, then uses this information
to set the requested size for the main window. The main window’s geometry will be set to
the requested size, then the packer will arrange.left and.right inside the it, and
finally it will arrange the buttons inside.left and.right .

Figure 18.5 also illustrates why it is sometimes useful for a window’s master to be
different from its parent. It would have been possible to create the button windows as chil-
dren of.left and.right (e.g..left.pts8 instead of.pts8) but it is better to cre-
ate them as children of. and then pack them inside.left and.right .The windows
.left and.right serve no purpose in the application except to help in geometry man-
agement. They are not even visible on the screen. If the buttons were children of their
geometry masters then changes to the geometry management (such as adding more levels
in the packing hierarchy) might require the button windows to be renamed and would

Figure 18.5.Hierarchical packing. The pack commands in (a) produce the layout shown in (b).
Two invisible frame widgets,.left and.right , are used to achieve the column effect.

pack .left -side left -padx 3m -pady 3m
pack .right -side right -padx 3m -pady 3m
pack .pts8 .pts10 .pts12 .pts18 .pts24 \
 -in .left -side top -anchor w
pack .bold .italic .underline \
 -in .right -side top -anchor w

(a) (b)

18.4 Other options to the pack command 197

DRAFT (3/11/93): Distribution Restricted

break any code that used the old names (such as entries in users’.Xdefaults files). It is
better to give windows names that reflect their logical purpose in the application, build
separate frame hierarchies where needed for geometry management, and then pack the
functional windows into the frames.

18.4 Other options to the pack command

So far thepack command has been discussed in its most common form, where the first
argument is the name of a slave window and the other arguments specify configuration
options. Table 18.1 shows several other forms for thepack command, where the first
argument selects a particular command option.Pack conf igure has the same effect as
the short form that’s been used up until now: the remaining arguments specify windows
and configuration options. Ifpack conf igure (or the short form with no command
option) is applied to a window that is already managed by the packer, then the slave’s con-
figuration is modified; configuration options not specified in thepack command retain
their old values.

The commandpack slaves returns a list of all of the slaves managed by the
packer for a given master window. The order of the slaves in the list reflects their order in
the packing list:

pack slaves .left

.pts8 .pts10 .pts12 .pts18 .pts24

Pack info returns all of the configuration options for a given slave:

pack info .pts8

-in .left -side top -anchor w

The return value is a list consisting of names and values for configuration options in
exactly the form you would specify them topack conf igure . This command can be
used to save the state of a slave so that it can be restored later.

Lastly, pack forget causes the packer to stop managing one or more slaves and
forget all of its configuration state for them. It also unmaps the windows so that they no
longer appear on the screen. This command can be used to transfer control of a window
from one geometry manager to another, or simply to remove a window from the screen for
a while. If a forgotten window is itself a master for other slaves, the information about
those slaves is retained but the slaves won’t be displayed on the screen until the master
window becomes managed again.

198 The Packer

DRAFT (3/11/93): Distribution Restricted

199

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 19
Bindings

You have already seen that Tcl scripts can be associated with certain widgets such as but-
tons or menus so that the scripts are invoked whenever certain events occur, such as click-
ing a mouse button over a button widget. These mechanisms are provided as specific
features of specific widget classes. Tk also contains a general-purposebinding mechanism
that can be used to create additional event handlers for widgets. A binding “binds” a Tcl
script to an X event or sequence of X events in one or more windows; the script will be
invoked automatically by Tk whenever the given event sequence occurs in any of the win-
dows. You can create new bindings to extend the basic functions of a widget (e.g. with
keyboard accelerators for common actions), or you can override or modify the default
behaviors of widgets, since they are implemented with bindings.

This chapter assumes that you already know at least the basics about X event types,
keysyms, modifiers, and the fields in event structures. More information on these topics
can be found in any of several books that describe the Xlib programming interface.

19.1 An overview of the bind command

Thebind command is used to create, modify, query, and remove bindings; Table
19.1 summarizes its syntax. This section illustrates the basic features ofbind , and later
sections go over the features in more detail.

Bindings are created with commands like the one below:

bind .entry <Control-d> {.entry delete insert}

FIGURE 19

TABLE 19

200 Bindings

DRAFT (3/11/93): Distribution Restricted

The first argument to the command specifies the path name of the window that the binding
applies to. It can also be a widget class name, in which case the binding applies to all wid-
gets of that class (such bindings are calledclass bindings), or it can beall , in which case
the binding applies to all widgets. The second argument specifies a sequence of one or
more X events. In this example the sequence specifies a single event, which is a key-press
of thed character while theControl key is down. The third argument may be any Tcl
script. The script in the example invokes.entry ’s widget command to delete the charac-
ter just after the insertion cursor.

After the command completes, the script will be invoked whenever Control-d is typed
in .entry . The binding can trigger any number of times. It remains in effect until
.entry is deleted or the binding is explicitly removed by invokingbind with an empty
script:

bind .entry <Control-d> {}

Note: A binding for a keystroke will only trigger if the input focus is set to the window for the
binding. See Chapter 21 for more information on the input focus.

Thebind command can also be used to retrieve information about bindings. Ifbind
is invoked with an event sequence but no script then it returns the script for the given
event sequence:

bind .entry <Control-d>

Table 19.1.A summary of thebind andtkerror commands.

bind windowSpec sequence script
Arranges forscript to be executed each time the event sequence given by
sequence occurs in the window(s) given bywindowSpec. If a binding
already exists forwindowSpec andsequence then it is replaced. If
script is an empty string then the binding forwindowSpec and
sequence is removed, if there is one.

bind windowSpec sequence + script
If there is already a binding forwindowSpec andsequence then appends
script to the script for the current binding; otherwise creates a new bind-
ing.

bind windowSpec sequence
If there is a binding forwindowSpec andsequence then returns its
script. Otherwise returns an empty string.

bind windowSpec
Returns a list whose entries are all of the sequences for whichwindowSpec
has bindings.

tkerror message
Invoked by Tk when it encounters a Tcl error in an event handler such as a
binding.Message is the error message returned by Tcl. Any result returned
by tkerror is ignored.

19.2 Event patterns 201

DRAFT (3/11/93): Distribution Restricted

.entry delete insert

If bind is invoked with a single argument then it returns a list of all the bound event
sequences for that window or class:

bind .entry

<Control-Key-d>

bind Button

<ButtonRelease-1> <Button-1> <Any-Leave> <Any-Enter>

The first example returned the bound sequences for.entry , and the second example
returned information about all of the class bindings for button widgets.

19.2 Event patterns

Event sequences are constructed out of basic units calledevent patterns, which Tk
matches against the stream of X events received by the application. An event sequence can
contain any number of patterns, but in practice most sequences only contain a single pat-
tern.

The simplest form for an event pattern consists of a printing character such asa or @.
This form of pattern matches a key-press event for that character as long as there are no
modifier keys pressed. For example,

bind .entry a {.entry insert insert a}

arranges for the charactera to be inserted into.entry at the point of the insertion cursor
whenever it is typed.

The second form for an event pattern is longer but more flexible. It consists of one or
more fields between angle brackets, with the following syntax:

<modifier- modifier-...- modifier- type- detail>

White space may be used instead of dashes to separate the various fields, and most of the
fields are optional. Thetype field identifies the particular X event type, such as
KeyPress or Enter (see Table 19.2 for a list of all the available types). For example,
the command

bind .x <Enter> {puts Hello!}

causes “Hello! ” to be printed on standard output whenever the mouse cursor moves into
widget.x .

For key and button events, the event type may be followed by adetail field that speci-
fies a particular button or key. For buttons, the detail is the number of the button (1-5). For
keys, the detail is an Xkeysym. A keysym is a textual name that describes a particular key
on the keyboard, such asBackSpace or Escape or comma. The keysym for alphanu-
meric ASCII characters such as “a” or “A” or “2” is just the character itself. Refer to your
X documentation for a complete list of keysyms.

202 Bindings

DRAFT (3/11/93): Distribution Restricted

If no detail field is provided, as in<KeyPress> , then the pattern matches any event
of the given type. If a detail field is provided, as in<KeyPress-Escape> , then the pat-
tern only matches events for the specific key or button. If a detail is specified then you can
omit the event type:<Escape> is equivalent to<KeyPress-Escape> .

Note: The pattern<1> is equivalent to<Button-1> , not<KeyPress-1> .
The event type may be preceded by any number ofmodifiers, each of which must be

one of the values in Table 19.3. Most of the modifiers are X modifier names, such asCon-
trol or Shift . If one or more of these modifiers are specified then the pattern only
matches events that occur when the specified modifiers are present. For example, the pat-
tern<Meta-Control-d > requires that both the Meta and Control keys be held down
whend is typed, and<B1-Button-2> requires that button 1 already be down when but-
ton 2 is pressed. If no modifiers are specified then none must be present:<KeyPress- a>
will not match an event if the Control key is down.

If theAny modifier is specified, it means that the state of unspecified modifiers should
be ignored. For example,<Any-a> will match a press of the “a” key even if button 1 is
down or the Meta key is pressed.<Any-B1-Motion> will match any mouse motion
event as long as button 1 is pressed; other modifiers are ignored.

The last two modifiers,Double andTriple , are used primarily for specifying dou-
ble and triple mouse clicks. They match a sequence of two or three events, each of which
matches the remainder of the pattern. For example,<Double-1> matches a double-click
of mouse button 1 with no modifiers down, and<Any-Triple-2> matches any triple
click of button 2 regardless of modifiers. For aDouble or Triple pattern to match, all
of the events must occur close together in time and without substantial mouse motion
between them.

Table 19.2.Names for event types. Some event types have multiple names, e.g.Key and
KeyPress .

Button, ButtonPress Expose Leave

ButtonRelease FocusIn Map

Circulate FocusOut Property

CirculateRequest Gravity Reparent

Colormap Keymap ResizeRequest

Conf igure Key, KeyPress Unmap

Conf igureRequest KeyRelease Visibility

Destroy MapRequest

Enter Motion

19.3 Sequences of events 203

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events

An event sequence consists of one or more event patterns optionally separated by white
space. For example, the sequence<Escape>a contains two patterns. It triggers when the
a key is pressed immediately after theEscape key.

A sequence need not necessarily match consecutive events. For example, the
sequence<Escape>a will match an event sequence consisting of a key-press on
Escape , a release ofEscape , and then a press ofa; the release ofEscape will be
ignored in determining the match. Tk ignores conflicting events in the input event stream
unless they are of typeKeyPress or ButtonPress . Thus if some other key is pressed
between theEscape and thea then the sequence won’t match. These same rules apply to
double events such as<Double-1> .

19.4 Conflict resolution

At most one binding will trigger for any given X event. If several bindings match the event
then the most specific binding is chosen and only its script is invoked. For example, sup-
pose there are bindings for<Button-1> and<Double-Button-1> and button 1 is
clicked three times. The first button-press event will match only the<Button-1> bind-
ing, but the second and third presses will match both bindings. Since
<Double- Button-1> is more specific than<Button-1> , its script is executed on
the second and third presses. Similarly, <Escape>a is more specific than<a>, <Con-
trol-d> is more specific than<Any-d> or <d>, and<d> is more specific than<Key-
Press> .

There may also be a conflict among bindings with different window specifications.
For example, there might be a binding for a specific window, plus another binding for its
class, plus another forall . When this occurs, any window-specific binding receives pref-
erence over any class binding and any class binding receives preference over anyall

Table 19.3.Modifier names for event patterns. Multiple names are available for some modifiers;
for example,Mod1, M1, Meta , andM are all synonyms for the same modifier.

Control Button4, B4 Mod1, M2, Alt

Shift Button5, B5 Mod3, M3

Lock Any Mod4, M4

Button1, B1 Double Mod5, M5

Button2, B2 Triple

Button3, B3 Mod1, M1, Meta, M

204 Bindings

DRAFT (3/11/93): Distribution Restricted

binding. For example, if there is an<Any-KeyPress> binding for a window and a
<Return> binding for its class, pressing the return key will trigger the window-specific
binding, not the class binding.

Note: The default behaviors for widgets are established with class bindings created by Tk during
initialization. You can modify the behavior of an individual widget by creating window-
specific bindings that override the class bindings. However, you have to be careful in
doing this that you don’t accidentally override more behavior than you intended. For
example, if you specify an<Any-KeyPress> binding for a widget, it will override a
<Return> binding for the class, even though the<Return> binding appears to be
more specific. The solution is to duplicate the<Return> class binding for the widget.

19.5 Substitutions in scripts

If the script for a binding contains% characters then it is not executed directly. Instead, a
new script is generated by replacing each% character and the one that follows it with
information about the X event. The character following the% selects a specific substitution
to make. About 30 different substitutions are defined; see the reference documentation for
complete details. The following substitutions are the most commonly used ones:

For example, the following bindings implement a simple mouse tracker:

bind all <Enter> {puts "Entering %W"}
bind all <Leave> {puts "Leaving %W"}
bind all <Motion> {puts "Mouse at (%x,%y)"}

Note: When Tk makes % substitutions it treats the script as an ordinary string without any
special properties. The normal quoting rules for Tcl commands are not considered, so%
sequences will be substituted even if embedded in braces or preceded by backslashes. The
only way to prevent a% substitution is to double the% character. The easiest way to avoid
problems with complex scripts and % substitutions is to keep the binding simple, for
example by putting the script in a procedure and having the binding invoke the procedure
with arguments created via % substitution.

%x Substitute the x-coordinate from the event.
%y Substitute the y-coordinate from the event.
%W Substitute the path name of the event window.
%A Substitute the 8-bit ISO character value that corresponds to a

KeyPress orKeyRelease event, or an empty string if the
event is for a key like Shift that doesn’t have an ISO equiva-
lent.

%% Substitute the character%.

19.6 When are events processed? 205

DRAFT (3/11/93): Distribution Restricted

19.6 When are events processed?

Tk only processes events at a few well-defined times. After a Tk application completes its
initialization it enters anevent loop to wait for X events and other events such as timer and
file events. When an event occurs the event loop executes C or Tcl code to respond to that
event. Once the response has completed, control returns to the event loop to wait for the
next interesting event. Almost all events are processed from the top-level event loop. New
events will not be considered while responding to the current event, so there is no danger
of one binding triggering in the middle of the script for another binding. This approach
applies to all event handlers, including those for bindings, those for the script options
associated with widgets, and others yet to be discussed, such as window manager protocol
handlers.

A few special commands such astkwait andupdate reinvoke the event loop
recursively, so bindings may trigger during the execution of these commands. You should
only invoke these commands at times when it is safe for bindings to trigger. Commands
that invoke the event loop are specially noted in their reference documentation; all other
commands complete immediately without re-entering the event loop.

Note: Event handlers are always invoked at global level (as if the command “uplevel #0 ”
were used), even if the event loop was invoked from atkwait or update command
inside a procedure. This means that global variables are always accessible in event
handlers without invoking theglobal command.

19.7 Background errors: tkerror

It is possible for a Tcl error to occur while executing the script for a binding. These errors
are calledbackground errors; when one occurs, the default action is for Tk to print the
associated error message on standard output. However, this probably isn’t very useful in
most cases. It is usually better to display the error message in a message window or dialog
box on the screen where the user can see it. Thetkerror command permits each appli-
cation to handle background errors in the best way for that application. When a back-
ground error occurs, Tk invokestkerror with a single argument consisting of the error
message. Thetkerror command is not defined by Tk; presumably each application will
define its owntkerror procedure to report errors in a way that makes sense for that
application. Iftkerror returns normally then Tk will assume it has dealt with the error
and it won’t do anything else itself. Iftkerror returns an error (e.g. because there is no
tkerror command defined) then Tk falls back on the default approach of printing the
message on standard output.

Thetkerror procedure is invoked not just for errors in bindings, but for all other
errors that are returned to Tk at times when it has no-one else to return the errors to. For
example, menus and buttons calltkerror if an error is returned by the script for a menu
entry or button; scrollbars calltkerror if a Tcl error occurs while communicating with

206 Bindings

DRAFT (3/11/93): Distribution Restricted

the associated widget; and the window-manager interface callstkerror if an error is
returned by the script associated with a window manager protocol.

19.8 Other uses of bindings

The binding mechanism described in this chapter applies to widgets. However, similar
mechanisms are available internally within some widgets. For example, canvas widgets
allow bindings to be associated with graphical items such as rectangles or polygons, and
text widgets allow bindings to be associated with ranges of characters. These bindings are
created using the same syntax for event sequences and%-substitutions, but they are cre-
ated with the widget command for the widget and refer to the widget’s internal objects
instead of windows. For example, the following command arranges for a message to be
printed whenever mouse button 1 is clicked over item 2 in a canvas.c :

.c bind 2 <ButtonPress-1> {puts Hello!}

207

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 20
The Selection

Theselection is a mechanism for passing information between widgets and applications.
The user first selects one or more objects in a widget, for example by dragging the mouse
across a range of text or clicking on a graphical object. Once a selection has been made,
the user can invoke commands in other widgets that cause them to retrieve information
about the selection, such as the characters in the selected range or the name of the file con-
taining the selection. The widget containing the selection and the widget requesting it can
be in the same or different applications. The selection is most commonly used to copy
information from one place to another, but it can be used for other purposes as well, such
as setting a breakpoint at a selected line or opening a new window on a selected file.

X defines a standard mechanism for supplying and retrieving the selection and Tk
provides access to this mechanism with theselection command. Table 20.1 summa-
rizes theselection command. The rest of this chapter describes its features in more
detail. For complete information on the X selection protocol, refer to the Inter-Client
Communications Convention Manual (ICCCM).

20.1 Selections, retrievals, and targets

X’s selection mechanism allows for multiple selections to exist at once, with names like
“primary selection”, “secondary selection”, and so on. However, Tk supports only the pri-
mary selection; Tk applications cannot retrieve or supply selections other than the primary
one and the term “selection” always refers to the primary selection in this book. At most
one widget has a primary selection at any given time on a given display. When a user
selects information in one widget, any selected information in any other widget is auto-

FIGURE 20

TABLE 20

208 The Selection

DRAFT (3/11/93): Distribution Restricted

matically deselected. It is possible for multiple disjoint objects to be selected simulta-
neously within a widget (e.g. three different items in a listbox or several different
polygons in a drawing window), but usually the selection consists of a single object or a
range of adjacent objects.

When you retrieve information about the selection, you can ask for any of several dif-
ferent kinds of information. The different kinds of information are referred to as retrieval
targets. The most common target isSTRING. In this case the contents of the selection are
returned as a string. For example, if text is selected then a retrieval with targetSTRING
will return the contents of the selected text; if graphics are selected then a retrieval with
targetSTRING will return some string representation for the selected graphics. If the
selection is retrieved with targetFILE_NAME then the return value will be the name of
the file associated with the selection. If targetLINE is used then the return value will be
the number of the selected line within its file. There are many targets with well-defined
meanings; refer to the X ICCCM for more information.

The commandselection get retrieves the selection. The target may be specified
explicitly or it may be left unspecified, in which case it defaults toSTRING. For example,
the following commands might be invoked when the selection consists of a few words on
one line of a file containing the text of Shakespeare’sRomeo and Juliet:

Table 20.1.A summary of theselection command.

selection clear window
If there is a selection anywhere onwindow’s display, deselect it so that no
window owns the selection anymore.

selection get ?target?
Retrieve the value of the primary selection usingtarget as the form in
which to retrieve it, and return the selection’s value as result.Target
defaults toSTRING.

selection handle window script ?target? ?format?
Creates a handler for selection requests such thatscript will be executed
whenever the primary selection is owned bywindow and someone attempts
to retrieve it in the form given bytarget. Target defaults toSTRING.
Format specifies a representation for transmitting the selection to the
requester; it defaults toSTRING. Whenscript is invoked, two additional
numbers are appended to it, consisting of the starting offset and maximum
number of bytes to retrieve.Script should return the requested range of
the selection; if it returns an error then the selection retrieval will be rejected.

selection own ?window? ?script?
Claims ownership of the selection forwindow; if some other window previ-
ously owned the selection, deselects the old selection. Ifscript is speci-
fied then it will be executed whenwindow is deselected. If neitherwindow
norscript is specified, then the command returns the path name of the
window that currently owns the selection, or an empty string if no window in
this application owns the selection.

20.2 Locating and clearing the selection 209

DRAFT (3/11/93): Distribution Restricted

selection get

star-crossed lovers

selection get FILE_NAME

romeoJuliet

selection get LINE

6

These commands could be issued in any Tk application on the display containing the
selection; they need not be issued in the application containing the selection.

Not every widget supports every possible selection target. For example, if the infor-
mation in a widget isn’t associated with a file then the FILE_NAME target will not be
supported. If you try to retrieve the selection with an unsupported target then an error will
be returned. Fortunately, every widget is supposed to support retrievals with targetTAR-
GETS; such retrievals return a list of all the target forms supported by the current selection
owner. You can use the result of aTARGETS retrieval to pick the most convenient avail-
able target. For example, the following procedure retrieves the selection as Postscript as
possible, otherwise as an unformatted string:

proc getSelection {} {
set targets [selection get TARGETS]
if {[lsearch $targets POSTSCRIPT] >= 0} {

return [selection get POSTSCRIPT]
}
selection get STRING

}

20.2 Locating and clearing the selection

Tk provides two mechanisms for retrieving information about who owns the selection.
The commandselection own (with no additional arguments) will check to see if the
selection is owned by a widget in the invoking application. If so it will return the path
name of that widget; if there is no selection or it is owned by some other application then
selection own will return an empty string.

The second way to locate the selection is with the retrieval targetsAPPLICATION
andWINDOW_NAME. These targets are both implemented by Tk and are automatically
available whenever the selection is in a Tk application. The command

selection get APPLICATION

returns the name of the Tk application that owns the selection (in a form suitable for use
with thesend command, for example) and

selection get WINDOW_NAME

210 The Selection

DRAFT (3/11/93): Distribution Restricted

returns the path name of the window that owns the selection. These commands will work
only if the owning application is based on Tk. If the application that owns the selection
isn’t based on Tk then it probably does not support theAPPLICATION andWIN-
DOW_NAME targets and theselection get command will return an error. These com-
mands will also return errors if there is no selection.

The command

selection clear

will clear out any selection on the display of the invoking application. It works regardless
of whether the selection is in the invoking application or some other application on the
same display. The following script will clear out the selection only if it is in the invoking
application:

if {[selection own] != ""} {
selection clear

}

20.3 Supplying the selection with T cl scripts

The sections above described Tk’s facilities for retrieving the selection; this section
describes how to supply the selection. The standard widgets like entries and texts already
contain C code that supplies the selection, so you don’t usually have to worry about it
when writing Tcl scripts. However, it is possible to write Tcl scripts that implement new
targets or that provide the complete supply-side protocol, and this section describes how to
do it. This feature of Tk is seldom used so you may wish to skip over this material until
you need it.

The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any previous selection
and typically redisplays the selected material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other widgets and applica-
tions.

3. The owner may request that it be notified when it is deselected. Widgets typically
respond to deselection by eliminating the highlights on the display.

The paragraphs below describe two scenarios. The first scenario just adds a new target to a
widget that already has selection support, so it only deals with the second part of the pro-
tocol. The second scenario implements complete selection support for a group of widgets
that didn’t previously have any; it deals with all three parts of the protocol.

Suppose that you wish to add a new target to those supported for a particular widget.
For example, text widgets contain built-in support for theSTRING target but they don’t
automatically support theFILE_NAME target. You could add support forFILE_NAME
retrievals with the following script:

20.3 Supplying the selection with Tcl scripts 211

DRAFT (3/11/93): Distribution Restricted

selection handle .t getFile FILE_NAME
proc getFile {offset maxBytes} {

global f ileName
set last [expr $offset+$maxBytes-1]
string range $f ileName $offset $last

}

This code assumes that the text widget is named.t and that the name of its associated file
is stored in a global variable namedf ileName . Theselection handle command
tells Tk to invokegetFile whenever.t owns the selection and someone attempts to
retrieve it with targetFILE_NAME. When such a retrieval occurs, Tk takes the specified
command (getFile in this case) appends two additional numerical arguments, and
invokes the resulting string as a Tcl command. In this example a command like

getFile 0 4000

will result. The additional arguments identify a sub-range of the selection by its first byte
and maximum length, and the command must return this portion of the selection. If the
requested range extends beyond the end of the selection, then the command should return
everything from the given starting point up to the end of the selection. Tk takes care of
returning the information to the application that requested it. In most cases the entire
selection will be retrieved in one invocation of the command, but for very large selections
Tk will make several separate invocations so that it can transmit the selection back to the
requester in manageable pieces.

The above example simply added a new target to a widget that already provided some
built-in selection support. If selection support is being added to a widget that has no built-
in support at all, then additional Tcl code is needed to claim ownership of the selection and
to respond to deselections. For example, suppose that there is a group of three radio but-
tons named.a , .b , and.c and that the buttons have already been configured with their
- variable and-value options to store information about the selected button in a glo-
bal variable namedstate . Now suppose that you want to tie the radio buttons to the
selection, so that (a) whenever a button becomes selected it claims the X selection, (b)
selection retrievals return the contents ofstate , and (c) when some other widget claims
the selection away from the buttons thenstate is cleared and all the buttons become
deselected. The following code implements these features:

selection handle .a getValue STRING
proc getValue {offset maxBytes} {

global state
set last [expr $offset+$maxBytes-1]
string range $state $offset $last

}
foreach w {.a .b .c} {

$w conf ig -command {selection own .a selGone}
}
proc selGone {} {

212 The Selection

DRAFT (3/11/93): Distribution Restricted

global state
set state {}

}

Theselection handle command and thegetValue procedure are similar to the
previous example: they respond toSTRING selection requests for.a by returning the
contents of thestate variable. Theforeach loop specifies a-command option for
each of the widgets. This causes theselection own command to be invoked when-
ever the user clicks on any of the radio buttons, and theselection own command
claims ownership of the selection for widget.a (.a will own the selection regardless of
which radio button gets selected and it will returnstate in response to selection
requests). Theselection own command also specifies that procedureselGone
should be invoked whenever the selection is claimed away by some other widget.Sel-
Gone setsstate to an empty string. All of the radio buttons monitorstate for
changes, so when it gets cleared the radio buttons will all deselect themselves.

213

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 21
The Input Focus

At any given time one window of an application is designated as theinput focus window,
or focus windowfor short. All keystrokes received by the application are directed to the
focus window and they are processed according to its event bindings. This chapter
describes Tk’s focus command, which is used to control the input focus. Table 21.1
summarizes the syntax of thefocus command. The focus window only determines what
happens once a keystroke event arrives at a particular application; it does not determine
which of the applications on the display receives keystrokes. The selection of a focus
application is made by the window manager.

21.1 Focus model: explicit vs. implicit

There are two possible ways of handling the input focus, which are known as theimplicit
andexplicit models. In the implicit model the focus follows the mouse: keystrokes are
directed to the window under the mouse pointer and the focus window changes implicitly
when the mouse moves from one window to another. In the explicit model the focus win-
dow is set explicitly and doesn’t change until it is explicitly reset; mouse motions do not
change the focus.

Tk implements the explicit focus model, for several reasons. First, the explicit model
allows you to move the mouse cursor out of the way when you’re typing in a window;
with the implicit model you’d have to keep the mouse in the window you’re typing to.
Second, and more important, the explicit model allows an application to change the focus
window without the user moving the mouse. For example, when an application pops up a
dialog box that requires type-in (e.g. one that prompts for a file name) it can set the input

FIGURE 21

TABLE 21

214 The Input Focus

DRAFT (3/11/93): Distribution Restricted

focus to the appropriate window in the dialog without you having to move the mouse, and
it can move the focus back to its original window when you’re finished with the dialog
box. This allows you to keep your hands on the keyboard. Similarly, when you’re typing
in a form the application can move the input focus to the next entry in the form each time
you type a tab, so that you can keep your hands on the keyboard and work more efficiently.
Lastly, if you want an implicit focus model then you can always achieve it with event
bindings that change the focus each time the mouse cursor enters a new window.

Tk applications don’t need to worry about the input focus very often because the
default bindings for text-oriented widgets already take care of the most common situa-
tions. For example, when you click button 1 over an entry or text widget, the widget will
automatically make itself the focus window. As application designer, you only need to set
the focus in cases like those in the previous paragraph where you want to move the focus
among the windows of your application to reflect the flow of work.

21.2 Setting the input focus

To set the input focus, invoke thefocus command with a widget name as argument:

focus .dialog.entry

From this point on, all keystrokes received by the application will be directed to
.dialog.entry and the previous focus window will no longer receive keystrokes. The
new focus window will display some sort of highlight, such as a blinking insertion cursor,
to indicate that it has the focus and the previous focus window will stop displaying its
highlight.

Table 21.1.A summary of thefocus command.

focus
Returns the path name of the application’s focus window, or an empty string
if there is no focus window.

focus window
Sets the application’s focus window towindow .

focus default ?window?
If window is specified then it becomes the default focus window, which will
receive the input focus whenever the focus window is deleted. In this case
the command returns an empty string. Ifwindow is specified asnone , then
there will be no default focus window. If window is omitted then the com-
mand returns the current default focus window, ornone if there is no
default.

focus none
Clears the focus window.

21.3 Clearing the focus 215

DRAFT (3/11/93): Distribution Restricted

Here is a script that implements tabbing among four entries in a form:

set tabList {.form.e1 .form.e2 .form.e3 .form.e4}
foreach w $tabList {

bind $w <Tab> {tab $tabList}
}
proc tab list {

set i [lsearch $list [focus]]
incr i
if {$i >= [llength $list]} {

set i 0
}
focus [lindex $list $i]

}

This script assumes that the four entry windows have already been created. It uses the
variabletabList to describe the order of traversal among the entries and arranges for
the proceduretab to be invoked whenever a tab is typed in any of the entries.Tab
invokesfocus with no arguments to determine which window has the focus, finds where
this window is in the list that gives the order of tabbing, and then sets the input focus to the
next window in the list. The proceduretab could be used for many different forms just by
passing it a differentlist argument for each form. The order of focussing can also be
changed at any time by changing the value of thetabList variable.

21.3 Clearing the focus

The commandfocus none clears the input focus for the application. Once this com-
mand has been executed, keystrokes for the application will be discarded.

21.4 The default focus

When the focus window is deleted, Tk automatically sets the input focus for the applica-
tion to a window called thedefault focus window. The default focus window is initially
none , which means that there will be no focus window after the focus window is deleted
and keystrokes will be discarded until the focus window is set again.

Thefocus default command can be used to specify a default focus window and
to query the current default:

focus default

none

focus default .entry
focus default

216 The Input Focus

DRAFT (3/11/93): Distribution Restricted

.entry

Once this script has been completed,.entry will receive the input focus whenever the
input focus window is deleted.

21.5 Keyboard accelerators

Applications with keyboard accelerators (e.g. they allow you to typeControl+s to save
the file orControl+q to quit the application) require special attention to bindings and
the input focus. First, the accelerator bindings must be present in every window where you
want them to apply. For example, suppose that an editor has a main text window plus sev-
eral entry windows for searching and replacement. You will create bindings for accelera-
tors likeControl+q in the main text window, but you will probably want most or all of
the bindings to apply in the auxiliary windows also, so you’ll have to define the accelera-
tor bindings in each of these windows too.

In addition, an application with keyboard accelerators should never let the focus
becomenone , since that will prevent any of the accelerators from being processed. If no
other focus window is available, I suggest setting the focus to the main window of the
application; of course, you’ll have to define accelerator bindings for. so that they are
available in this mode. In addition, I recommend setting the default focus window to. or
some other suitable window so that the focus isn’t lost when dialog boxes and other win-
dows are deleted.

217

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 22
Window Managers

For each display running the X Window System there is a special process called thewin-
dow manager. The window manager is separate from the X display server and from the
application processes using the display. The main function of the window manager is to
control the arrangement of all the top-level windows on each screen. In this respect it is
similar to the geometry managers described in Chapters 17 and 18 except that instead of
managing the internal windows within an application it manages the top-level windows of
all applications. The window manager allows each application to request particular loca-
tions and sizes for its top-level windows, which can be overridden interactively by users.
Window managers also serve several other purposes besides geometry management: they
add decorative frames around top-level windows; they allow windows to be iconified and
deiconified; and they notify applications of certain events, such as user requests to destroy
the window.

X allows for the existence of many different window managers that implement differ-
ent styles of layout, provide different kinds of decoration and icon management, and so
on. Only a single window manager runs for a display at any given time, and the user gets
to choose which one. In order to allow any application to work smoothly with any window
manager, X defines a protocol for the interactions between applications and window man-
agers. The protocol is defined as part of the Inter-Client Communication Conventions
Manual (ICCCM). With Tk you use thewm command to communicate with the window
manager; Tk implements thewm command using the ICCCM protocols so that any Tk-
based application should work with any window manger. Tables 22.1 and 22.2 summarize
thewm command.

FIGURE 22

TABLE 22

218 Window Managers

DRAFT (3/11/93): Distribution Restricted

Table 22.1.A summary of thewm command. In all of these commandswindow must be the name
of a top-level window. Many of the commands, such as wm aspect or wm group , are used to
set and query various parameters related to window management. For these commands, if the
parameters are specified as null strings then the parameters are removed completely, and if the
parameters are omitted then the command returns the current settings for the parameters.

wm aspect window ?xThin yThin xFat yFat?
Set or querywindow’s aspect ratio. If an aspect ratio is specified, it con-
strains interactive resizes so thatwindow’s width/height will be at least as
great asxThin/yThin and no greater thanxFat/yFat.

wm client window ?name?
Set or query theWM_CLIENT_MACHINE property forwindow, which
gives the name of the machine on whichwindow’s application is running.

wm command window ?value?
Set or query theWM_COMMAND property forwindow, which should contain
the command line used to initiatewindow’s application.

wm deiconify window
Arrange for window to be displayed in normal fashion.

wm focusmodel window ?model?
Set or query the focus model forwindow . Model must beactive or
passive.

wm geometry window ?value?
Set or query the requested geometry for window. Value must have the form
=widthxheight± x± y (any of=, widthxheight, or ± x± y can be
omitted).

wm group window ?leader?
Set or query the window group thatwindow belongs to.Leader must be
the name of a top-level window, or an empty string to removewindow from
its current group.

wm iconbitmap window ?bitmap?
Set or query the bitmap forwindow’s icon.

wm iconify window
Arrange forwindow to be displayed in iconic form.

wm iconmask window ?bitmap?
Set or query the mask bitmap forwindow’s icon.

wm iconname window ?string ?
Set or query the string to be displayed inwindow’s icon.

wm iconposition window ?x y?
Set or query the hints about where on the screen to displaywindow’s icon.

wm iconwindow window ?icon?
Set or query the window to use as icon forwindow. Icon must be the path
name of a top-level window.

wm maxsize window ?width height?
Set or query the maximum permissible dimensions forwindow during inter-
active resize operations.

wm minsize window ?width height?
Set or query the minimum permissible dimensions forwindow during inter-
active resize operations.

22.1 Window sizes 219

DRAFT (3/11/93): Distribution Restricted

22.1 Window sizes

If a Tk application doesn’t use thewm command, Tk will communicate with the window
manager automatically on the application’s behalf so that its top-level windows appear on
the screen. By default each top-level window will appear in its “natural” size, which is the
size it requested using the normal Tk mechanisms for geometry management. Tk will for-
ward the requested size on to the window manager and most window managers will honor
the request. If the requested size of a top-level window should change then Tk will for-
ward the new size on to the window manager and the window manager will resize the win-
dow to correspond to the latest request. By default the user will not be able to resize
windows interactively: window sizes will be determined solely by their requested sizes as
computed internally.

If you want to allow interactive resizing then you must invoke at least one of thewm
minsize andwm maxsize commands, which specify a range of acceptable sizes. For
example the commands

wm overrideredirect window ?boolean?
Set or query the override-redirect flag forwindow.

wm positionfrom window ?whom?
Set or query the source of the position specification forwindow. Whom must
beprogram or user .

wm protocol window ?protocol? ?script?
Arrange forscript to be executed whenever the window manager sends a
message towindow with the givenprotocol. Protocol must be the
name of an atom for a window manager protocol, such as
WM_DELETE_WINDOW, WM_SAVE_YOURSELF, orWM_TAKE_FOCUS. If
script is an empty string then the current handler for protocol is deleted. If
script is omitted then the current script forprotocol is returned (or an
empty string if there is no handler forprotocol). If bothprotocol and
script are omitted then the command returns a list of all protocols with
handlers defined forwindow.

wm sizefrom window ?whom?
Set or query the source of the size specification forwindow. Whom must be
program or user .

wm state window
Returns the current state ofwindow: normal , iconic , orwithdrawn .

wm title window ?string?
Set or query the title string to display in the decorative border forwindow.

wm transient window ?master?
Set or query the transient status ofwindow. Master must be the name of a
top-level window on whose behalfwindow is working as a transient.

wm withdraw window
Arrange forwindow not to appear on the screen at all, either in normal or
iconic form.

220 Window Managers

DRAFT (3/11/93): Distribution Restricted

wm minsize .x 100 50
wm maxsize .x 400 150

will allow.x to be resized but constrain it to be 100 to 400 pixels wide and 50 to 150 pix-
els high. If the command

wm minsize .x 1 1

is invoked then there will effectively be no lower limit on the size of.x . If you set a min-
imum size without a maximum size (or vice versa) then the other limit will be uncon-
strained. You can disable interactive resizing again by clearing all of the size bounds:

wm minsize .x {} {}
wm maxsize .x {} {}

In addition to constraining the dimensions of a window you can also constrain its
aspect ratio (width divided by height) using thewm aspect command. For example,

wm aspect .x 1 3 4 1

will tell the window manager not to let the user resize the window to an aspect ratio less
than 1/3 (window three times as tall as it is wide) or greater than 4 (four times as wide as it
is tall).

If the user interactively resizes a top-level window then the window’s internally
requested size will be ignored from that point on. Regardless of how the internal needs of
the window change, its size will remain as set by the user. A similar effect occurs if you
invoke thewm geometry command, as in the following example:

wm geometry .x 300x200

This command forces.x to be 300 pixels wide and 200 pixels high just as if the user had
resized the window interactively. The internally requested size for.x will be ignored once
the command has completed, and the size specified in thewm geometry command over-
rides any size that the user might have specified interactively (but the user can resize the
window again to override the size in thewm geometry command). The only difference
between thewm geometry command and an interactive resize is thatwm geometry is
not subject to the constraints specified bywm minsize , wm maxsize , andwm
aspect .

If you would like to restore a window to its natural size you can invokewm geome-
try with an empty geometry string:

wm geometry .x {}

This causes Tk to forget any size specified by the user or bywm geometry , so the win-
dow will return to the size it requested internally.

22.2 Gridded windows

In some cases it doesn’t make sense to resize a window to arbitrary pixel sizes. For exam-
ple, consider the application in Figure 22.1. When the user resizes the top-level window

22.2 Gridded windows 221

DRAFT (3/11/93): Distribution Restricted

the text widget changes size in response. Ideally the text widget should always contain an
even number of characters in each dimension, and sizes that result in partial characters
should be rounded off.

Gridded geometry management accomplishes this effect. When gridding is enabled
for a top-level window its dimensions will be constrained to lie on an imaginary grid. The
geometry of the grid is determined by one of the widgets contained in the top-level win-
dow (e.g. the text widget in Figure 22.1) so that the widget always holds an integral num-
ber of its internal objects. Usually the widget that controls the gridding is a text-oriented
widget such as an entry or listbox or text.

To enable gridding, set the- setgrid option to 1 in the controlling widget. The fol-
lowing code was used in the example in Figure 22.1, where the text widget is.t :

.t conf igure -setgrid 1

This command has several effects. First, it automatically makes the main window resiz-
able, even if nowm minsize or wm maxsize command has been invoked. Second, it
constrains the size of the main window so that.t will always hold an even number of
characters in its font. Third, it changes the meaning of dimensions used in Tk. These
dimensions now represent grid units rather than pixels. For example, the command

(a)

Figure 22.1.An example of gridded geometry management. If the user interactively resizes the
window from the dimensions in (a) to those in (b), the window manager will round off the
dimensions so that the text widget holds an even number of characters in each dimension. This
figure shows decorative borders as provided by themwm window manager.

(b)

222 Window Managers

DRAFT (3/11/93): Distribution Restricted

wm geometry . 50x30

will set the size of the main window so that.t is 50 characters wide and 30 lines high,
and dimensions in thewm minsize andwm maxsize commands will also be grid
units. Many window managers display the dimensions of a window on the screen while it
is being resized; these dimensions will given in grid units too.

Note: In order for gridding to work correctly you must have configured the internal geometry
management of the application so that the controlling window stretches and shrinks in
response to changes in the size of the top-level window , e.g. by packing it with the
- expand option set to1 and-f ill to both .

22.3 Window positions

Controlling the position of a top-level window is simpler than controlling its size. Users
can always move windows interactively, and an application can also move its own win-
dows using thewm geometry command. For example, the command

wm geometry .x +100+200

will position .x so that its upper-left corner is at pixel (100,200) on the display. If either of
the+ characters is replaced with a- then the coordinates are measured from the right and
bottom sides of the display. For example,

wm geometry .x -0-0

positions.x at the lower-right corner of the display.

22.4 Window states

At any given time each top-level window is in one of three states. In thenormal or de-ico-
nified state the window appears on the screen. In theiconifiedstate the window does not
appear on the screen, but a small icon is displayed instead. In thewithdrawn state neither
the window nor its icon appears on the screen and the window is ignored completely by
the window manager.

New top-level windows start off in the normal state. You can use the facilities of your
window manager to iconify a window interactively, or you can invoke thewm iconify
command within the window’s application, for example

wm iconify .x

If you invokewm iconify immediately, before the window first appears on the screen,
then it will start off in the iconic state. The commandwm deiconify causes a window
to revert to normal state again.

The commandwm withdraw places a window in the withdrawn state. If invoked
immediately, before a window has appeared on the screen, then the window will start off
withdrawn. The most common use for this command is to prevent the main window of an

22.5 Decorations 223

DRAFT (3/11/93): Distribution Restricted

application from ever appearing on the screen (in some applications the main window
serves no purpose: the application presents a collection of windows any of which can be
deleted independently from the others; if one of these windows were the main window,
deleting it would delete all the other windows too). Once a window has been withdrawn, it
can be returned to the screen with eitherwm deiconify or wm iconify .

 Thewm state command returns the current state for a window:

wm iconify .x
wm state .x

iconic

22.5 Decorations

When a window appears on the screen in the normal state, the window manager will usu-
ally add a decorative frame around the window. The frame typically displays a title for the
window and contains interactive controls for resizing the window, moving it, and so on.
For example, the window in Figure 22.1 was decorated by themwm window manager.

Thewm title command allows you to set the title that’s displayed a window’s dec-
orative frame. For example, the command

wm title . "Berkeley Introduction"

was used to set the title for the window in Figure 22.1.
Thewm command provides several options for controlling what is displayed when a

window is iconified. First, you can use thewm iconname command to specify a title to
display in the icon. Second, some window managers allow you to specify a bitmap to be
displayed in the icon. Thewm iconbitmap command allows you to set this bitmap, and
wm iconmask allows you to create non-rectangular icons by specifying that certain bits
of the icon are transparent. Third, some window managers allow you to use one window
as the icon for another;wm iconwindow will set up such an arrangement if your win-
dow manager supports it. Finally, you can specify a position on the screen for the icon
with thewm iconposition command.

Note: Almost all window managers supportwm iconname andwm iconposition but
fewer supportwm iconbitmap and almost no window managers supportwm
iconwindow very well. Don’t assume that these features work until you’ve tried them
with your own window manager.

22.6 Window manager protocols

There are times when the window manager needs to inform an application that an impor-
tant event has occurred or is about to occur so that the application can do something to
deal with the event. In X terminology, these events are calledwindow manager protocols.

224 Window Managers

DRAFT (3/11/93): Distribution Restricted

The window manager passes an identifier for the event to the application and the applica-
tion can do what it likes in response (including nothing). The two most useful protocols
areWM_DELETE_WINDOW andWM_SAVE_YOURSELF. The window manager invokes
theWM_DELETE_WINDOW protocol when it wants the application to destroy the window
(e.g. because the user asked the window manager to kill the window). The
WM_SAVE_YOURSELF protocol is invoked when the X server is about to be shut down or
the window is about to be lost for some other reason. It gives the application a chance to
save its state on disk before its X connection disappears. For information about other pro-
tocols, refer to ICCCM documentation.

Thewm protocol command arranges for a script to be invoked whenever a partic-
ular protocol is triggered. For example, the command

wm protocol . WM_DELETE_WINDOW {
puts stdout "I don’t wish to die"

}

will arrange for a message to be printed on standard output whenever the window manager
asks the application to kill its main window. In this case, the window will not actually be
destroyed. If you don’t specify a handler forWM_DELETE_WINDOW then Tk will destroy
the window automatically. WM_DELETE_WINDOW is the only protocol where Tk takes
default action on your behalf; for other protocols, likeWM_SAVE_YOURSELF, nothing
will happen unless you specify an explicit handler.

22.7 Special handling: transients, groups, and override-redirect

The window manager protocols allow you to request three kinds of special treatment for
windows. First, you can mark a top-level window astransient with a command like the
following:

wm transient .x .

This indicates to the window manager that.x is a short-lived window, such as a dialog
box, working on behalf of the application’s main window. The last argument towm
transient (“. ” in the example) is referred to as themaster for the transient window.
The window manager may treat transient windows differently e.g. by providing less deco-
ration or by iconifying and deiconifying them whenever their master is iconified or deico-
nified.

In situations where a group of long-lived windows works together you can use thewm
group command to tell the window manager about the group. The following script tells
the window manager that the windows.top1 , .top2 , .top3 , and.top4 are working
together as a group, and.top1 is the groupleader:

foreach i {.top2 .top3 .top4} {
wm group $i .top1

}

22.8 Session management 225

DRAFT (3/11/93): Distribution Restricted

The window manager can then treat the group as a unit, and it may give special treatment
to the leader. For example, when the group leader is iconified, all the other windows in the
group might be removed from the display without displaying icons for them: the leader’s
icon would represent the whole group. When the leader’s icon is deiconfied again, all the
windows in the group might return to the display also. The exact treatment of groups is up
to the window manager, and different window managers may handle them differently. The
leader for a group need not actually appear on the screen (e.g. it could be withdrawn).

In some extreme cases it is important for a top-level window to be completely ignored
by the window manager: no decorations, no interactive manipulation of the window via
the window manager, no iconifying, and so on. The best example of such a window is a
pop-up menu. In these cases, the windows should be marked asoverride-redirect using a
command like the following:

wm overrideredirect .popup

This command must be invoked before the window has actually appeared on the screen.

22.8 Session management

Thewm command provides two options for communicating with session managers:wm
client andwm command. These commands pass information to the session manager
about the application running in the window; they are typically used by the session man-
ager to display information to the user and to save the state of the session so that it can be
recreated in the future.Wm client identifies the machine on which the application is
running, andwm command identifies the shell command used to invoke the application.
For example,

wm client . sprite.berkeley.edu
wm application . {browse /usr/local/bin}

indicates that the application is running on the machinesprite.berkeley.edu and
was invoked with the shell command “browse /usr/local/bin ”.

22.9 A warning about window managers

Although the desired behavior of window managers is supposedly described in the X
ICCCM document, the ICCCM is not always clear and no window manager that I am
aware of implements everything exactly as described in the ICCCM. For example, the
mwm window manager doesn’t always deal properly with changes in the minimum and
maximum sizes for windows after they’ve appeared on the screen, and thetwm window
manager treats the aspect ratio backwards; neither window manager positions windows on
the screen in exactly the places they request. Tk tries to compensate for some of the defi-
ciencies of window managers (e.g. it checks to see where the window manager puts a win-

226 Window Managers

DRAFT (3/11/93): Distribution Restricted

dow and if it’s the wrong place then Tk repositions it again to compensate for the window
manager’s error), but it can’t compensate for all the problems.

One of the main sources of trouble is Tk’s dynamic nature, which allows you to
change anything anytime. Almost all applications (except those based on Tk) set all the
information about a window before it appears on the screen and they never change it after
that. Because of this, window manager code to handle dynamic changes hasn’t been
debugged very well. You can avoid problems by setting as much of the information as
possible before the window first appears on the screen and avoiding changes.

227

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 23
The Send Command

The selection mechanism described in Chapter 20 provides a simple way for one applica-
tion to retrieve data from another application. This chapter describes thesend command,
which provides a more powerful form of communication between applications. With
send , any Tk application can invoke arbitrary Tcl scripts in any other Tk application on
the display; these commands can not only retrieve information but also take actions that
modify the state of the target application. Table 23.1 summarizessend and a few other
commands that are useful in conjunction with it.

23.1 Basics

To usesend , all you have to do is give the name of an application and a Tcl script to exe-
cute in the application. For example, consider the following command:

send tgdb {break tkButton.c 200}

The first argument tosend is the name of the target application (see Section 23.3 below
for more on application names) and the second argument is a Tcl script to execute in that
application. Tk locates the named application (an imaginary Tcl-based version of thegdb
debugger in this case), forwards the script to that application, and arranges for the script to
be executed in the application’s interpreter. In this example the script sets a breakpoint at a
particular line in a particular file. The result or error generated by the script is passed back
to the originating application and returned by thesend command.

Send is synchronous: it doesn’t complete until the script has been executed in the
remote application and the result has been returned. While waiting for the remote applica-

FIGURE 23

TABLE 23

228 The Send Command

DRAFT (3/11/93): Distribution Restricted

tion to respond,send will defer the processing of X events, so the application will not
respond to its user interface during this time. Once thesend command completes and the
application returns to normal event processing, any deferred events will be processed. A
sending applicationwill respond tosend requests from other applications while waiting
for its ownsend to complete. This means, for example, that the target of thesend can
send a command back to the initiator while processing the script, if that is useful.

23.2 Hypertools

I hope thatsend will enable a new kind of small re-usable application that I callhyper-
tools. Many of today’s windowing applications are monoliths that bundle several different
packages into a single program. For example, debuggers often contain editors to display
the source files being debugged, and spreadsheets often contain charting packages or com-
munication packages or even databases. Unfortunately, each of these packages can only be
used from within the monolithic program that contains it.

With send each of these packages can be built as a separate stand-alone program.
Related programs can communicate by sending commands to each other. For example, a
debugger can send a command to an editor to highlight the current line of execution, or a
spreadsheet can send a script to a charting package to chart a dataset derived from the
spreadsheet, or a mail reader can send a command to a multi-media application to play a
video clip associated with the mail. With this approach it should be possible to re-use
existing programs in many unforeseen ways. For example, once a Tk-based audio-video
application becomes available, any existing Tk application can become a multi-media
application just by extending with scripts that send commands to the audio-video applica-
tion. The term “hypertools” reflects this ability to connect applications together in interest-
ing ways and to re-use them in ways not foreseen by their original designers.

Table 23.1.A summary ofsend and related commands.

send appName arg ?arg ...?
Concatenates all thearg’s with spaces as separators, then executes the
resulting script in the interpreter of the application given byappName. The
result of that execution is returned as the result of thesend command.

winfo interps
Returns a list whose elements are the names of all the applications available
on the display containing the application’s main window.

winfo name .
Returns the name of the current application, suitable for use insend com-
mands issued by other applications.

23.3 Application names 229

DRAFT (3/11/93): Distribution Restricted

When designing Tk applications, I encourage you to focus on doing one or a few
things well; don’t try to bundle everything in one program. Instead, provide different func-
tions in different hypertools that can be controlled viasend and re-used independently.

23.3 Application names

In order to send to an application you have to know its name. Each application on the dis-
play has a unique name, which it can choose in any way it pleases as long as it is unique.
In many cases the application name is just the name of the program that created the appli-
cation. For example,wish will use the application namewish by default; or, if it is run-
ning under the control of a script file then it will use the name of the script file as its
application name. In programs like editors that are typically associated with a disk file, the
application name typically has two parts: the name of the application and the name of the
file or object on which it is operating. For example, if an editor namedmx is displaying a
file namedtk.h , then the application’s name is likely to be “mx tk.h ”.

If an application requests a name that is already in use then Tk adds an extra number
to the end of the new name to keep it from conflicting with the existing name. For exam-
ple, if you start upwish twice on the same display the first instance will have the name
wish and the second instance will have the name “wish #2 ”. Similarly, if you open a
second editor window on the same file it will end up with a name like “mx tk.h #2 ”.

Tk provides two commands that return information about the names of applications.
First, the command

winfo name .

wish #2

will return the name of the invoking application (this command is admittedly obscure;
implement “tk appname ” before the book is published!!). Second, the command

winfo interps

wish {wish #2} {mx tk.h}

will return a list whose elements are the names of all the applications defined on the dis-
play.

23.4 Security issues

Thesend command is potentially a major security loophole. Any application that uses
your display cansend scripts to any Tk application on that display, and the scripts can
use the full power of Tcl to read and write your files or invoke subprocesses with the
authority of your account. Ultimately this security problem must be solved in the X dis-
play server, since even applications that don’t use Tk can be tricked into abusing your

230 The Send Command

DRAFT (3/11/93): Distribution Restricted

account by sufficiently sophisticated applications on the same display. However without
Tk it is relatively difficult to create invasive applications; with Tk andsend it is trivial.

You can protect yourself fairly well if you employ a key-based protection scheme for
your display likexauth instead of a host-based scheme likexhost . Unfortunately,
many people use thexhost program for protection: it specifies a set of machine names to
the server and any process running on any of those machines can establish connections
with the server. Anyone with an account on any of the listed machines can connect to your
server, send to your Tk applications, and misuse your account.

If you currently usexhost for protection, you should learn aboutxauth and switch
to it as soon as possible.Xauth generates an obscure authorization string and tells the
server not to allow an application to use the display unless it can produce the string. Typi-
cally the string is stored in a file that can only be read by a particular user, so this restricts
use of the display to the one user. If you want to allow other users to access your display
then you can give them a copy of your authorization file, or you can change the protection
on your authorization file so that it is group-readable. Of course, you should be aware that
in doing so you are effectively giving these other users full use of your account.

231

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 24
Modal Interactions

Usually the user of a Tk application has complete flexibility to determine what to do next.
The application offers a variety of panels and controls and the user selects between them.
However, there are times when it’s useful to restrict the user’s range of choices or force the
user to do things in a certain order; these are calledmodal interactions. The best example
of a modal interaction is a dialog box: the application is carrying out some function
requested by the user (e.g. writing information to a file) when it discovers that it needs
additional input from the user (e.g. the name of the file to write). It displays a dialog box
and forces the user to respond to the dialog box (e.g. type in a file name). Once the user
responds, the application completes the operation and returns to its normal mode of opera-
tion where the user can do anything he or she pleases.

Tk provides two mechanisms for use in modal interactions. First, thegrab command
allows you to temporarily restrict the user so that he or she can only interact with certain
of the application’s windows (e.g. only the dialog box). Second, thetkwait command
allows you to suspend the evaluation of a script (e.g. saving a file) until a particular event
has occurred (e.g. the user responded to the dialog box), and then continue the script once
this has happened. These commands are summarized in Table 24.1.

24.1 Grabs

Mouse events such as button presses and mouse motion are normally delivered to the win-
dow under the mouse cursor. However, it is possible for a window to claim ownership of
the mouse so that mouse events are only delivered to that window and its descendants in
the Tk window hierarchy. This is called agrab. When the mouse is over one of the win-

FIGURE 24

TABLE 24

232 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

dows in the grab sub-tree, mouse events are delivered and processed just as if no grab
were in effect. When the mouse is outside the grab sub-tree, button presses and releases
and mouse motion events are delivered to the grab window instead of the window under
the mouse, and window entry and exit events are discarded. Thus a grab prevents the user
from interacting with windows outside the grab sub-tree.

Thegrab command sets and releases grabs. For example, if you’ve created a dialog
box named.dlg and you want to restrict interactions to.dlg and its subwindows, you
can invoke the command

grab set .dlg

Once the user has responded to the dialog box you can release the grab with the command

grab release .dlg

If the dialog box is destroyed after the user has responded to it then there’s no need to
invokegrab release : Tk releases the grab automatically when the grab window is
destroyed.

Tk provides two forms of grab, local and global. A local grab affects only the grab-
bing application: if the user moves the mouse into some other application on the display
then he or she can interact with the other application as usual. You should normally use
local grabs, and they are the default in thegrab set command. A global grab takes over

Table 24.1.A summary of thegrab andtkwait commands.

grab ?-global ? window
Same asgrab set command described below.

grab current ?window?
Returns the name of the current grab window forwindow’s display, or an
empty string if there is no grab for that display. If window is omitted,
returns a list of all windows grabbed by this application for all displays.

grab release window
Releases the grab onwindow, if there is one.

grab set ?-global ? window
Sets a grab onwindow, releasing any previous grab onwindow’s display. If
- global is specified then the grab is global; otherwise it is local.

grab status window
Returnsnone if no grab is currently set onwindow, local if a local grab
is set, andglobal if a global grab is set.

tkwait variable varName
Waits until variablevarName changes value, then returns.

tkwait visibility window
Waits until the visibility state ofwindow changes, then returns.

tkwait window window
Waits untilwindow is destroyed, then returns.

24.2 Keyboard handling during grabs 233

DRAFT (3/11/93): Distribution Restricted

the entire display so that you cannot interact with any application except the one that set
the grab. To request a global grab, specify the-global switch tograb set as in the
following command:

grab set -global .dlg

Global grabs are rarely needed and they are tricky to use (if you forget to release the grab
your display will become unusable). One place where they are used is for pull-down
menus.

Note: X will not let you set a global grab on a window unless it is visible. Section 24.3 describes
how to use thetkwait visibility command to wait for a window to become visible.
Local grabs are not subject to the visibility restriction.

The most common way to use grabs is to set a grab on a top-level window so that only
a single panel or dialog box is active during the grab. However, it is possible for the grab
sub-tree to contain additional top-level windows; when this happens then all of the panels
or dialogs corresponding to those top-level windows will be active during the grab.

24.2 Keyboard handling during grabs

Local grabs have no effect on the way the keyboard is handled: keystrokes received any-
where in the application will be forwarded to the focus window as usual. Most likely you
will set the focus to a window in the grab sub-tree when you set the grab. Windows out-
side the grab sub-tree can’t receive any mouse events so they are unlikely to claim the
focus away from the grab sub-tree. Thus the grab is likely to have the effect of restricting
the keyboard focus to the grab sub-tree; however, you are free to move the focus anywhere
you wish. If you move the mouse to another application then the focus will move to that
other application just as if there had been no grab.

During global grabs Tk also sets a grab on the keyboard so that keyboard events go to
the grabbing application even if the mouse is over some other application. This means that
you cannot use the keyboard to interact with any other application. Once keyboard events
arrive at the grabbing application they are forwarded to the focus window in the usual
fashion.

24.3 Waiting: the tkwait command

The second aspect of a modal interaction is waiting. Typically you will want to suspend a
script during a modal interaction, then resume it when the interaction is complete. For
example, if you display a file selection dialog during a file write operation, you will prob-
ably want to wait for the user to respond to the dialog, then complete the file write using
the name supplied in the dialog interaction. Or, when you start up an application you
might wish to display an introductory panel that describes the application and keep this

234 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

panel visible while the application initializes itself; before going off to do the main initial-
ization you’ll want to be sure that the panel is on the screen. Thetkwait command can
be used to wait in situations like these.

Tkwait has three forms, each of which waits for a different event to occur. The first
form is used to wait for a window to be destroyed, as in the following command:

tkwait window .dlg

This command will not return until.dlg has been destroyed. You might invoke this com-
mand after creating a dialog box and setting a grab on it; the command won’t return until
after the user has interacted with the dialog in a way that causes it to be destroyed. While
tkwait is waiting the application responds to events so the user can interact with the
application’s windows. In the dialog box example you should have set up bindings that
destroy the dialog once the user’s response is complete (e.g. the user clicks on theOK but-
ton). The bindings for the dialog box might also save additional information in variables
(such as the name of a file, or an identifier for the button that was pressed). This informa-
tion can be used oncetkwait returns.

The script below creates a panel with two buttons labelledOK andCancel , waits for
the user to click on one of the buttons, and then deletes the panel:

toplevel .panel
button .panel.ok -text OK -command {

set label OK
destroy .panel

}
button .panel.cancel -text Cancel -command {

set label Cancel
destroy .panel

}
pack .panel.ok -side left
pack .panel.cancel -side right
grab set .panel
tkwait window panel

When thetkwait command returns the variablelabel will contain the label of the but-
ton that was clicked upon.

The second form fortkwait waits for the visibility state of a window to change. For
example, the command

tkwait visibility .intro

will not return until the visibility state of.intro has changed. Typically this command is
invoked just after a new window has been created, in which case it won’t return until the
window has become visible on the screen.Tkwait visibility can be used to wait
for a window to become visible before setting a global grab on it, or to make sure that an
introductory panel is on the screen before invoking a lengthy initialization script. Like all
forms oftkwait , tkwait visibility will respond to events while waiting.

24.3 Waiting: the tkwait command 235

DRAFT (3/11/93): Distribution Restricted

The third form oftkwait provides a general mechanism for implementing other
forms of waiting. In this form, the command doesn’t return until a given variable has been
modified. For example, the command

tkwait variable x

will not return until variablex has been modified. This form oftkwait is typically used
in conjunction with event bindings that modify the variable. For example, the following
procedure usestkwait variable to implement something analogous totkwait
window except that you can specify more than one window and it will return as soon as
any of the named windows has been deleted (it returns the name of the window that was
deleted):

proc waitWindows args {
global dead
foreach w $args {

bind $w <Destroy> "set dead $w"
}
tkwait variable dead
return $dead

}

236 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

237

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 25
Odds and Ends

This chapter describes five additional Tk commands:destroy , which deletes widgets;
after , which delays execution or schedules a script for execution later;update , which
forces operations that are normally delayed, such as screen updates, to be done immedi-
ately;winfo , which provides a variety of information about windows, such as their
dimensions and children; andtk , which provides access to various internals of the Tk
toolkit. Table 25.1 summarizes these commands. This chapter also describes several glo-
bal variables that are read or written by Tk and may be useful to Tk applications.

25.1 Destroying windows

Thedestroy command is used to delete windows. It takes any number of window
names as arguments, for example:

destroy .dlg1 .dlg2

This command will destroy.dlg1 and.dlg2 , including all of their widget state and the
widget commands named after the windows. It also recursively destroys all of their chil-
dren. The command “destroy . ” will destroy all of the windows in the application;
when this happens most Tk applications (e.g.wish) will exit.

FIGURE 25

TABLE 25

238 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

25.2 Time delays

Theafter command allows you to incorporate timing into your Tk applications. It has
two forms. If you invokeafter with a single argument, then the argument specifies a
delay in milliseconds, and the command delays for that number of milliseconds before
returning. For example,

after 500

will delay for 500 milliseconds before returning. If you specify additional arguments, as in
the command

after 5000 {puts "Time’s up!"}

then the after command returns immediately without any delay. However, it concatenates
all of the additional arguments (with spaces between them) and arranges for the resulting
script to be evaluated after the specified delay. The script will be evaluated at global level
as an event handler, just like the scripts for bindings. In the example above, a message will
be printed on standard output after five seconds. The script below usesafter to build a
general-purpose blinking utility:

Table 25.1.A summary of the commands discussed in this chapter.

after ms
Delays forms milliseconds.

after ms arg ?arg arg ...?
Concatenates all thearg values (with spaces as separators) and arranges for
the resulting script to be executed afterms milliseconds have elapsed.
Returns without waiting for the script to be executed.

destroy window ?window window ...?
Deletes each of thewindow s, plus all of the windows descended from them.
The corresponding widget commands (and all widget state) are also deleted.

tk colormodel window ?value?
Sets the color model forwindow’s screen to value, which must be either
color or monochrome . If value isn’t specified, returns the current color
model forwindow’s screen.

update ?idletasks ?
 Brings display up to date and processes all pending events. Ifidletasks
is specified then no events are processed except those in the idle task queue
(delayed updates).

winfo option ?arg arg ...?
Returns various pieces of information about windows, depending on
option argument. See reference documentation for details.

25.3 The update command 239

DRAFT (3/11/93): Distribution Restricted

proc blink {w option value1 value2 interval} {
$w conf ig $option $value1
after $interval [list blink $w $option \

$value2 $value1 $interval]
}
blink .b -bg red black 500

Theblink procedure takes five arguments, which are the name of a widget, the name of
an option for that widget, two values for that option, and a blink interval in milliseconds.
The procedure arranges for the option to switch back and forth between the two values at
the given blink interval. It does this by immediately setting the option to the first value and
then arranging for itself to be invoked again at the end of the next interval with the two
option values reversed, so that option is set to the other value. The procedure reschedules
itself each time it is called, so it executes periodically forever. Blink runs “in back-
ground”: it always returns immediately, then gets reinvoked by Tk’s timer code after the
next interval expires.

25.3 The update command

Tk normally delays operations such as screen updates until the application is idle. For
example, if you invoke a widget command to change the text in a button, the button will
not redisplay itself immediately. Instead, it will schedule the redisplay to be done later and
return immediately. When the application becomes idle (i.e. the current event handler has
completed, plus all events have been processed, so that the application has nothing to do
but wait for the next event) then it carries out all the delayed operations. Tk delays redis-
plays because it saves work in situations where a script changes the same window several
different times: with delayed redisplay the window only gets redrawn once at the end. Tk
also delays many other operations, such as geometry recalculations and window creation.

For the most part the delays are invisible. Tk rarely does very much work at a time, so
it becomes idle again very quickly and updates the screen before the user can perceive any
delay. However, there are times when the delays are inconvenient. For example, if a script
is going to execute for a long time then you may wish to bring the screen up to date at cer-
tain times during the execution of the script. Theupdate command allows you to do this.
If you invoke the command

update idletasks

then all of the delayed operations like redisplays will be carried out immediately; the com-
mand will not return until they have finished.

The following procedure usesupdate to flash a widget synchronously:

proc f lash {w option value1 value2 interval count} {
for {set i 0} {$i < $count} {incr i} {

$w conf ig $option $value1

240 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

update idletasks
after $interval
$w conf ig $option $value2
update idletasks
after $interval

}
}

This procedure is similar toblink except that it runs in foreground instead of back-
ground: it flashes the option a given number of times and doesn’t return until the flashing
is complete. Tk never becomes idle during the execution of this procedure so theupdate
commands are needed to force the widget to be redisplayed. Without theupdate com-
mands no changes would appear on the screen until the script completed, at which point
the widget’s option would change tovalue2 .

If you invokeupdate without theidletasks argument, then all pending events
will be processed too. You might do this in the middle of a long calculation to allow the
application to respond to user interactions (e.g. the user might invoke a “cancel” button to
abort the calculation).

25.4 Information about windows

Thewinfo command provides information about windows. It has more than 40 different
forms for retrieving different kinds of information. For example,

winfo exists .x

returns a0 or 1 value to indicate whether there exists a window.x ,

winfo children .menu

returns a list whose elements are all of the children of.menu ,

winfo screenmmheight .dialog

returns the height of.dialog ’s screen in millimeters, and

winfo class .x

returns the class of widget.x (e.g.button , text , etc.). Refer to the Tk reference docu-
mentation for details on all of the options provided bywinfo .

25.5 The tk command: color models

Thetk command provides access to various aspects of Tk’s internal state. At present only
one aspect is accessible: thecolor model. At any given time, Tk treats each screen as being
either a color or monochrome screen; this is the screen’s color model. When creating wid-
gets, Tk will use different defaults for configuration options depending on the color model

25.6 Variables managed by Tk 241

DRAFT (3/11/93): Distribution Restricted

of the screen. If you specify a color other than black or white for a screen whose color
model is monochrome, then Tk will round the color to either black or white.

By default Tk picks a color model for a screen based on the number of bits per pixel
for that screen: if the screen has only a few bits per pixel (currently four or fewer) then Tk
uses a monochrome color model; if the screen has many bits per pixel then Tk treats the
screen as color. You can invoke thetk command to change Tk’s color model from the
default. For example, the following command sets the color model for the main window’s
screen to monochrome:

tk colormodel . monochrome

If the color model for a screen is color and Tk finds itself unable to allocate a color for
a window on that screen (e.g. because the colormap is full) then Tk generates an error that
is processed using the standardtkerror mechanism described in Section 19.7. Tk then
changes the color model to monochrome and retries the allocation so the application can
continue in monochrome mode. If the application finds a way to free up more colors, it can
reset the color model back to color again.

25.6 Variables managed by Tk

Several global variables are significant to Tk, either because it sets them or because it
reads them and adjusts its behavior accordingly. You may find the following variables use-
ful:

In addition to these variables, which may be useful to the application, Tk also uses the
associative arraytk_priv to store information for its private use. Applications should
not use or modify any of the values intk_priv .

tk_version Set by Tk to its current version number. Has a form like
3.2, where 3 is the major version number and 2 is a minor
version number. Changes in the major version number
imply incompatible changes in Tk.

tk_library Set by Tk to hold the path name of the directory containing
a library of standard Tk scripts and demonstrations. This
variable is set from theTK_LIBRARY environment vari-
able, if it exists, or from a compiled-in default otherwise.

tk_strictMotif If set to 1 by the application, then Tk goes out of its way to
observe strict Motif compliance. Otherwise Tk deviates
slightly from Motif (e.g. by highlighting active elements
when the mouse cursor passes over them).

242 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

243

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 26
Examples

This chapter presents two relatively complete examples that illustrate many of the features
of Tk. The first example is a procedure that generates dialog boxes, waits for the user to
respond, and returns the user’s response. The second example is an application that allows
you to “remote-control” any other Tk application on the display: it connects itself to that
application so that you can type commands to the other application and see the results.

26.1 A procedure that generates dialog boxes

The first example is a Tcl procedure nameddialog that creates dialog boxes like those
shown in Figure 26.1. Each dialog contains a text message at the top plus an optional bit-
map to the left of the text. At the bottom of the dialog box is a row of any number of but-
tons. One of the buttons may be specified as the default button, in which case it is
displayed in a sunken frame.Dialog creates a dialog box of this form, then waits for the
user to respond by clicking on a button. Once the user has responded,dialog destroys
the dialog box and returns the index of the button that was invoked. If the user types a
return and a default button was specified, then the index of the default button is returned.
Dialog sets a grab so that the user must respond to the dialog box before interacting with
the application in any other way.

Figures 26.2 and 26.3 show the Tcl code fordialog . It takes six or more arguments.
The first argument,w, gives the name to use for the dialog’s top-level window. The second
argument,title , gives a title for the window manager to display in the dialog’s decora-
tive frame. The third argument,text , gives a message to display on the right side of the
dialog. The fourth argument,bitmap , gives the name of a bitmap to display on the left

FIGURE 26

TABLE 26

244 Examples

DRAFT (3/11/93): Distribution Restricted

side of the dialog; if it is specified as an empty string then no bitmap is displayed.The fifth
argument,default , gives the index of a default button, or -1 if there is to be no default
button. The sixth and additional arguments contain the strings to display in the buttons.

The code fordialog divides into five major parts, each headed by a comment. The
first part of the procedure creates the dialog’s top-level window. It sets up information for
the window manager, such as the title for the window’s frame and the text to display in the
dialog’s icon. Then it creates two frames, one for the bitmap and message at the top of the
dialog, and the other for the row of buttons at the bottom.

The second part ofdialog creates a message widget to hold the dialog’s text string
and a label widget to hold its bitmap, if any. The widgets are arranged on the right and left
sides of the top frame, respectively, using the packer.

Figure 26.1.Two examples of dialog boxes created by thedialog procedure. Underneath each
dialog box is the command that created it.

dialog .d {File Modif ied} {File "tkInt.h" has been modif ied since the last \
time it was saved. Do you want to save it before exiting the application?} \
warning 0 {Save File} {Discard Changes} {Return To Editor}

dialog .d {Not Responding} {The f ile server isn’t responding right
now; I’ll keep trying.} {} -1 OK

26.1 A procedure that generates dialog boxes 245

DRAFT (3/11/93): Distribution Restricted

proc dialog {w title text bitmap default args} {
global button

1. Create the top-level window and divide it into top
and bottom parts.

toplevel $w -class Dialog
wm title $w $title
wm iconname $w Dialog
frame $w.top -relief raised -bd 1
pack $w.top -side top -f ill both
frame $w.bot -relief raised -bd 1
pack $w.bot -side bottom -f ill both

2. Fill the top part with the bitmap and message.

message $w.top.msg -width 3i -text $text \
-font -Adobe-Times-Medium-R-Normal-*-180-*

pack $w.top.msg -side right -expand 1 -f ill both \
-padx 5m -pady 5m

if {$bitmap != ""} {
label $w.top.bitmap -bitmap $bitmap
pack $w.top.bitmap -side left -padx 5m -pady 5m

}

3. Create a row of buttons at the bottom of the dialog.

set i 0
foreach but $args {

button $w.bot.button$i -text $but -command \
"set button $i"

if {$i == $default} {
frame $w.bot.default -relief sunken -bd 1
pack $w.bot.default -side left -expand 1\

-padx 5m -pady 2m
pack $w.bot.button$i -in $w.bot.default -side left

\
-padx 3m -pady 3m -ipadx 2m -ipady 1m

} else {
pack $w.bot.button$i -side left -expand 1 \

-padx 5m -pady 5m -ipadx 2m -ipady 1m
}
incr i

}

Figure 26.2.A Tcl procedure that generates dialog boxes with a text message, optional bitmap, and
any number of buttons. Continued in Figure 26.3.

246 Examples

DRAFT (3/11/93): Distribution Restricted

The third part of the procedure creates the row of buttons. Sinceargs was used as
the name of the last argument todialog , the procedure can take any number of argu-
ments greater than or equal to five;args will be a list whose elements are all the addi-
tional arguments afterdefault . For each of these arguments,dialog creates a button
that displays the argument value as its text. The default button, if any, is packed in a spe-
cial sunken ring ($w.bot.default). The buttons are packed with the-expand option
so that they spread themselves evenly across the width of the dialog box; if there is only a
single button then it will be centered. Each button is configured so that when the user
clicks on it the global variablebutton will be set to the index of that button.

Note: It’s important that the value of the-command option is specified in quotes, not curly
braces, so that$i (the button’s index) is substituted into the command immediately. If the
value were surrounded by braces, then the value of$i wouldn’t be substituted until the
command is actually executed; this would use the value of global variablei , not the
variable i from thedialog procedure.

The fourth part ofdialog sets up a binding so that typing a return to the dialog box
will flash the default button and set thebutton variable just as if the button had been
invoked. It also sets the input focus to the dialog box and sets a local grab on the dialog
box to give it control over both the keyboard and the mouse.

The last part of the procedure waits for the user to interact with the dialog. It does this
by waiting for thebutton variable to change value, which will happen when the user

4. Set up a binding for <Return>, if there’s a default,
set a grab, and claim the focus too.

if {$default > 0} {
bind $w <Return> "$w.bot.button$default f lash; \

set button $default"
}
set oldFocus [focus]
grab $w
focus $w

5. Wait for the user to respond, then restore the focus
and return the index of the selected button.

tkwait variable button
destroy $w
focus $oldFocus
return $button

}

Figure 26.3.Procedure to generate dialog boxes, cont’d.

26.2 A remote-control application 247

DRAFT (3/11/93): Distribution Restricted

clicks on a button in the dialog box or types a return. When thetkwait command
returns, thebutton variable contains the index of the selected button.Dialog then
destroys the dialog box (which also releases its grab), restores the input focus to its old
window, and returns.

26.2 A remote-control application

The second example is an application calledrmt , which allows you to type Tcl commands
interactively to any Tk application on the display. Figure 26.4 shows whatrmt looks like
on the screen. It contains a menu that can be used to select an application plus a text wid-
get and scrollbar. At any given timermt is “connected” to one application; lines that you
type in the text widget are forwarded to the current application usingsend and the results
are displayed in the text widget.Rmt displays the name of the current application in the
prompt at the beginning of each command line. You can change the current application by
selecting an entry in the menu, in which case the prompt will change to display the new
application’s name. You can also type commands to thermt application itself by selecting
rmt as the current application. Whenrmt starts up it connects to itself.

The script that createsrmt is shown in Figures 26.5-26.9. The script is designed to be
placed into a file and executed directly. The first line of the script,

Figure 26.4.Thermt application allows users to type interactively to any Tk application on the
display. It contains a menu for selecting an application plus a text widget for typing commands and
displaying results. In this example the user has issued commands to three different applications:
first thermt application itself, then an application namedwidget , and finally one named
rolodex (the prompt on each command line indicates the name of the application that executed
the command).

248 Examples

DRAFT (3/11/93): Distribution Restricted

#!/usr/local/bin/wish -f

is similar to the first line of a shell script: if you invoke the script file directly from a shell
then the operating system will invokewish instead, passing it two arguments:-f and the
name of the script file.Wish will then execute the contents of the file as a Tcl script.

#!/usr/local/bin/wish -f

1. Create basic application structure: menu bar on top of
text widget, scrollbar on right.

frame .menu -relief raised -bd 2
pack .menu -side top -f ill x
scrollbar .s -relief f lat -command ".t yview"
pack .s -side right -f ill y
text .t -relief raised -bd 2 -yscrollcommand ".s set" \

-setgrid true
.t tag conf igure bold -font *-Courier-Bold-R-Normal-*-120-*
pack .t -side left -f ill both -expand 1
wm title . "Tk Remote Controller"
wm iconname . "Tk Remote"
wm minsize . 1 1

2. Create menu button and menus.

menubutton .menu.f ile -text "File" -underline 0 -menu
.menu.f ile.m
menu .menu.f ile.m
.menu.f ile.m add cascade -label "Select Application" \

-underline 0 -accelerator => -menu .menu.f ile.m.apps
.menu.f ile.m add command -label "Quit" -underline 0 \

-command "destroy ."
menu .menu.f ile.m.apps -postcommand f illAppsMenu
pack .menu.f ile -side left
tk_menuBar .menu .menu.f ile
proc f illAppsMenu {} {

catch {.menu.f ile.m.apps delete 0 last}
foreach i [lsort [winfo interps]] {

.menu.f ile.m.apps add command -label $i \
-command [list newApp $i]

}
}

Figure 26.5.A script that generatesrmt , an application for remotely controlloing other Tk
applications. This figure contains basic window set-up code. The script continues in Figures 26.6-
26.9

26.2 A remote-control application 249

DRAFT (3/11/93): Distribution Restricted

Thermt script contains about 100 lines of Tcl code in all, which divide into seven
major parts. It makes extensive use of the facilities of text widgets, including marks and
tags; you may wish to review the reference documentation for texts as you read through
the code forrmt .

The first part of thermt script sets up the overall window structure, consisting of a
menu bar, a text widget, and a scrollbar. It also passes information to the window manager,
such as titles to appear in the window’s decorative frame and icon. The command “wm
minsize . 1 1 ” enables interactive resizing by the user as described in Section 22.1.
Since the text widget has been packed with the-expand option set to 1, it will receive
any extra space; since it is last in the packing order, it will also shrink if the user resizes

3. Create bindings for text widget to allow commands to
be entered and information to be selected. New characters
can only be added at the end of the text (can't ever move
insertion point).

bind .t <1> {
set tk_priv(selectMode) char
.t mark set anchor @%x,%y
if {[lindex [%W conf ig -state] 4] == "normal"} {focus %W}

}
bind .t <Double-1> {

set tk_priv(selectMode) word
tk_textSelectTo .t @%x,%y

}
bind .t <Triple-1> {

set tk_priv(selectMode) line
tk_textSelectTo .t @%x,%y

}
bind .t <Return> {.t insert insert \n; invoke}
bind .t <BackSpace> backspace
bind .t <Control-h> backspace
bind .t <Delete> backspace
bind .t <Control-v> {

.t insert insert [selection get]

.t yview -pickplace insert
if [string match *.0 [.t index insert]] {

invoke
}

}

Figure 26.6.Bindings for thermt application. These are modified versions of the default Tk
bindings, so they use existing Tk facilities such as the variabletk_priv and the procedure
tk_textSelectTo

250 Examples

DRAFT (3/11/93): Distribution Restricted

the application to a smaller size than it initially requested. The-setgrid option for the
text widget enables gridding as described in Section 22.2: interactive resizing will always
leave the text widget with dimensions that are an integral number of characters.

The command

.t tag conf igure bold -font \
-Courier-Bold-R-Normal--120-*

creates atag namedbold for the text widget and associates a bold font with that tag. The
script will apply this tag to the characters in the prompts so that they appear in boldface,
whereas the commands and results appear in a normal font.

The second part of the script fills in the menu with two entries. The top entry displays
a cascaded submenu with the names of all applications, and the bottom entry is a com-
mand entry that causesrmt to exit (it executes the script “destroy . ”, which destroys
all of the application’s windows; whenwish discovers that it no longer has any windows
left then it exits). The cascaded submenu is named.menu.f ile.m.apps ; its
- postcommand option causes the script “f illAppsMenu ” to be executed each time
the submenu is posted on the screen.FillAppsMenu is a Tcl procedure defined at the
bottom of Figure 26.5; it deletes any existing entries in the submenu, extracts the names of
all applications on the display with “winfo interps ”, and creates one entry in the
menu for each application name. When one of these entries is invoked by the user, the pro-
cedurenewApp will be invoked with the application’s name as argument.

Note: The command “[list newApp $i] ” cr eates a Tcl list with two elements. As
described in Section XXX, when a list is executed as a command each element of the list
becomes one word for the command. Thus this form guarantees that newApp will be
invoked with a single argument consisting of the value of$i at the time the menu entry is
created, even if$i contains spaces or other special characters.

The third part of thermt script, shown in Figure 26.6, creates event bindings for the
text widget. Tk defines several default bindings for texts, which handle mouse clicks,

4. Procedure to backspace over one character, as long as
the character isn't part of the prompt.

proc backspace {} {
if {[.t index promptEnd] != [.t index {insert - 1 char}]}

{
.t delete {insert - 1 char} insert
.t yview -pickplace insert

}
}

Figure 26.7.Procedure that implements backspacing forrmt .

26.2 A remote-control application 251

DRAFT (3/11/93): Distribution Restricted

character insertion, and common editing keystrokes such as backspace. However, rmt ’s
text widget has special behavior that is inconsistent with the default bindings, so the code
in Figure 26.6 overrides many of the defaults. You don’t need to understand the details of
the bindings; they have been copied from the defaults in Tk’s startup script and modified
so that (a) the user can’t move the insertion cursor (it always has to be at the end of the
text), (b) the procedurebackspace is invoked instead of Tk’s normal text backspace
procedure, and (c) the procedureinvoke is called whenever the user types a return or
copies in text that ends with a newline.

The fourth part of thermt script is a procedure calledbackspace . It implements
backspacing in a way that disallows backspacing over the prompt (see Figure 26.7).
Backspace checks to see if the character just before the insertion cursor is the last char-
acter of the most recent prompt. If not, then it deletes the character; if so, then it does noth-

5. Procedure that's invoked when return is typed: if
there’s not yet a complete command (e.g. braces are open)
then do nothing. Otherwise, execute command (locally or
remotely), output the result or error message, and issue
a new prompt.

proc invoke {} {
global app
set cmd [.t get {promptEnd + 1 char} insert]
if [info complete $cmd] {

if {$app == [winfo name .]} {
catch [list uplevel #0 $cmd] msg

} else {
catch [list send $app $cmd] msg

}
if {$msg != ""} {

.t insert insert $msg\n
}
prompt

}
.t yview -pickplace insert

}

proc prompt {} {
global app
.t insert insert "$app: "
.t mark set promptEnd {insert - 1 char}
.t tag add bold {insert linestart} promptEnd

}

Figure 26.8.Procedures that execute commands and output prompts forrmt .

252 Examples

DRAFT (3/11/93): Distribution Restricted

ing, so that the prompt never gets erased. To keep track of the most recent prompt,rmt
sets amark namedpromptEnd at the position of the last character in the most recent
prompt (see theprompt procedure below for the code that setspromptEnd).

The fifth part of thermt script handles command invocation; it consists of two proce-
dures,invoke andprompt (see Figure 26.8). Theinvoke procedure is called when-
ever a newline character has been added to the text widget, either because the user typed a
return or because the selection was copied into the widget and it ended with a newline.
Invoke extracts the command from the text widget (everything from the end of the prompt
to the current insertion point) and then invokesinfo complete to make sure that the
command is complete. If the command contains unmatched braces or unmatched quotes
theninvoke returns without executing the command so the user can enter the rest of the
command; after each return is typedinvoke will check again, and once the command is
complete it will be invoked. The command is invoked by executing it locally or sending it
to the appropriate application. If the command returns a non-empty string (either as a nor-
mal reult or as an error message) then the string is added to the end of the text widget.
Finally, invoke outputs a new prompt and scrolls the view in the text to keep the inser-
tion cursor visible.

Theprompt procedure is responsible for outputting prompts. It just adds characters
to the text widget, sets thepromptEnd mark to the last character in the prompt, and then
applies thebold tag to all the characters in the prompt so that they’ll appear in a bold
font.

6. Procedure to select a new application. Also changes
the prompt on the current command line to ref lect the new
name.

proc newApp appName {
global app
set app $appName
.t delete {promptEnd linestart} promptEnd
.t insert promptEnd "$appName:"
.t tag add bold {promptEnd linestart} promptEnd

}

7. Miscellaneous initialization.

set app [winfo name .]
prompt
focus .t

Figure 26.9.Code to select a new application for rmt, plus miscellaneous initialization code.

26.2 A remote-control application 253

DRAFT (3/11/93): Distribution Restricted

The sixth part of thermt script consists of thenewApp procedure in Figure 26.9.
NewApp is invoked to change the current application. It sets the global variableapp ,
which identifies the current application, then overwrites the most recent prompt to display
the new application’s name.

The last part ofrmt consists of miscellaneous initialization (see Figure 26.9). It con-
nects the application to itself initially, outputs the initial prompt, and sets the input focus to
the text window.

254 Examples

DRAFT (3/11/93): Distribution Restricted

1

DRAFT (4/16/93): Distribution Restricted

Chapter 27 Philosophy 257
27.1 C vs. Tcl: primitives 257

27.2 Object names 259

27.3 Commands: action-oriented vs. object-oriented260

27.4 Application prefixes 261

27.5 Representing information262

Chapter 28 Interpreters and Script Evaluation263
28.1 Interpreters 263

28.2 A simple Tcl application 263

28.3 Other evaluation procedures266

28.4 Deleting interpreters 266

Chapter 29 Creating New Tcl Commands269
29.1 Command procedures269

29.2 Registering commands271

29.3 The result protocol 272

29.4 Procedures for managing the result273

29.5 ClientData and deletion callbacks275

29.6 Deleting commands 278

Chapter 30 Parsing 279
30.1 Numbers and booleans279

30.2 Expression evaluation282

30.3 Manipulating lists 283

Chapter 31 Exceptions 285
31.1 Completion codes. 285

31.2 Augmenting the stack trace in errorInfo288

31.3 Setting errorCode 290

2

DRAFT (4/16/93): Distribution Restricted

Chapter 32 Accessing Tcl Variables 291
32.1 Naming variables 291

32.2 Setting variable values293

32.3 Reading variables 295

32.4 Unsetting variables 296

32.5 Setting and unsetting variable traces296

32.6 Trace callbacks 297

32.7 Whole-array traces 299

32.8 Multiple traces 299

32.9 Unset callbacks 299

32.10 Non-existent variables300

32.11 Querying trace information 300

Chapter 33 Hash Tables 301
33.1 Keys and values 303

33.2 Creating and deleting hash tables303

33.3 Creating entries 304

33.4 Finding existing entries 305

33.5 Searching 306

33.6 Deleting entries 307

33.7 Statistics 307

Chapter 34 String Utilities 309
34.1 Dynamic strings 309

34.2 Command completeness312

34.3 String matching 313

Chapter 35 POSIX Utilities 315
35.1 Tilde expansion 315

35.2 Generating messages317

3

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses318

35.4 Background processes319

4

DRAFT (4/16/93): Distribution Restricted

Part III:

Writing Tcl Applications
 in C

256

DRAFT (4/16/93): Distribution Restricted

257

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 27
Philosophy

This part of the book describes how to write C applications based on Tcl. Since the Tcl
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in the Tcl library to create interpret-
ers, evaluate Tcl scripts, and extend the built-in command set with new application-
specific commands. Tcl also provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to access Tcl variables, parse argu-
ments, manipulate Tcl lists, evaluate Tcl expressions, and so on. This chapter discusses
several high-level issues to consider when designing a Tcl application, such as what new
Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided by the Tcl
library.

Note: The interfaces described in Part III are those that will be available in Tcl 7.0, which had
not been released at the timex this draft was prepared. Thus there may some differences
between what you read here and what you can do with your current version of Tcl. There
are almost no differences in functionality; the differences mostly have to do with the
interfaces. Be sure to consult your manual entries when you actually write C code.

27.1 C vs. Tcl: primitives

In order to make a Tcl application as flexible and powerful as possible, you should orga-
nize its C code as a set of new Tcl commands that provide a clean set ofprimitive opera-
tions. You need not implement every imaginable feature in C, since new features can
always be implemented later as Tcl scripts. The purpose of the C code is to provide basic

FIGURE 27

TABLE 27

258 Philosophy

DRAFT (4/16/93): Distribution Restricted

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it won’t be possible to write
scripts that use the functions separately and your application won’t be very flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together with Tcl scripts. You’ll probably find that many of your application’s
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionality as a Tcl
script or as C code, it’s generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamically, and you can debug them more quickly
because you don’t have to recompile after each bug fix. However, there are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that aren’t accessible in Tcl scripts. For example, the
Tcl built-in commands don’t provide access to network sockets, so if you want to use the
network you’ll have to write C code to do it. Second, you may be concerned about effi-
ciency. For example, if you need to carry out intensive numerical calculations, or if you
need to operate on large arrays of data, you’ll be able to do it more efficiently in C than in
Tcl. The third reason for implementing in C is complexity. If you are manipulating com-
plex data structures, or if you’re writing a large amount of code, the task will probably be
more manageable in C than in Tcl. Tcl provides very little structure; this makes it easy to
connect different things together but hard to manage large complex scripts. C provides
more structure, which is cumbersome when you’re implementing small things but indis-
pensable when you’re implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for a large number of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

• What is the complete weather situation at station X?

• What is the current temperature at station X?

• Which station in the country has the highest current temperature?

• At which stations is it currently raining?
You’ll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a separate Tcl com-
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you’d have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I’d suggest providing just two commands in C: awthr_stations com-
mand that returns a list of all the stations for which weather reports are available, and a

27.2 Object names 259

DRAFT (4/16/93): Distribution Restricted

wthr_report command that returns a complete weather report for a particular station.
These commands don’t implement any of the above features directly, but they make it
easy to implement all of the features. For example, Tcl already has aputs command that
can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script that callswthr_report , formats
the report, and prints it withputs . The second feature (printing just the temperature) can
be implemented by extracing the temperature from the result ofwthr_report and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that invokewthr_report
for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that lower-level commands are better than higher-
level ones. However, if you make the commands too low level then Tcl scripts will
become unnecessarily complicated and you may lose opportunities for efficient implemen-
tation. For example, instead of providing a single command that retrieves a weather report,
you might provide separate Tcl commands for each step of the protocol that retrieves a
report: one command to connect to a server, one command to select a particular station,
one command to request a report for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commands don’t provide
any additional functionality and they make it more tedious to write Tcl scripts. Further-
more, suppose that network communication delays are high, so that it takes a long time to
get a response from a weather server, but the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as a single report. In this
situation you might want an even higher level interface, perhaps a Tcl command that takes
any number of stations as arguments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much more efficient implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
application’s key functions are available individually through Tcl commands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities for efficient implementation.

27.2 Object names

The easiest way to think about your C code is in terms ofobjects. The C code in a Tcl
application typically implements a few new kinds of objects, which are manipulated by
the application’s new Tcl commands. In the C code of your application you’ll probably
refer to the objects using pointers to the C structures that represent the objects, but you
can’t use pointers in Tcl scripts. Strings of some sort will have to be used in the Tcl scripts,

260 Philosophy

DRAFT (4/16/93): Distribution Restricted

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewthr_stations command returns a list of station names, and the
wthr_report command takes a station name as an argument.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings as argument. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary number. I don’t recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings don’t convey any meaningful information to the
user.

Instead, I recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. The Tcl library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names like.menu.help for windows in order to indicate the
window’s position in the window hierarchy. Tcl uses names likef ile3 or f ile4 for
open files; these names don’t convey a lot of information, but they at least include the let-
ters “f ile ” to suggest that they’re used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I’d recommend using sta-
tion names such as the city where the station is located. Or, if the U.S. Weather Service has
well-defined names for its stations then I’d suggest using those names.

27.3 Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which I callaction-oriented andobject-oriented. In the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as an argument. The weather application is action-oriented: thewthr_re-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as an argument. Tcl’s file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked its first argu-
ment specifies the operation to perform on the object. Tk’s widgets work this way: if there

27.4 Application prefixes 261

DRAFT (4/16/93): Distribution Restricted

is a button widget.b then there is also a command named.b ; you can invoke
“ .b f lash ” to flash the widget or “.b invoke ” to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouldn’t make sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practice Tcl applications have large numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a large number of stations. In addition, the application probably doesn’t need to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objects isn’t too great
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. Tk’s widgets fit this description. The object-oriented approach has
the advantage that it doesn’t pollute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don’t conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for different objects to implement the same action in different ways.
For example, if.t is a text widget and.l is a listbox widget in Tk, thecommands
“.t yview 0 ” and “.l yview 0 ” are implemented in very different ways even
though they produce the same logical effect (adjust the view to make the topmost line vis-
ible at the top of the window).

Note: Although Tk’s file commands are implemented using the action-oriented approach, in
retrospect I wish that I had used the object-oriented fashion, since open files fit the object-
oriented model nicely.

27.4 Application prefixes

If you use the action-oriented approach, I strongly recommend that you add a unique pre-
fix to each of your command names. For example, I used the prefix “wthr_ ” for the
weather commands. This guarantees that your commands won’t conflict with other com-
mands as long as your prefix is unique, and it makes it possible to merge different applica-
tions together without name conflicts. I also recommend using prefixes for Tcl procedures
that you define and for global variables, again so that multiple packages can be used
together.

262 Philosophy

DRAFT (4/16/93): Distribution Restricted

27.5 Representing information

The information passed into and out of your Tcl commands should be formatted for
easy processing by Tcl scripts, not necessarily for maximum human readability. For exam-
ple, the command that retrieves a weather report shouldn’t return English prose describing
the weather. Instead, it should return the information in a structured form that makes it
easy to extract the different components under the control of a Tcl script. You might return
the report as a list consisting of pairs of elements, where the first element of each pair is a
keyword and the second element is a value associated with that keyword, such as:

temp 53 hi 68 lo 37 precip .02 sky part

This indicates that the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain has fallen in the last 24 hours,
and the sky is partly cloudy. Or, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
value is stored in that element. Either of these approaches would make it easy to extract
components of the report. You can always reformat the information to make it more read-
able just before displaying it to the user.

Although machine readability is more important than human readability, you need not
gratuitously sacrifice readability. For example, the above list could have been encoded as

18 53 7 68 9 37 5 .02 17 4

where18 is a keyword for current temperature,7 for 24-hour high, and so on. This is
unnecessarily confusing and will not make your scripts any more efficient, since Tcl han-
dles strings at least as efficiently as numbers.

263

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 28
Interpreters and Script Evaluation

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tcl scripts. Table 28.1 summarizes the library procedures that are discussed in the
chapter.

28.1 Interpreters

The central data structure manipulated by the Tcl library is a C structure of typeTcl_In-
terp . I’ll refer to these structures (or pointers to them) asinterpreters. Almost all of the
Tcl library procedures take a pointer to aTcl_Interp structure as an argument. An
interpreter embodies the execution state of a Tcl script, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands and Tcl procedures. Most Tcl applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

28.2 A simple T cl application

The program below illustrates how to create and use an interpreter. It is a simple but com-
plete Tcl application that evaluates a Tcl script stored in a file and prints the result or error
message, if any.

#include <stdio.h>
#include <tcl.h>

FIGURE 28

TABLE 28

264 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

main(int argc, char *argv[]) {
Tcl_Interp *interp;
int code;

if (argc != 2) {
fprintf(stderr, "Wrong # arguments: ");
fprintf("should be \"%s f ileName\"\n",

argv[0]);
exit(1);

}

interp = Tcl_CreateInterp();
code = Tcl_EvalFile(interp, argv[1]);
if (*interp->result != 0) {

printf("%s\n", interp->result);
}
if (code != TCL_OK) {

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evaluating Tcl

Tcl_Interp *Tcl_CreateInterp(void)
Create a new interpreter and return a token for it.

Tcl_DeleteInterp(Tcl_Interp *interp)
Delete an interpreter.

int Tcl_Eval(Tcl_Interp *interp, char *script)
Evaluatescript in interp and return its completion code. The result or
error string will be ininterp->result .

int Tcl_EvalFile(Tcl_Interp *interp, char *f ileName)
Evaluate the contents of filef ileName in interp and return its comple-
tion code. The result or error string will be ininterp->result .

int Tcl_GlobalEval(Tcl_Interp *interp, char *script)
Evaluatescript in interp at global level and return its completion code.
The result or error string will be ininterp->result .

int Tcl_VarEval(Tcl_Interp *interp, char *string, char *string,
... (char *) NULL)

Concatenate all of thestring arguments into a single string, evaluate the
resulting script ininterp , and return its completion code. The result or
error string will be ininterp->result .

int Tcl_RecordAndEval(Tcl_Interp *interp, char *script, int
f lags)
Recordsscript as an event ininterp ’s history list and evaluates it if
eval is non-zero (TCL_NO_EVAL means don’t evaluate the script). Returns
a completion code such asTCL_OK and leaves result or error message in
interp- >result .

28.2 A simple Tcl application 265

DRAFT (4/16/93): Distribution Restricted

exit(1);
}
exit(0);

}

If Tcl has been installed properly at your site you can copy the C code into a file named
simple.c and compile it with the following shell command:

cc simple.c -ltcl -lm

Once you’ve compiled the program you can evaluate a script filetest.tcl by typing
the following command to your shell:

a.out test.tcl

The code forsimple.c starts out with#include statements forstdio.h and
tcl.h . You’ll need to includetcl.h in every file that uses Tcl structures or procedures,
since it defines structures likeTcl_Interp and declares the Tcl library procedures.

After checking to be sure that a file name was specified on the command line, the pro-
gram invokesTcl_CreateInterp to create a new interpreter. The new interpreter will
contain all of the built-in commands described in Part I but no Tcl procedures or variables.
It will have an empty execution stack.Tcl_CreateInterp returns a pointer to the
Tcl_Interp structure for the interpreter, which is used as a token for the interpreter
when calling other Tcl procedures. Most of the fields of theTcl_Interp structure are
hidden so that they cannot be accessed outside the Tcl library. The only accessible fields
are those that describe the result of the last script evaluation; they’ll be discussed later.

Nextsimple.c callsTcl_EvalFile with the interpreter and the name of the
script file as arguments.Tcl_EvalFile reads the file and evaluates its contents as a Tcl
script, just as if you had invoked the Tcl source command with the file name as an argu-
ment. WhenTcl_EvalFile returns the execution stack for the interpreter will once
again be empty.

Tcl_EvalFile returns two pieces of information: an integercompletion code and
a string. The completion code is returned as the result of the procedure. It will be either
TCL_OK, which means that the script completed normally, orTCL_ERROR, which means
that an error of some sort occurred (e.g. the script file couldn’t be read or the script aborted
with an error). The second piece of information returned byTcl_EvalFile is a string, a
pointer to which is returned ininterp->result . If the completion code isTCL_OK
theninterp->result points to the script’s result; if the completion code isTCL_ER-
ROR theninterp->result points to a message describing the error.

Note: The result string belongs to Tcl. It may or may not be dynamically allocated. You can read
it and copy it, but you should not modify it and you should not save pointers to it. Tcl may
overwrite the string or reallocate its memory during the next call toTcl_EvalFile or
any of the other procedures that evaluate scripts. Chapter 29 discusses the result string in
more detail.

266 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

If the result string is non-empty thensimple.c prints it, regardless of whether it is
an error message or a normal result. Then the program exits. It follows the UNIX style of
exiting with a status of 1 if an error occurred and 0 if it completed successfully.

When the script file is evaluated only the built-in Tcl commands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

28.3 Other evaluation procedures

Tcl provides three other procedures besidesTcl_EvalFile for evaluating scripts. Each
of these procedures takes an interpreter as its first argument and each returns a completion
code and string, just likeTcl_EvalFile . Tcl_Eval is similar toTcl_EvalFile
except that its second argument is a Tcl script rather than a file name:

code = Tcl_Eval(interp, "set a 44");

Tcl_VarEval takes a variable number of string arguments terminated with aNULL
argument. It concatenates the strings and evaluates the result as a Tcl script. For example,
the statement below has the same effect as the one above:

code = Tcl_VarEval(interp, "set a ", "44",
(char *) NULL);

Tcl_GlobalEval is similar toTcl_Eval except that it evaluates the script at global
variable context (as if the execution stack were empty) even when procedures are active. It
is used in special cases such as theuplevel command and Tk’s event bindings.

If you want a script to be recorded on the Tcl history list, callTcl_RecordAndE-
val instead ofTcl_Eval :

char *script;
int code;
...
code = Tcl_RecordAndEval(interp, script, 0);

Tcl_RecordAndEval is identical toTcl_Eval except that it records the script as a
new entry on the history list before invoking it. Tcl only records the scripts passed to
Tcl_RecordAndEval , so you can select which ones to record. Typically you’ll record
only commands that were typed interactively. The last argument toTcl_RecordAndE-
val is normally0; if you specifyTCL_NO_EVAL instead, then Tcl will record the script
without actually evaluating it.

28.4 Deleting interpreters

The procedureTcl_DeleteInterp may be called to destroy an interpreter and all its
associated state. It is invoked with an interpreter as argument:

28.4 Deleting interpreters 267

DRAFT (4/16/93): Distribution Restricted

Tcl_DeleteInterp(interp);

OnceTcl_DeleteInterp returns you should never use the interpreter again. In appli-
cations likesimple.c , which use a single interpreter throughout their lifetime, there’s
no need to delete the interpreter.

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

269

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 29
Creating New Tcl Commands

Each Tcl command is represented by acommand procedure written in C. When the com-
mand is invoked during script evaluation, Tcl calls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er’s result string. Table 29.1 summarizes the Tcl library procedures that are discussed in
the chapter.

29.1 Command procedures

The interface to a command procedure is defined by theTcl_CmdProc procedure proto-
type:

typedef int Tcl_CmdProc(ClientData clientData,
Tcl_Interp *interp, int argc,
char *argv[]);

Each command procedure takes four arguments. The first,clientData , will be dis-
cussed in Section 29.5 below. The second,interp , is the interpreter in which the com-
mand was invoked. The third and fourth arguments have the same meaning as theargc
andargv arguments to a C main program:argc specifies the total number of words in
the Tcl command andargv is an array of pointers to the values of the words. Tcl pro-
cesses all the special characters such as$ and [] before invoking command procedures,
so the values inargc reflect any substitutions that were specified for the command. The
command name is included inargc andargv , andargv[argc] is NULL. A command

FIGURE 29

TABLE 29

270 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

procedure returns two values just likeTcl_Eval andTcl_EvalFile . It returns an
integer completion code as its result (e.g.TCL_OK or TCL_ERROR) and it leaves a result
string or error message ininterp->result .

Here is the command procedure for a new command calledeq that compares its two
arguments for equality:

int EqCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], argv[2]) == 0) {

interp->result = "1";
} else {

interp->result = "0";
}

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating the

Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
 Tcl_CmdProc *cmdProc, ClientData clientData,
 Tcl_CmdDeleteProc *deleteProc)

Defines a new command ininterp with namecmdName. When the com-
mand is invokedcmdProc will be called; if the command is ever deleted
thendeleteProc will be called.

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
If cmdName is a command or procedure ininterp then deletes it and
returns 0. Otherwise returns -1.

Tcl_SetResult(Tcl_Interp *interp, char *string,Tcl_FreeProc
*freeProc)
Arrange forstring (or a copy of it) to become the result forinterp .
FreeProc identifies a procedure to call to eventually free the result, or it
may beTCL_STATIC, TCL_DYNAMIC, orTCL_VOLATILE.

Tcl_AppendResult(Tcl_Interp *interp, char *string,
 char *string, ... (char *) NULL)

Appends each of thestring arguments to the result string ininterp .
Tcl_AppendElement(Tcl_Interp *interp, char *string)

Formatsstring as a Tcl list element and appends it to the result string in
interp , with a preceding separator space if needed.

Tcl_ResetResult(Tcl_Interp *interp)
Resetsinterp ’s result to the default empty state, freeing up any dynami-
cally-allocated memory associated with it.

29.2 Registering commands 271

DRAFT (4/16/93): Distribution Restricted

return TCL_OK;
}

EqCmd checks to see that was called with exactly two arguments (three words, including
the command name), and if not it stores an error message ininterp->result and
returnsTCL_ERROR. Otherwise it compares its two argument strings and stores a string in
interp- >result to indicate whether or not they were equal; then it returnsTCL_OK
to indicate that the command completed normally.

29.2 Registering commands

In order for a command procedure to be invoked by Tcl, you must register it by calling
Tcl_CreateCommand . For example,EqCmd could be registered with the following
statement:

Tcl_CreateCommand(interp, "eq", EqCmd,
(ClientData *) NULL,
(Tcl_CmdDeleteProc *) NULL);

The first argument toTcl_CreateCommand identifies the interpreter in which the com-
mand will be used. The second argument specifies the name for the command and the third
argument specifies its command procedure. The fourth and fifth arguments are discussed
in Section 29.5 below; they can be specified asNULL for simple commands like this one.
Tcl_CreateCommand will create a new command forinterp namedeq ; if there
already existed a command by that name then it is deleted. Whenevereq is invoked in
interp Tcl will call EqCmd to carry out its function.

After the above call toTcl_CreateCommand , eq can be used in scripts just like
any other command:

eq abc def

0

eq 1 1

1

set w .dlg
set w2 .dlg.ok
eq $w.ok $w2

1

When processing scripts, Tcl carries out all of the command-line substitutions before call-
ing the command procedure, so whenEqCmd is called for the lasteq command above
bothargv[1] andargv[2] are “.dlg.ok ”.

Tcl_CreateCommand is usually called by applications during initialization to reg-
ister application-specific commands. However, new commands can also be created at any
time while an application is running. For example, theproc command creates a new

272 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

command for each Tcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you’ll see an example where the command procedure for
one command creates a new command.

Commands created byTcl_CreateCommand are indistinguishable from Tcl’s
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by callingTcl_CreateCommand
with the name of the command and a new command procedure.

29.3 The result protocol

TheEqCmd procedure returns a result by settinginterp- >result to point to one of
several static strings. However, the result string can also be managed in several other
ways. Tcl defines a protocol for setting and using the result, which allows for dynamically-
allocated results and provides a small static area to avoid memory-allocation overheads in
simple cases.

The full definition of theTcl_Interp structure, as visible outside the Tcl library, is
as follows:

typedef struct Tcl_Interp {
char *result;
Tcl_FreeProc *freeProc;
int errorLine;

} Tcl_Interp;

The first field,result , points to the interpreter’s current result. The second field,
freeProc , is used when freeing dynamically-allocated results; it will be discussed
below. The third field,errorLine , is related to error handling and is described in Sec-
tion XXX.

When Tcl invokes a command procedure theresult andfreeProc fields always
have well-defined values.Interp->result points to a small character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(the first character of the array is zero).Interp->freeProc is always zero. This state
is referred to as theinitialized state for the result. Not only is this the state of the result
when command procedures are invoked, but many Tcl library procedures also expect the
interpreter’s result to be in the initialized state when they are invoked. If a command pro-
cedure wishes to return an empty string as its result, it simply returns without modifying
interp- >result or interp->freeProc .

There are three ways that a command procedure can specify a non-empty result. First,
it can modifyinterp->result to point to a static string as inEqCmd. A string can be
considered to be static as long as its value will not change before the next Tcl command
procedure is invoked. For example, Tk stores the name of each widget in a dynamically-
allocated record associated with the widget, and it returns widget names by setting
interp->result to the name string in the widget record. This string is dynamically

29.4 Procedures for managing the result 273

DRAFT (4/16/93): Distribution Restricted

allocated, but widgets are deleted by Tcl commands so the string is guaranteed not to be
recycled before the next Tcl command executes. If a string is stored in automatic storage
associated with a procedure it cannot be treated as static, since its value will change as
soon as some other procedure re-uses the stack space.

The second way to set a result is to use the pre-allocated space in theTcl_Interp
structure. In its initialized stateinterp->result points to this space. If a command
procedure wishes to return a small result it can copy it to the location pointed to by
interp- >result . For example, the procedure below implements a command
numwords that returns a decimal string giving a count of its arguments:

int NumwordsCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

sprintf(interp->result, "%d", argc);
return TCL_OK;

}

The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbolTCL_RESULT_SIZE defined bytcl.h . It’s generally
safe to use this area for printing a few numbers and/or short strings, but it isnot safe to
copy strings of unbounded length to the pre-allocated space.

The third way to set a result is to allocate memory with a storage allocator such as
malloc , store the result string there, and setinterp->result to the address of the
memory. In order to ensure that the memory is eventually freed, you must also set
interp->freeProc to the address of a procedure that Tcl can call to free the memory,
such asfree . In this case the dynamically-allocated memory becomes the property of
Tcl. Once Tcl has finished using the result it will free it by invoking the procedure speci-
fied byinterp->freeProc . This procedure must match the following procedure pro-
totype:

typedef void Tcl_FreeProc(char *blockPtr);

The procedure will be invoked with a single argument containing the address that you
stored ininterp->result . In most cases you’ll usemalloc for dynamic allocation
and thus setinterp->freeProc to free , but the mechanism is general enough to
support other storage allocators too.

29.4 Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than settinginterp->result andinterp->freeProc directly. The first
procedure isTcl_SetResult , which simply implements the protocol described above.
For example,EqCmd could have replaced the statement

interp->result = "wrong # args";

274 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

with a call toTcl_SetResult as follows:

Tcl_SetResult(interp, "wrong # args", TCL_STATIC);

The first argument toTcl_SetResult is an interpreter. The second argument is a string
to use as result, and the third argument gives additional information about the string.
TCL_STATIC means that the string is static, soTcl_SetResult just stores its address
into interp->result . A value ofTCL_VOLATILE for the third argument means that
the string is about to change (e.g. it’s stored in the procedure’s stack frame) so a copy must
be made for the result.Tcl_SetResult will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (settinginterp->freeProc appropriately). If the third argument isTCL_DY-
NAMIC it means that the string was allocated withmalloc and is now the property of
Tcl: Tcl_SetResult will set interp- >freeProc to free as described above.
Finally, the third argument may be the address of a procedure suitable for use in
interp- >freeProc ; in this case the string is dynamically-allocated and Tcl will even-
tually call the specified procedure to free it.

Tcl_AppendResult makes it easy to build up results in pieces. It takes any num-
ber of strings as arguments and appends them to the interpreter’s result in order. As the
result grows in lengthTcl_AppendResult allocates new memory for it.Tcl_Ap-
pendResult may be called repeatedly to build up long results incrementally, and it does
this efficiently even if the result becomes very large (e.g. it allocates extra memory so that
it doesn’t have to copy the existing result into a larger area on each call). Here is an imple-
mentation of theconcat command that usesTcl_AppendResult :

int ConcatCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int i;
if (argc == 1) {

return TCL_OK;
}
Tcl_AppendResult(interp, argv[1], (char *) NULL);
for (i = 2; i < argc; i++) {

Tcl_AppendResult(interp, " ", argv[i],
(char *) NULL);

}
return TCL_OK;

}

TheNULL argument in each call toTcl_AppendResult marks the end of the strings to
append. Since the result is initially empty, the first call toTcl_AppendResult just sets
the result toargv[1] ; each additional call appends one more argument preceded by a
separator space.

Tcl_AppendElement is similar toTcl_AppendResult except that it only
adds one string to the result at a time and it appends it as a list element instead of a raw

29.5 ClientData and deletion callbacks 275

DRAFT (4/16/93): Distribution Restricted

string. It’s useful for creating lists. For example, here is a simple implementation of the
list command:

int ListCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv) {

int i;
for (i = 1; i < argc; i++) {

Tcl_AppendElement(interp, argv[i]);
}
return TCL_OK;

}

Each call toTcl_AppendElement adds one argument to the result. The argument is
converted to a proper list element before appending it to the result (e.g. it is enclosed in
braces if it contains space characters).Tcl_AppendElement also adds a separator
space if it’s needed before the new element (no space is added if the result is currently
empty or if its characters are “ { “, which means that the new element will be the first ele-
ment of a sub-list). For example, ifListCmd is invoked with four arguments, “list ”,
“abc ”, “ x y ”, and “} ”, it produces the following result:

abc {x y} \}

Like Tcl_AppendResult , Tcl_AppendElement grows the result space if needed
and does it in a way that is efficient even for large results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procedureTcl_ResetResult . It will invoke
interp- >freeProc if needed and then restore the interpreter’s result to its initialized
state. You can then store a new value in the result in any of the usual ways. You need not
call Tcl_ResetResult if you’re going to useTcl_SetResult to store the new
result, sinceTcl_SetResult takes care of freeing any existing result.

29.5 ClientData and deletion callbacks

The fourth and fifth arguments toTcl_CreateCommand , clientData and
deleteProc , were not discussed in Section 29.2 but they are useful when commands
are associated with objects. TheclientData argument is used to pass a one-word value
to a command procedure. Tcl saves theclientData value that is passed toTcl_Cre-
ateCommand and uses it as the first argument to the command procedure. The type
ClientData is large enough to hold either an integer or a pointer value. It is usually the
address of a C data structure for the command to manipulate.

Tcl and Tk usecallback procedures in many places. A callback is a procedure whose
address is passed to a library procedure and saved in a data structure. Later, at some signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

276 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

dure is an example of a callback: Tcl associates the procedure address with a Tcl command
name and calls the procedure whenever the command is invoked. When a callback is spec-
ified in Tcl or Tk aClientData argument is usually provided along with the procedure
address and theClientData value is passed to the callback as its first argument.

ThedeleteProc argument toTcl_CreateCommand specifies a deletion call-
back. If its value isn’t NULL then it is the address of a procedure for Tcl to invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl_CmdDeleteProc(ClientData clientData);

The deletion callback takes a single argument, which is the ClientData value specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 shows howclientData anddeleteProc can be used to implement
counter objects. The application containing this code must registerCounterCmd as a Tcl
command using the following call:

Tcl_CreateCommand(interp, "counter", CounterCmd,
(ClientData) NULL, (Tcl_CmdDeleteProc) NULL);

New counters can then be created by invoking thecounter Tcl command; each invoca-
tion creates a new object and returns a name for that object:

counter

ctr0

counter

ctr1

CounterCmd is the command procedure forcounter . It allocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variableid , arranges for that name to be returned as the command’s result, and
incrementsid so that the next new counter will get a different name.

This example uses the object-oriented style described in Section 27.3, where there is
one command for each counter object. As part of creating a new counterCounterCmd
creates a new Tcl command named after the counter. It uses the address of theCounter
structure as theClientData for the command and specifiesDeleteCounter as the
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its command:get , which returns the current value of the
counter, andnext , which increments the counter’s value. Oncectr0 andctr1 were
created above, the following Tcl commands could be invoked:

ctr0 next; ctr0 next; ctr0 get

2

ctr1 get

0

29.5 ClientData and deletion callbacks 277

DRAFT (4/16/93): Distribution Restricted

typedef struct {
int value;

} Counter;

int CounterCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Counter *counterPtr;
static int id = 0;
if (argc != 1) {

interp->result = "wrong # args";
return TCL_ERROR;

}
counterPtr = (Counter *) malloc(sizeof(Counter));
counterPtr->value = 0;
sprintf(interp->result, "ctr%d", id);
id++;
Tcl_CreateCommand(interp, interp->result, ObjectCmd,

(ClientData) counterPtr, DeleteCounter);
return TCL_OK;

}

int ObjectCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

CounterPtr *counterPtr = (Counter *) clientData;
if (argc != 2) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], "get") == 0) {

sprintf(interp->result, "%d", counterPtr->value);
} else if (strcmp(argv[1], "next") == 0) {

counterPtr->value++;
} else {

Tcl_AppendResult(interp, "bad counter command \"",
argv[1], "\": should be get or next",
(char *) NULL);

return TCL_ERROR;
}
return TCL_OK;

}

void DeleteCounter(ClientData clientData) {
free((char *) clientData);

}

Figure 29.1. An implementation of counter objects.

278 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

ctr0 clear

bad counter command "clear": should be get or next

The procedureObjectCmd implements the Tcl commands for all existing counters. It is
passed a differentClientData argument for each counter, which it casts back to a value
of typeCounter * . ObjectCmd then checksargv[1] to see which command option
was invoked. If it wasget then it returns the counter’s value as a decimal string; if it was
next then it increments the counter’s value and leavesinterp->result untouched
so that the result is an empty string. If an unknown command was invoked then
ObjectCmd callsTcl_AppendResult to create a useful error message.

Note: It is not safe to create the error message with a statement like
sprintf(interp->result, "bad counter command \"%s\": "

"should be get or next", argv[1]);

This is unsafe becauseargv[1] has unknown length. It could be so long thatsprintf
overflows the space allocated in the interpreter and corrupts memory .
Tcl_AppendResult is safe because it checks the lengths of its arguments and
allocates as much space as needed for the result.

To destroy a counter you can delete its Tcl command, for example:

rename ctr0 {}

As part of deleting the command Tcl will invoke DeleteProc , which frees up the mem-
ory associated with the counter.

This object-oriented implementation of counter objects is similar to Tk’s implementa-
tion of widgets: there is one Tcl command to create new instances of each counter or wid-
get, and one Tcl command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientData argument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

29.6 Deleting commands

Tcl commands can be removed from an interpreter by callingTcl_DeleteCommand .
For example, the statement below will delete thectr0 command in the same way as the
rename command above:

Tcl_DeleteCommand(interp, "ctr0");

If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, and Tcl procedures.

279

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 30
Parsing

This chapter describes Tcl library procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the words of Tcl commands. See Table 30.1 for a summary of
the procedures.

30.1 Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean values:Tcl_GetInt ,
Tcl_GetDouble , andTcl_GetBoolean . Each of these procedures takes three argu-
ments: an interpreter, a string, and a pointer to a place to store the value of the string. Each
of the procedures returnsTCL_OK or TCL_ERROR to indicate whether the string was
parsed successfully. For example, the command procedure below usesTcl_GetInt to
implement asum command:

int SumCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int num1, num2;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_GetInt(interp, argv[1], &num1) != TCL_OK) {

return TCL_ERROR;
}

FIGURE 30

TABLE 30

280 Parsing

DRAFT (4/16/93): Distribution Restricted

if (Tcl_GetInt(interp, argv[2], &num2) != TCL_OK) {
return TCL_ERROR;

}
sprintf(interp->result, "%d", num1+num2);

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)
Parsesstring as an integer, stores value at*intPtr , and returns
TCL_OK. If an error occurs while parsing, returnsTCL_ERROR and stores
an error message ininterp->result .

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *dou-
blePtr)
Same asTcl_GetInt except parsesstring as a floating-point value and
stores value at*doublePtr .

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *intPtr)
Same asTcl_GetInt except parsesstring as a boolean and stores 0/1
value at*intPtr . See Table 30.2 for legal values forstring .

int Tcl_ExprString(Tcl_Interp *interp, char *string)
Evaluatesstring as an expression, stores value as string in
interp- >result , and returnsTCL_OK. If an error occurs during evalua-
tion, returnsTCL_ERROR and stores an error message ininterp-
>result .

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *longPtr)
Same asTcl_ExprString except stores value as a long integer at
*longPtr . An error occurs if the value can’t be converted to an integer.

int Tcl_ExprDouble(Tcl_Interp *interp, char *string,
 double *doublePtr)

Same asTcl_ExprString except stores value as double-precision float-
ing-point value at*doublePtr . An error occurs if the value can’t be con-
verted to a floating-point number.

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int
*intPtr)
Same asTcl_ExprString except stores value as 0/1 integer at
*intPtr . An error occurs if the value can’t be converted to a boolean
value.

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr,
char ***argvPtr)

Parseslist as a Tcl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elements at*argcPtr and
pointer to array at*argvPtr . ReturnsTCL_OK. If an error occurs while
parsinglist , returnsTCL_ERROR and stores an error message in
interp- >result . Space for string array is dynamically allocated; caller
must eventually pass*argvPtr to free .

char *Tcl_Merge(int argc, char **argv)
Inverse ofTcl_SplitList . Returns pointer to Tcl list whose elements are
the members ofargv . Result is dynamically-allocated; caller must eventu-
ally pass it tofree .

30.1 Numbers and booleans 281

DRAFT (4/16/93): Distribution Restricted

return TCL_OK;
}

SumCmd expects each of the command’s two arguments to be an integer. It calls
Tcl_GetInt to convert them from strings to integers, then it sums the values and con-
verts the result back to a decimal string ininterp->result . Tcl_GetInt accepts
strings in decimal (e.g. “492 ”), hexadecimal (e.g. “0x1ae ”) or octal (e.g. “017 ”), and
allows them to be signed and preceded by white space. If the string is in one of these for-
mats thenTcl_GetInt returnsTCL_OK and stores the value of the string in the location
pointed to by its last argument. If the string can’t be parsed correctly thenTcl_GetInt
stores an error message ininterp->result and returnsTCL_ERROR; SumCmd then
returnsTCL_ERROR to its caller withinterp->result still pointing to the error mes-
sage fromTcl_GetInt .

Here are some examples of invoking thesum command in Tcl scripts:

sum 2 3

5

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl_GetDouble is similar toTcl_GetInt except that it expects the string to
consist of a floating-point number such as “-2.2 ” or “3.0e-6 ” or “7”. It stores the dou-
ble-precision value of the number at the location given by its last argument or returns an
error in the same way asTcl_GetInt . Tcl_GetBoolean is similar except that it con-
verts the string to a 0 or 1 integer value, which it stores at the location given by its last
argument. Any of the true values listed in Table 30.2 converts to 1 and any of the false val-
ues converts to 0.

Table 30.2. Legal values for boolean strings parsed byTcl_GetBoolean . Any of the values
may be abbreviated or capitalized.

True Values False Values

1 0

true false

on off

yes no

282 Parsing

DRAFT (4/16/93): Distribution Restricted

Many other Tcl and Tk library procedures are similar toTcl_GetInt in the way
they use aninterp argument for error reporting. These procedures all expect the inter-
preter’s result to be in its initialized state when they are called. If they complete success-
fully then they usually leave the result in that state; if an error occurs then they put an error
message in the result. The procedures’ return values indicate whether they succeeded, usu-
ally as aTCL_OK or TCL_ERROR completion code but sometimes in other forms such as
aNULL string pointer. When an error occurs, all the caller needs to do is to return a failure
itself, leaving the error message in the interpreter’s result.

30.2 Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX:Tcl_ExprString , Tcl_ExprLong , Tcl_ExprDouble , and
Tcl_ExprBoolean . These procedures are similar except that they return the result of
the expression in different forms as indicated by their names. Here is a slightly simplified
implementation of theexpr command, which usesTcl_ExprString :

int ExprCmd(ClientData clientData, TclInterp *interp,
int argc, char *argv[]) {

if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
return Tcl_ExprString(interp, argv[1]);

}

All ExprCmd does is to check its argument count and then callTcl_ExprString .
Tcl_ExprString evaluates its second argument as a Tcl expression and returns the
value as a string ininterp->result . Like Tcl_GetInt , it returnsTCL_OK if it
evaluated the expression successfully; if an error occurs it leaves an error message in
interp->result and returnsTCL_ERROR.

Tcl_ExprLong , Tcl_ExprDouble , andTcl_ExprBoolean are similar to
Tcl_ExprString except that they return the expression’s result as a long integer, dou-
ble-precision floating-point number, or 0/1 integer, respectively. Each of the procedures
takes an additional argument that points to a place to store the result. For these procedures
the result must be convertible to the requested type. For example, if “abc ” is passed to
Tcl_ExprLong then it will return an error because “abc ” has no integer value. If the
string “40” is passed toTcl_ExprBoolean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

30.3 Manipulating lists 283

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists

Tcl provides several procedures for manipulating lists, of which the most useful are
Tcl_SplitList andTcl_Merge . Given a string in the form of a Tcl list,
Tcl_SplitList extracts the elements and returns them as an array of string pointers.
For example, here is an implementation of Tcl’s lindex command that uses
Tcl_SplitList :

int LindexCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int index, listArgc;
char **listArgv;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_GetInt(interp, argv[2], &index) != TCL_OK) {

return TCL_ERROR;
}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
if ((index >= 0) && (index < listArgc)) {

Tcl_SetResult(interp, listArgv[index],
TCL_VOLATILE);

}
free((char *) listArgv);
return TCL_OK;

}

LindexCmd checks its argument count, callsTcl_GetInt to convertargv[2] (the
index) into an integer, then callsTcl_SplitList to parse the list.Tcl_SplitList
returns a count of the number of elements in the list tolistArgc . It also creates an array
of pointers to the values of the elements and stores a pointer to that array inlistArgv . If
Tcl_SplitList encounters an error in parsing the list (e.g. unmatched braces) then it
returnsTCL_ERROR and leaves an error message ininterp- >result ; otherwise it
returnsTCL_OK.

Tcl_SplitList callsmalloc to allocate space for the array of pointers and for
the string values of the elements; the caller must free up this space by passinglistArgv
to free . The space for both pointers and strings is allocated in a single block of memory
so only a single call tofree is needed.LindexCmd callsTcl_SetResult to copy the
desired element into the interpreter’s result. It specifiesTCL_VOLATILE to indicate that
the string value is about to be destroyed (its memory will be freed);Tcl_SetResult
will make a copy of thelistArgv[index] for interp ’s result. If the specified index

284 Parsing

DRAFT (4/16/93): Distribution Restricted

is outside the range of elements in the list thenLindexCmd leavesinterp->result
in its initialized state, which returns an empty string.

Tcl_Merge is the inverse ofTcl_SplitList . Givenargc andargv informa-
tion describing the elements of a list, it returns amalloc ’ed string containing the list.
Tcl_Merge always succeeds so it doesn’t need aninterp argument for error reporting.
Here’s another implementation of thelist command, which usesTcl_Merge :

int ListCmd2(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

interp->result = Tcl_Merge(argc-1, argv+1);
interp->freeProc = (Tcl_FreeProc *) free;
return TCL_OK;

}

ListCmd2 takes the result fromTcl_Merge and stores it in the interpreter’s result.
Since the list string is dynamically allocatedListCmd2 setsinterp->freeProc to
free so that Tcl will call free to release the storage for the list when it is no longer
needed.

285

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 31
Exceptions

Many Tcl commands, such asif andwhile , have arguments that are Tcl scripts. The
command procedures for these commands invokeTcl_Eval recursively to evaluate the
scripts. IfTcl_Eval returns a completion code other thanTCL_OK then anexception is
said to have occurred. Exceptions includeTCL_ERROR, which was described in Chapter
31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theerrorInfo anderrorCode variables. See Table 31.1 for a sum-
mary of procedures related to exception handling.

31.1 Completion codes.

Table 31.2 lists the full set of Tcl completion codes that may be returned by command pro-
cedures. If a command procedure returns anything other thanTCL_OK then Tcl aborts the
evaluation of the script containing the command and returns the same completion code as
the result ofTcl_Eval (or Tcl_EvalFile , etc).TCL_OK andTCL_ERROR have
already been discussed; they are used for normal returns and errors, respectively. The
completion codesTCL_BREAK or TCL_CONTINUE occur ifbreak or continue com-
mands are invoked by a script; in both of these cases the interpreter’s result will be an
empty string. TheTCL_RETURN completion code occurs ifreturn is invoked; in this
case the interpreter’s result will be the intended result of the enclosing procedure.

As an example of how to generate aTCL_BREAK completion code, here is the com-
mand procedure for thebreak command:

FIGURE 31

TABLE 31

286 Exceptions

DRAFT (4/16/93): Distribution Restricted

int BreakCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
return TCL_BREAK;

}

TCL_BREAK, TCL_CONTINUE, andTCL_RETURN are used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code other thanTCL_OK
from Tcl_Eval should immediately return that same completion code to its caller with-
out modifying the interpreter’s result. However, a few commands process some of the spe-
cial completion codes without returning them upward. For example, here is an
implementation of thewhile command:

Table 31.1. A summary of Tcl library procedures for settingerrorInfo anderrorCode .

Tcl_AddErrorInfo(Tcl_Interp *interp, char *message)
Addsmessage to stack trace being formed inthe errorInfo variable.

Tcl_SetErrorCode(Tcl_Interp *interp, char *f ield, char *f ield,
... (char *) NULL)

Creates a list whose elements are thef ield arguments, and sets the
errorCode variable to the contents of the list.

Table 31.2. Completion codes that may be returned by command procedures and procedures that
evaluate scripts, such asTcl_Eval .

Completion Code Meaning

TCL_OK Command completed normally.

TCL_ERROR Unrecoverable error occurred.

TCL_BREAK Break command was invoked.

TCL_CONTINUE Continue command was invoked.

TCL_RETURN Return command was invoked.

31.1 Completion codes. 287

DRAFT (4/16/93): Distribution Restricted

int WhileCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int bool;
int code;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
while (1) {

Tcl_ResetResult(interp);
if (Tcl_ExprBoolean(interp, argv[1], &bool)

!= TCL_OK) {
return TCL_ERROR;

}
if (bool == 0) {

return TCL_OK;
}
code = Tcl_Eval(interp, argv[2]);
if (code == TCL_CONTINUE) {

continue;
} else if (code == TCL_BREAK) {

return TCL_OK;
} else if (code != TCL_OK) {

return code;
}

}
}

After checking its argument count,WhileCmd enters a loop where each iteration evalu-
ates the command’s first argument as an expression and its second argument as a script. If
an error occurs while evaluating the expression thenWhileCmd returns the error. If the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the script argument. If the completion code is
TCL_CONTINUE thenWhileCmd goes on to the next loop iteration. If the code is
TCL_BREAK thenWhileCmd ends the execution of the command and returnsTCL_OK
to its caller. If Tcl_Eval returns any other completion code besidesTCL_OK thenWhi-
leCmd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERROR or TCL_RETURN codes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then Tcl checks the completion code to be sure it is eitherTCL_OK or TCL_ERROR.
If not then Tcl turns the return into an error with an appropriate error message. Further-
more, if aTCL_BREAK or TCL_CONTINUE exception unwinds all the way out of a pro-
cedure then Tcl also turns it into an error. For example:

288 Exceptions

DRAFT (4/16/93): Distribution Restricted

break

invoked "break" outside of a loop

proc badbreak {} {break}
badbreak

invoked "break" outside of a loop

Thus applications need not worry about completion codes other thenTCL_OK and
TCL_ERROR when they evaluate scripts from the outermost level.

31.2 Augmenting the stack trace in errorInfo

When an error occurs, Tcl modifies theerrorInfo global variable to hold a stack trace
of the commands that were being evaluated at the time of the error. It does this by calling
the procedureTcl_AddErrorInfo , which has the following prototype:

void Tcl_AddErrorInfo(Tcl_Interp *interp,
char *message)

The first call toTcl_AddErrorInfo after an error setserrorInfo to the error mes-
sage stored ininterp- >result and then appendsmessage . Each subsubsequent call
for the same error appendsmessage to errorInfo ’s current value. Whenever a com-
mand procedure returnsTCL_ERRORTcl_Eval callsTcl_AddErrorInfo to log
information about the command that was being executed. If there are nested calls to
Tcl_Eval then each one adds information about its command as it unwinds, so that a
stack trace forms inerrorInfo .

Command procedures can callTcl_AddErrorInfo themselves to provide addi-
tional information about the context of the error. This is particularly useful for command
procedures tha invokeTcl_Eval recursively. For example, consider the following Tcl
procedure, which is a buggy attempt to find the length of the longest element in a list:

proc longest list {
set i [llength $list]
while {$i >= 0} {

set length [string length [lindex $list $i]]
if {$length > $max} {

set max $length
}
incr i

}
return $max

}

This procedure is buggy because it never initializes the variablemax, so an error will
occur when theif command attempts to read it. If the procedure is invoked with the com-

31.2 Augmenting the stack trace in errorInfo 289

DRAFT (4/16/93): Distribution Restricted

mand “longest {a 12345 xyz} ”, then the following stack trace will be stored in
errorInfo after the error:

can’t read "max": no such variable
while executing

"if {$length > $max} {
set max $length

}"
("while" body line 3)
invoked from within

"while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {

set max $length
}
incr i

}"
(procedure "longest" line 3)
invoked from within

"longest {a 12345 xyz}"

All of the information is provided byTcl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by the Tcl code that evaluates procedure bodies. If
you used the implementation ofwhile on page 287 instead of the built-in Tcl implemen-
tation then the first parenthesized message would be missing. The C code below is a
replacement for the lastelse clause inWhileCmd ; it usesTcl_AppendResult to
add the parenthetical remark.

...
} else if (code != TCL_OK) {

if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",

interp->errorLine);
Tcl_AddErrorInfo(interp, msg);

}
return code;

}
...

TheerrorLine field of interp is set byTcl_Eval whenever a command procedure
returns an error; it gives the line number of the command that produced the error, within
the script being executed. A line number of 1 corresponds to the first line, which is the line
containing the open brace in this example; theif command that generated the error is on
line 3.

290 Exceptions

DRAFT (4/16/93): Distribution Restricted

For simple Tcl commands you shouldn’t need to invokeTcl_AddErrorInfo : the
information provided byTcl_Eval will be sufficient. However, if you write code that
callsTcl_Eval then I recommend callingTcl_AddErrorInfo whenever
Tcl_Eval returns an error, to provide information about whyTcl_Eval was invoked
and also to include the line number of the error.

Note: You must callTcl_AddErrorInfo rather than trying to set theerrorInfo variable
directly, becauseTcl_AddErrorInfo contains special code to detect the first call after
an error and clear out the old contents oferrorInfo .

31.3 Setting errorCode

The last piece of information set after an error is theerrorCode variable, which pro-
vides information about the error in a form that’s easy to process with Tcl scripts. It’s
intended for use in situations where a script is likely to catch the error, determine exactly
what went wrong, and attempt to recover from it if possible. If a command procedure
returns an error to Tcl without settingerrorCode then Tcl sets it toNONE. If a command
procedure wishes to provide information inerrorCode then it should invokeTcl_Se-
tErrorCode before returningTCL_ERROR.

Tcl_SetErrorCode takes as arguments an interpreter and any number of string
arguments ending with a null pointer. It forms the strings into a list and stores the list as
the value oferrorCode . For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent object error, it might seterrorCode
as follows:

Tcl_SetErrorCode(interp, "GIZMO", "EXIST",
"no object by that name", (char *) NULL);

This will leave the value “GIZMO EXIST {no object by that name} ” in
errorCode . GIZMO identifies a general class of errors (those associated with gizmo
objects),EXIST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error message. You can store whatever you want in
errorCode as long as the first list element doesn’t conflict with other values already in
use, but the overall idea is to provide symbolic information that can easily be processed by
a Tcl script. For example, a script that accesses gizmos might catch errors and if the error
is a non-existent gizmo it might automatically create a new gizmo.

Note: It’s important to callTcl_SetErrorCode rather than settingerrorCode directly
with Tcl_SetVar . This is becauseTcl_SetErrrorCode also sets other information
in the interpreter so thaterrorCode isn’t later set to its default value; if you set
errorCode directly, then Tcl will override your value with the default valueNONE.

291

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 32
Accessing Tcl Variables

This chapter describes how you can access Tcl variables from C code. Tcl provides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses. Table 32.1 summa-
rizes the library procedures that are discussed in the chapter.

32.1 Naming variables

The procedures related to variables come in pairs such asTcl_SetVar andTcl_Set-
Var2 . The two procedures in each pair differ only in the way they name a Tcl variable. In
the first procedure of each pair, such asTcl_SetVar , the variable is named with a single
string argument,varName . This form is typically used when a variable name has been
specified as an argument to a Tcl command. The string can name a scalar variable, e.g. “x ”
or “f ieldName ”, or it can name an element of an array, e.g. “a(42) ” or
“area(South America) ”. No substitutions or modifications are performed on the
name. For example, ifvarName is “a($i) ” Tcl will not use the value of variablei as
the element name within arraya; it will use the string “$i ” literally as the element name.

The second procedure of each pair has a name ending in “2”, e.g.Tcl_SetVar2 . In
these procedures the variable name is separated into two arguments:name1 andname2.
If the variable is a scalar thenname1 is the name of the variable andname2 is NULL. If
the variable is an array element thenname1 is the name of the array andname2 is the
name of the element within the array. This form of procedure is less commonly used but it
is slightly faster than the first form (procedures likeTcl_SetVar are implemented by
calling procedures likeTcl_SetVar2).

FIGURE 32

TABLE 32

292 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

Table 32.1. Tcl library procedures for manipulating variables. The procedures come in pairs; in one
procedure the variable is named with a single string (which may specify either a scalar or an array
element) and in the other procedure the variable is named with separate array and element names
(name1 andname2, respectively). Ifname2 is NULL then the variable must be a scalar.

char *Tcl_SetVar(Tcl_Interp *interp, char *varName,
char *newValue, int f lags)

char *Tcl_SetVar2(Tcl_Interp *interp, char *name1, char *name2,
char *newValue, int f lags)

Sets the value of the variable tonewValue , creating the variable if it didn’t
already exist. Returns the new value of the variable orNULL in case of error.

char *Tcl_GetVar(Tcl_Interp *interp, char *varName,
int f lags)

char *Tcl_GetVar2(Tcl_Interp *interp, char *name1, char *name2,
int f lags)

Returns the current value of the variable, orNULL in case of error.
int Tcl_UnsetVar(Tcl_Interp *interp, char *varName,

int f lags)
int Tcl_UnsetVar2(Tcl_Interp *interp, char *name1, char *name2,

int f lags)
Removes the variable frominterp and returnsTCL_OK. If the variable
doesn’t exist or has an active trace then it can’t be removed and
TCL_ERROR is returned.

int Tcl_TraceVar(Tcl_Interp *interp, char *varName,
int f lags, Tcl_VarTraceProc *proc, ClientData clientData)

int Tcl_TraceVar2(Tcl_Interp *interp, char *name1, char *name2,
int f lags, Tcl_VarTraceProc *proc, ClientData clientData)

Arrange forproc to be invoked whenever one of the operations specified by
f lags is performed on the variable. ReturnsTCL_OK or TCL_ERROR.

Tcl_UntraceVar(Tcl_Interp *interp, char *varName,
int f lags, Tcl_VarTraceProc *proc, ClientData clientData)

Tcl_UntraceVar2(Tcl_Interp *interp, char *name1, char *name2,
int f lags, Tcl_VarTraceProc *proc, ClientData clientData)

Removes the trace on the variable that matchesproc , clientData , and
f lags , if there is one.

ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName,
int f lags, Tcl_VarTraceProc *proc, ClientData prevClientData)

ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *name1,
char *name2, int f lags, Tcl_VarTraceProc *proc,
ClientData prevclientData)

If prevClientData is NULL, returns the ClientData associated with the
first trace on the variable that matchesf lags andproc (only the
TCL_GLOBAL_ONLY bit of f lags is used); otherwise returns theCli-
entData for the next trace matchingf lags andproc after the one whose
ClientData is prevClientData . ReturnsNULL if there are no (more)
matching traces.

32.2 Setting variable values 293

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values

Tcl_SetVar andTcl_SetVar2 are used to set the value of a variable. For example,

Tcl_SetVar(interp, "a", "44", 0);

will set the value of variablea in interp to the string “44”. If there does not yet exist a
variable nameda then a new one will be created. The variable is set in the current execu-
tion context: if a Tcl procedure is currently being executed, the variable will be a local one
for that procedure; if no procedure is currently being executed then the variable will be a
global variable. If the operation completed successfully then the return value from
Tcl_SetVar is a pointer to the variable’s new value as stored in the variable table (this
value is static enough to be used as an interpreter’s result). If an error occurred, such as
specifying the name of an array without also specifying an element name, thenNULL is
returned.

The last argument toTcl_SetVar or Tcl_SetVar2 consists of an OR’ed combi-
nation of flag bits. Table 32.2 lists the symbolic values for the flags. If theTCL_GLOBA-
L_ONLY flag is specified then the operation always applies to a global variable, even if a
Tcl procedure is currently being executed.TCL_LEAVE_ERR_MSG controls how errors
are reported. Normally, Tcl_SetVar andTcl_SetVar2 just returnNULL if an error
occurs. However, if TCL_LEAVE_ERR_MSG has been specified then the procedures will
also store an error message in the interpreter’s result. This last form is useful when the
procedure is invoked from a command procedure that plans to abort if the variable access
fails.

The flagTCL_APPEND_VALUE means that the new value should be appended to the
variable’s current value instead of replacing it. Tcl implements the append operation in a

Table 32.2. Values that may be OR’ed together in the flags arguments toTcl_SetVar and
Tcl_SetVar2 . Other procedures use a subset of these flags.

Flag Name Meaning

TCL_GLOBAL_ONLY Reference global variable, regardless of
current execution context.

TCL_LEAVE_ERR_MSG If operation fails, leave error message in
interp->result .

TCL_APPEND_VALUE Append new value to existing value
instead of overwriting.

TCL_LIST_ELEMENT Convert new value to a list element before
setting or appending.

294 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

way that is relatively efficient, even in the face of repeated appends to the same variable. If
the variable doesn’t yet exist thenTCL_APPEND_VALUE has no effect.

The last flag,TCL_LIST_ELEMENT, means that the new value should be converted
to a proper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If bothTCL_LIST_ELEMENT andTCL_APPEND_VALUE are specified then a sepa-
rator space is also added before the new element if it’s needed.

Here is an implementation of thelappend command that usesTcl_SetVar :

int LappendCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int i;
char *newValue;
if (argc < 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
for (i = 2; i < argc; i++) {

newValue = Tcl_SetVar(interp, argv[1], argv[i],
TCL_LIST_ELEMENT|TCL_APPEND_VALUE
|TCL_LEAVE_ERR_MSG);

if (newValue == NULL) {
return TCL_ERROR;

}
}
interp->result = newValue;
return TCL_OK;

}

It simply callsTcl_SetVar once for each argument and letsTcl_SetVar do all the
work of converting the argument to a list value and appending it to the variable. If an error
occurs thenTcl_SetVar leaves an error message ininterp->result andLap-
pendCmd returns the message back to Tcl. If the command completes successfully then it
returns the variable’s final value as its result. For example, suppose the following Tcl com-
mand is invoked:

set a 44
lappend a x {b c}

44 x {b c}

WhenLappendCmd is invokedargc will be 4.Argv[2] will be “x” andargv[3]
will be “b c ” (the braces are removed by the Tcl parser).LappendCmd makes two calls
to Tcl_SetVar ; during the first call no conversion is necessary to produce a proper list
element, but during the second callTcl_SetVar adds braces back around “b c ” before
appending it the variable.

32.3 Reading variables 295

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables

The proceduresTcl_GetVar andTcl_GetVar2 may be used to retrieve variable val-
ues. For example,

char *value;
...
value = Tcl_GetVar(interp, "a", 0);

will store invalue a pointer to the current value of variablea. If the variable doesn’t
exist or some other error occurs thenNULL is returned.Tcl_GetVar andTcl_Get-
Var2 support theTCL_GLOBAL_ONLY andTCL_LEAVE_ERR_MSG flags in the same
way asTcl_SetVar . The following command procedure usesTcl_GetVar and
Tcl_SetVar to implement theincr command:

int IncrCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int value, inc;
char *string;
if ((argc != 2) && (argc != 3)) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (argc == 2) {

inc = 1;
} else if (Tcl_GetInt(interp, argv[2], &inc)

!= TCL_OK) {
return TCL_ERROR;

}
string = Tcl_GetVar(interp, argv[1],

TCL_LEAVE_ERR_MSG);
if (string == NULL) {

return TCL_ERROR;
}
if (Tcl_GetInt(interp, string, &value) != TCL_OK) {

return TCL_ERROR;
}
sprintf(interp->result, "%d", value + inc);
if (Tcl_SetVar(interp, argv[1], interp->result,

TCL_LEAVE_ERR_MSG) == NULL) {
return TCL_ERROR;

}
return TCL_OK;

}

IncrCmd does very little work itself. It just calls library procedures and aborts if errors
occur. The first call toTcl_GetInt converts the increment from text to binary.

296 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

Tcl_GetVar retrieves the original value of the variable, and another call toTcl_Get-
Int converts that value to binary. IncrCmd then adds the increment to the variable’s
value and callssprintf to convert the result back to text.Tcl_SetVar stores this
value in the variable, andIncrCmd then returns the new value as its result.

32.4 Unsetting variables

To remove a variable, callTcl_UnsetVar or Tcl_UnsetVar2 . For example,

Tcl_UnsetVar2(interp, "population", "Michigan", 0);

will remove the elementMichigan from the arraypopulation . This statement has
the same effect as the Tcl command

unset population(Michigan)

Tcl_UnsetVar andTcl_UnsetVar2 returnTCL_OK if the variable was successfully
removed andTCL_ERROR if the variable didn’t exist or couldn’t be removed for some
other reason.TCL_GLOBAL_ONLY andTCL_LEAVE_ERR_MSG may be specified as
flags to these procedures. If an array name is given without an element name then the
entire array is removed.

32.5 Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever a variable is
read, written, or unset. Traces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of a variable and updates itself auto-
matically when the variable is modified. This feature is implemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
purposes.

The proceduresTcl_TraceVar andTcl_TraceVar2 create variable traces, as in
the following example:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, WriteProc,
(ClientData) NULL);

This creates a write trace on variablex in interp : WriteProc will be invoked when-
everx is modified. The third argument toTcl_TraceVar is an OR’ed combination of
flag bits that select the operations to trace:TCL_TRACE_READS for reads,
TCL_TRACE_WRITES for writes, andTCL_TRACE_UNSETS for unsets. In addition,
the flagTCL_GLOBAL_ONLY may be specified to force the variable name to be inter-
preted as global.Tcl_TraceVar andTcl_TraceVar2 normally returnTCL_OK; if
an error occurs then they leave an error message ininterp->result and return
TCL_ERROR.

32.6 Trace callbacks 297

DRAFT (4/16/93): Distribution Restricted

The library proceduresTcl_UntraceVar andTcl_UntraceVar2 remove vari-
able traces. For example, the following call will remove the trace set above:

Tcl_UntraceVar(interp, "x", TCL_TRACE_WRITES,
WriteProc, (ClientData) NULL);

Tcl_UntraceVar finds the specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by its arguments, and removes the trace if it
exists. If no matching trace exists thenTcl_UntraceVar does nothing.Tcl_Un-
traceVar andTcl_UntraceVar2 accept the same flag bits asTcl_TraceVar .

32.6 Trace callbacks

Trace callback procedures such asWriteProc in the previous section must match the
following prototype:

typedef char *Tcl_VarTraceProc(ClientData clientData,
Tcl_Interp *interp, char *name1, char *name2,
int f lags);

TheclientData andinterp arguments will be the same as the corresponding argu-
ments passed toTcl_TraceVar or Tcl_TraceVar2 . ClientData typically points
to a structure containing information needed by the trace callback.Name1 andname2
give the name of the variable in the same form as the arguments toTcl_SetVar2 .
Flags consists of an OR’ed combination of bits. One ofTCL_TRACE_READS,
TCL_TRACE_WRITES, orTCL_TRACE_UNSETS is set to indicate which operation trig-
gered the trace, andTCL_GLOBAL_ONLY is set if the variable is a global variable that
isn’t accessible from the current execution context; the trace callback must pass this flag
back into procedures likeTcl_GetVar2 if it wishes to access the variable. The bits
TCL_TRACE_DESTROYED andTCL_INTERP_DESTROYED are set in special circum-
stances described below.

For read traces, the callback is invoked just beforeTcl_GetVar orTcl_GetVar2
returns the variable’s value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variable’s value has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl_SetVar or Tcl_SetVar2 . For unset traces the callback is invoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when a variable is explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variables in
the interpreter).

A trace callback procedure can invokeTcl_GetVar2 andTcl_SetVar2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so calls toTcl_GetVar2 andTcl_SetVar2 will

298 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

not trigger additional trace callbacks. As mentioned above, unset traces aren’t invoked
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. However, it is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.

The code below sets a write trace that prints out the new value of variablex each time
it is modified:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Print,
(ClientData) NULL);

...
char *Print(ClientData clientData,

Tcl_Interp *interp, char *name1, char *name2,
int f lags) {

char *value;
value = Tcl_GetVar2(interp, name1, name2,

f lags & TCL_GLOBAL_ONLY);
if (value != NULL) {

printf("new value is %s\n", value);
}
return NULL;

}

PrintProc must pass theTCL_GLOBAL_ONLY bit of its f lags argument on to
Tcl_GetVar2 in order to make sure that the variable can be accessed properly.
Tcl_GetVar2 should never return an error, butPrintProc checks for one anyway
and doesn’t try to print the variable’s value if an error occurs.

Trace callbacks normally returnNULL values; a non-NULL value signals an error. In
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invoked by aset command or$-substitution
then a Tcl error will result; if the access was invoked viaTcl_GetVar , Tcl_GetVar
will return NULL and also leave the error message ininterp->result if the
TCL_LEAVE_ERR_MSG flag was specified.

The code below uses a trace to make variablex read-only with value192 :

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Reject,
(ClientData) "192");

char *Reject(ClientData clientData, Tcl_Interp *interp,
char *name1, char *name2, int f lags) {

char *correct = (char *) ClientData;
Tcl_SetVar2(interp, name1, name2, correct,

f lags & TCL_GLOBAL_ONLY);
return "variable is read-only";

};

Reject is a trace callback that’s invoked wheneverx is written. It returns an error mes-
sage to abort the write access. Sincex has already been modified beforeReject is

32.7 Whole-array traces 299

DRAFT (4/16/93): Distribution Restricted

invoked,Reject must undo the write by restoring the variable’s correct value. The cor-
rect value is passed to the trace callback using itsclientData argument. This imple-
mentation allows the same procedure to be used as the write callback for many different
read-only variables; a different correct value can be passed toReject for each variable.

32.7 Whole-array traces

You can create a trace on an entire array by specifying an array name toTcl_TraceVar
or Tcl_TraceVar2 without an element name. This creates a whole-array trace: the call-
back procedure will be invoked whenever any of the specified operations is invoked on
any element of the array. If the entire array is unset then the callback will be invoked just
once, withname1 containing the array name andname2 NULL.

32.8 Multiple traces

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacks is invoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

32.9 Unset callbacks

Unset callbacks are different from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extra flags are defined for unset callbacks:TCL_TRACE_DELETED and
TCL_INTERP_DESTROYED. When a variable is unset all of its traces are deleted; unset
traces on the variable will still be invoked, but they will be passed theTCL_TRACE_DE-
LETED flag to indicate that the trace has now been deleted and won’t be invoked anymore.
If an array element is unset and there is a whole-array unset trace for the element’s array,
then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETED flag set.

If the TCL_INTERP_DESTROYED flag is set during an unset callback it means that
the interpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpreter’s state is in the process of
being deleted. All that the callback should do is to clean up its own internal data struc-
tures.

300 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

32.10 Non-existent variables

It is legal to set a trace on a variable that does not yet exist. The variable will continue to
appear not to exist (e.g. attempts to read it will fail), but the trace’s callback will be
invoked during operations on the variable. For example, you can set a read trace on an
undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The proceduresTcl_VarTraceInfo andTcl_VarTraceInfo2 can be used to find
out if a particular kind of trace has been set on a variable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;
...
clientData = Tcl_VarTraceInfo(interp, "x", 0, Reject,

(ClientData) NULL);

Tcl_VarTraceInfo will see if there is a trace on variablex that hasReject as its
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will returnNULL. Given the code in Section 32.6
above, this call will tell whetherx is read-only; if so, it will return the variable’s read-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple calls toTcl_VarTraceInfo , as in the
following code:

ClientData clientData;
...
clientData = NULL;
while (1) {

clientData = Tcl_VarTraceInfo(interp, "x", 0,
Reject, clientData);

if (clientData == NULL) {
break;

}
... process trace ...

}

In each call toTcl_VarTraceInfo after the first, the previous ClientData value is
passed in as the last argument.Tcl_VarTraceInfo finds the trace with this value, then
returns the ClientData for the next trace. When it reaches the last trace it returnsNULL.

301

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 33
Hash Tables

A hash table is a collection ofentries, where each entry consists of akey and avalue. No
two entries have the same key. Given a key, a hash table can very quickly locate its entry
and hence the associated value. Tcl contains a general-purpose hash table package that it
uses in several places internally. For example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (see Table 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for use in Tcl commands. When a
command procedure receives an object name as an argument it must locate the C data
structure for the object. Typically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error.

For the examples in this chapter I’ll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct Gizmo {
... fields of gizmo object ...

} Gizmo;

FIGURE 33

TABLE 33

302 Hash Tables

DRAFT (4/16/93): Distribution Restricted

The application uses names like “gizmo42 ” to refer to gizmos in Tcl commands, where
each gizmo has a different number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collection of Tcl com-
mands to manipulate the objects, such asgcreate to create a new gizmo,gdelete to
delete an existing gizmo,gsearch to find gizmos with certain characteristics, and so on.

Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
Creates a new hash table and stores information about the table at
*tablePtr . KeyType is eitherTCL_STRING_KEYS,
TCL_ONE_WORD_KEYS, or an integer greater than 1.

Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_HashTable *tablePtr,
char *key,

int *newPtr)
Returns a pointer to the entry intablePtr whose key iskey , creating a
new entry if needed.*NewPtr is set to 1 if a new entry was created or 0 if
the entry already existed.

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char
*key)
Returns a pointer to the entry intablePtr whose key iskey , orNULL if
no such entry exists.

Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)
Returns the value associated with a hash table entry.

Tcl_SetHashValue(Tcl_HashEntry *entryPtr, ClientData value)
Sets the value associated with a hash table entry.

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)
Returns the key associated with a hash table entry.

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search at*searchPtr and returns the hash table’s first entry or
NULL if it has no entries.

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
Returns the next entry in the search identified bysearchPtr orNULL if all
entries in the table have been returned.

char *Tcl_HashStats(Tcl_HashTable *tablePtr)
Returns a string giving usage statistics fortablePtr . The string is dynam-
ically allocated and must be freed by the caller.

33.1 Keys and values 303

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values

Tcl hash tables support three different kinds of keys. All of the entries in a single hash
table must use the same kind of key, but different tables may use different kinds. The most
common form of key is a string. In this case each key is aNULL-terminated string of arbi-
trary length, such as “gizmo18 ” or “Waste not want not ”. Dif ferent entries in a
table may have keys of different length. The gizmo implementation uses strings as keys.

The second form of key is a one-word value. In this case each key may be any value
that fits in a single word, such as an integer. One-word keys are passed into Tcl using val-
ues of type “char * ” so the keys are limited to the size of a character pointer.

The last form of key is an array. In this case each key is an array of integers (Cint
type). All keys in the table must be the same size.

The values for hash table entries are items of typeClientData , which are large
enough to hold either an integer or a pointer. In most applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
ClientData items when storing them in hash table entries, and they are cast back from
ClientData to object pointers when retrieved from the hash table.

33.2 Creating and deleting hash tables

Each hash table is represented by a C structure of typeTcl_HashTable . Space for this
structure is allocated by the client, not by Tcl; typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you pass in a
pointer to aTcl_HashTable structure as a token for the hash table. You should never
use or modify any of the fields of aTcl_HashTable directly. Use the Tcl library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl_HashTable gizmoTable;
...
Tcl_InitHashTable(&gizmoTable, TCL_STRING_KEYS);

The first argument toTcl_InitHashTable is aTcl_HashTable pointer and the
second argument is an integer that specifies the sort of keys that will be used for the table.
TCL_STRING_KEYS means that strings will be used in the table;
TCL_ONE_WORD_VALUES specifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number of int’s in each array.
Tcl_InitHashTable ignores the current contents of the table it is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.

Tcl_DeleteHashTable removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space for theTcl_HashTable

304 Hash Tables

DRAFT (4/16/93): Distribution Restricted

structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash table initialized above:

Tcl_DeleteHashTable(&gizmoTable);

33.3 Creating entries

The procedureTcl_CreateHashEntry creates an entry with a given key and
Tcl_SetHashValue sets the value associated with the entry. For example, the code
below might be used to implement thegcreate command, which makes a new gizmo
object:

int GcreateCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

static int id = 1;
int new;
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
... check argc, etc ...
do {

sprintf(interp->result, "gizmo%d", id);
id++;
entryPtr = Tcl_CreateHashEntry(&gizmoTable,

interp->result, &new);
} while (!new);
gizmoPtr = (Gizmo *) malloc(sizeof(Gizmo));
Tcl_SetHashValue(entryPtr, gizmoPtr);
... initialize *gizmoPtr, etc ...
return TCL_OK;

}

This code creates a name for the object by concatenating “gizmo ” with the value of the
static variableid . It stores the name ininterp->result so that the command’s result
will be the name of the new object.GcreateCmd then incrementsid so that each new
object will have a unique name.Tcl_CreateHashEntry is called to create a new
entry with a key equal to the object’s name; it returns a token for the entry. Under normal
conditions there will not already exist an entry with the given key, in which case
Tcl_CreateHashEntry setsnew to 1 to indicate that it created a new entry. However,
it is possible forTcl_CreateHashEntry to be called with a key that already exists in
the table. InGcreateCmd this can only happen if a very large number of objects are cre-
ated, so thatid wraps around to zero again. If this happens thenTcl_CreateHashEn-
try sets new to 0;GcreateCmd will try again with the next largerid until it eventually
finds a name that isn’t already in use.

33.4 Finding existing entries 305

DRAFT (4/16/93): Distribution Restricted

After creating the hash table entryGcreateCmd allocates memory for the object’s
record and invokesTcl_SetHashValue to store the record address as the value of the
hash table entry. Tcl_SetHashValue is actually a macro, not a procedure; its first
argument is a token for a hash table entry and its second argument, the new value for the
entry, can be anything that fits in the space of aClientData value. After setting the
value of the hash table entryGcreateCmd initializes the new object’s record.

Note: Tcl’s hash tables restructure themselves as you add entries. A table won’t use much
memory for the hash buckets when it has only a small number of entries, but it will
increase the size of the bucket array as the number of entries increases. Tcl’s hash tables
should operate efficiently even with very large numbers of entries.

33.4 Finding existing entries

The procedureTcl_FindHashEntry locates an existing entry in a hash table. It is sim-
ilar to Tcl_CreateHashEntry except that it won’t create a new entry if the key
doesn’t already exist in the hash table.Tcl_FindHashEntry is typically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure calledGetGizmo , which is something likeTcl_GetInt except that it trans-
lates its string argument to aGizmo pointer instead of an integer:

Gizmo *GetGizmo(Tcl_Interp *interp, char *string) {
Tcl_HashEntry *entryPtr;
entryPtr = Tcl_FindHashEntry(&gizmoTable, string);
if (entryPtr == NULL) {

Tcl_AppendResult(interp, "no gizmo named \",
string, "\", (char *) NULL);

return TCL_ERROR;
}
return (Gizmo *) Tcl_GetHashValue(entryPtr);

}

GetGizmo looks up a gizmo name in the gizmo hash table. If the name exists thenGet-
Gizmo extracts the value from the entry using the macroTcl_GetHashValue , con-
verts it to aGizmo pointer, and returns it. If the name doesn’t exist thenGetGizmo
stores an error message ininterp->result and returnsNULL.

GetGizmo can be invoked from any command procedure that needs to look up a
gizmo object. For example, suppose there is a commandgtwist that performs a “twist”
operation on gizmos, and that it takes a gizmo name as its first argument. The command
might be implemented like this:

int GtwistCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Gizmo *gizmoPtr;
... check argc, etc ...

306 Hash Tables

DRAFT (4/16/93): Distribution Restricted

gizmoPtr = GetGizmo(interp, argv[1]);
if (gizmoPtr == NULL) {

return TCL_ERROR;
}
... perform twist operation ...

}

33.5 Searching

Tcl provides two procedures that you can use to search through all of the entries in a hash
table.Tcl_FirstHashEntry starts a search and returns the first entry, andTcl_N-
extHashEntry returns successive entries until the search is complete. For example,
suppose that there is agsearch command that searches through all existing gizmos and
returns a list of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:

int GsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Tcl_HashEntry *entryPtr;
Tcl_HashSearch search;
Gizmo *gizmoPtr;
... process arguments to choose search criteria ...
for (entryPtr = Tcl_FirstHashEntry(&gizmoTable,

&search); entryPtr != NULL;
entryPtr = Tcl_NextHashEntry(&search)) {

gizmoPtr = (Gizmo *) Tcl_GetHashValue(entryPtr);
if (...object satisfies search criteria...) {

Tcl_AppendElement(interp,
Tcl_GetHashKey(entryPtr));

}
}
return TCL_OK;

}

A structure of typeTcl_HashSearch is used to keep track of the search.
Tcl_FirstHashEntry initializes this structure andTcl_NextHashEntry uses the
information in the structure to step through successive entries in the table. It’s possible to
have multiple searches underway simultaneously on the same hash table by using a differ-
entTcl_HashSearch structure for each search.Tcl_FirstHashEntry returns a
token for the first entry in the table (orNULL if the table is empty) andTcl_NextHash-
Entry returns pointers to successive entries, eventually returningNULL when the end of
the table is reached. For each entryGsearchCmd extracts the value from the entry, con-
verts it to aGizmo pointer, and sees if that object meets the criteria specified in the com-
mand’s arguments. If so, thenGsearchCmd uses theTcl_GetHashKey macro to get

33.6 Deleting entries 307

DRAFT (4/16/93): Distribution Restricted

the name of the object (i.e. the entry’s key) and invokesTcl_AppendElement to
append the name to the interpreter’s result as a list element.

Note: It is not safe to modify the structure of a hash table during a search. If you create or delete
entries then you should terminate any searches in progress.

33.6 Deleting entries

The procedureTcl_DeleteHashEntry will delete an entry from a hash table. For
example, the following procedure usesTcl_DeleteHashEntry to implement agde-
lete command, which takes any number of arguments and deletes the gizmo objects they
name:

int GdeleteCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
int i;
for (i = 1; i < argc; i++) {

entryPtr = Tcl_FindHashEntry(&gizmoTable,
argv[i]);

if (entryPtr == NULL) {
continue;

}
gizmoPtr = (Gizmo *) Tcl_HashGetValue(entryPtr);
Tcl_DeleteHashEntry(entryPtr);
... clean up *gizmoPtr...
free((char *) gizmoPtr);

}
return TCL_OK;

}

GdeleteCmd checks each of its arguments to see if it is the name of a gizmo object. If
not, then the argument is ignored. OtherwiseGdeleteCmd extracts a gizmo pointer from
the hash table entry and then callsTcl_DeleteHashEntry to remove the entry from
the hash table. Then it performs internal cleanup on the gizmo object if needed and frees
the object’s record.

33.7 Statistics

The procedureTcl_HashStats returns a string containing various statistics about the
structure of a hash table. For example, it might be used to implement agstat command
for gizmos:

308 Hash Tables

DRAFT (4/16/93): Distribution Restricted

int GstatCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 1) {
interp->result = "wrong # args";
return TCL_ERROR;

}
interp->result = Tcl_HashStats(&gizmoTable);
interp->freeProc = free;
return TCL_OK;

}

The string returned byTcl_HashStats is dynamically allocated and must be passed to
free;GstatCmd uses this string as the command’s result, and then sets
interp- >freeProc so that Tcl will free the string.

The string returned byTcl_HashStats contains information like the following:

1416 entries in table, 1024 buckets
number of buckets with 0 entries: 60
number of buckets with 1 entries: 591
number of buckets with 2 entries: 302
number of buckets with 3 entries: 67
number of buckets with 4 entries: 5
number of buckets with 5 entries: 0
number of buckets with 6 entries: 0
number of buckets with 7 entries: 0
number of buckets with 8 entries: 0
number of buckets with 9 entries: 0
number of buckets with more than 10 entries: 0
average search distance for entry: 1.4

You can use this information to see how efficiently the entries are stored in the hash table.
For example, the last line indicates the average number of entries that Tcl will have to
check during hash table lookups, assuming that all entries are accessed with equal proba-
bility.

309

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 34
String Utilities

This chapter describes Tcl’s library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Table 34.1 summarizes these procedures.

Note: None of the dynamic string facilities are available in versions of Tcl earlier than 7.0.

34.1 Dynamic strings

A dynamic string is a string that can be appended to without bound. As you append infor-
mation to a dynamic string, Tcl automatically grows the memory area allocated for it. If
the string is short then Tcl avoids dynamic memory allocation altogether by using a small
static buffer to hold the string. Tcl provides five procedures for manipulating dynamic
strings:

Tcl_DStringInit creates a new empty string;

Tcl_DStringAppend adds characters to a dynamic string;

Tcl_DStringAppendElement adds a new list element to a dynamic string;

Tcl_DStringFree releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl_DStringResult moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

FIGURE 34

TABLE 34

310 String Utilities

DRAFT (4/16/93): Distribution Restricted

The code below uses all of these procedures to implement amap command, which
takes a list and generates a new list by applying some operation to each element of the
original list.Map takes two arguments: a list and a Tcl command. For each element in the
list, it executes the given command with the list element appended as an additional argu-
ment. It takes the results of all the commands and generates a new list out of them, and
then returns this list as its result. Here are some exmples of how you might use themap
command:

proc inc x {expr $x+1}
map {4 18 16 19 -7} inc

5 19 17 20 -6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{a z} {b z} {a b c z}

Here is the command procedure that implementsmap:

int MapCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Tcl_DStringInit(Tcl_DString *dsPtr)
Initializes*dsPtr to an empty string (previous contents of*dsPtr are
discarded without cleanup).

char *Tcl_DStringAppend(Tcl_DString *dsPtr, char *string, int
length)
Appendslength bytes fromstring to dsPtr ’s value and returns new
value ofdsPtr . If length is less than zero, appends all ofstring up to
terminatingNULL character.

char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, char *string)
Convertsstring to proper list element and appends todsPtr ’s value
(with separator space if needed). Returns new value ofdsPtr .

Tcl_DStringFree(Tcl_DString *dsPtr)
Frees up any memory allocated fordsPtr and reinitializes*dsPtr to an
empty string.

Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
Moves the value ofdsPtr to interp->result and reinitializesdsP-
tr ’s value to an empty string.

int Tcl_CommandComplete(char *cmd)
Returns1 if cmd holds one or more complete commands,0 if the last com-
mand incmd is incomplete due to open braces etc.

int Tcl_StringMatch(char *string, char *pattern)
Returns1 if string matchespattern using glob-style rules for pattern
matching,0 otherwise.

34.1 Dynamic strings 311

DRAFT (4/16/93): Distribution Restricted

Tcl_DString command, newList;
int listArgc, i, result;
char **listArgv;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
Tcl_DStringInit(&newList);
Tcl_DStringInit(&command);
for (i = 0; i < listArgc; i++) {

Tcl_DStringAppend(&command, argv[2], -1);
Tcl_DStringAppendElement(&command,

listArgv[i]);
result = Tcl_Eval(interp, command.string);
Tcl_DStringFree(&command);
if (result != TCL_OK) {

Tcl_DStringFree(&newList);
free((char *) listArgv);
return result;

}
Tcl_DStringAppendElement(&newList,

interp->result);
}
Tcl_DStringResult(interp, &newList);
free((char *) listArgv);
return TCL_OK;

}

MapCmd uses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list as it builds
up (this information can’t be placed immediately ininterp->result because the
interpreter’s result will be overwritten by the command that’s evaluated to process the next
list element). Each dynamic string is represented by a structure of typeTcl_DString .
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and a length. The only field that you should ever
access is thestring field, which is a pointer to the current value. Tcl doesn’t allocate
Tcl_DString structures; it’s up to you to allocate the structure (e.g. as a local variable)
and pass its address to the dynamic string library procedures.

After checking its argument count, extracting all of the elements from the initial list,
and initializing its dynamic strings,MapCmd enters a loop to process the elements of the

312 String Utilities

DRAFT (4/16/93): Distribution Restricted

list. For each element it first creates the command to execute for that element. It does this
by callingTcl_DStringAppend to append the part of the command provided in
argv[2] , then it callsTcl_DStringAppendElement to append the list element as
an additional argument. These procedures are similar in that both add new information to
the dynamic string. However, Tcl_DStringAppend adds the information as raw text
whereasTcl_DStringAppendElement converts its string argument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). It’s important to useTcl_DStringAppendElement for the list element so
that it becomes a single word of the Tcl command being formed. IfTcl_DStringAp-
pend were used instead and the element were “a b c ” as in the example on page 310,
then the command passed toTcl_Eval would be “addz a b c ” , which would result
in an error (too many arguments to theaddz procedure). WhenTcl_DStringAppen-
dElement is used the command is “addz {a b c} ”, which parses correctly.

OnceMapCmd has created the command to execute for an element, it invokes
Tcl_Eval to evaluate the command. TheTcl_DStringFree call frees up any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an error thenMapCmd
returns that same error; otherwise it usesTcl_DStringAppendElement to add the
result of the command to the result list as a new list element.

MapCmd callsTcl_DStringResult after all of the list elements have been pro-
cessed. This transfers the value of the string to the interpreter’s result in an efficient way
(e.g. if the dynamic string uses dynamically allocated memory thenTcl_DStringRe-
sult just copies a pointer to the result tointerp->result rather than allocating new
memory and copying the string).

Before returning,MapCmd must be sure to free up any memory allocated for the
dynamic strings. It turns out that this has already been done byTcl_DStringFree for
command and byTcl_DStringResult for newList .

34.2 Command completeness

When an application is reading commands typed interactively, it’s important to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:

foreach i {1 2 3 4 5} {
puts "$i*$i is [expr $i*$i]"

}

If the application reads each line separately and passes it toTcl_Eval , a “missing
close-brace ” error will be generated by the first line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

34.3 String matching 313

DRAFT (4/16/93): Distribution Restricted

or quotes) then execute all of the input as a single script. The procedureTcl_Command-
Complete makes this possible. It takes a string as argument and returns 1 if the string
contains syntactically complete commands, 0 if the last command isn’t yet complete.

The C procedure below uses dynamic strings andTcl_CommandComplete to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it evaluates the command(s) and returns the completion code from
the evaluation. It usesTcl_RecordAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCmd(Tcl_Interp *interp) {
char line[200];
Tcl_DString cmd;
int result;
Tcl_DStringInit(&cmd);
while (1) {

if (fgets(line, 200, stdin) == NULL) {
break;

}
Tcl_DStringAppend(&cmd, line, -1);
if (Tcl_CommandComplete(cmd.string)) {

break;
}

}
result = Tcl_RecordAndEval(interp, cmd.string, 0);
Tcl_DStringFree(&cmd);
return result;

}

In the example of the previous pageDoOneCmd will collect all three lines before evaluat-
ing them. If an end-of-file occursfgets will returnNULL andDoOneCmd will evaluate
the command even if it isn’t complete yet.

34.3 String matching

The procedureTcl_StringMatch provides the same functionality as the “string
match ” Tcl command. Given a string and a pattern, it returns1 if the string matches the
pattern using glob-style matching and0 otherwise. For example, here is a command pro-
cedure that usesTcl_StringMatch to implementlsearch . It returns the index of the
first element in a list that matches a pattern, or-1 if no element matches:

int LsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int listArgc, i, result;
char **listArgv;
if (argc != 3) {

314 String Utilities

DRAFT (4/16/93): Distribution Restricted

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
result = -1;
for (i = 0; i < listArgc; i++) {

if (Tcl_StringMatch(listArgv[i], argv[2])) {
result = i;
break;

}
}
sprintf(interp->result, "%d", result);
free((char *) listArgv);
return TCL_OK;

}

315

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 35
POSIX Utilities

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expand “~” notation in file names, to
generate messages for POSIX errors and signals, and to manage sub-processes. See Table
35.1 for a summary of the procedure.

35.1 Tilde expansion

Tcl and Tk allow you to use~ notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login

opens the file named.login in the home directory of userouster , and

open ~/.login

opens a file named.login in the home directory of the current user (as given by the
HOME environment variable). Unfortunately, tildes are not supported by the POSIX sys-
tem calls that actually open files. For example, in the firstopen command above the name
actually presented to theopen system call must be something like

/users/ouster/.login

where~ouster has been replaced bythe home directory forouster . Tcl_TildeS-
ubst is the procedure that carries out this substitution. It is used internally by Tcl and Tk

FIGURE 35

TABLE 35

316 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

to process file names before using them in system calls, and you may find it useful if you
write C code that deals with POSIX files.

For example, the implementation of theopen command contains code something
like the following:

int fd;
Tcl_DString buffer;
char *fullName;
...

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name,
Tcl_DString *resultPtr)

If name starts with~, returns a new name with the~ and following charac-
ters replaced with the corresponding home directory name. Ifname doesn’t
start with~, returnsname. Uses*resultPtr if needed to hold new name
(caller need not initialize*resultPtr , but must free it by callingTcl_D-
StringFree). If an error occurs, returnsNULL and leaves an error mes-
sage ininterp- >result.

char *Tcl_PosixError(Tcl_Interp *interp)
Sets theerrorCode variable ininterp based on the current value of
errno , and returns a string identifying the error.

char *Tcl_ErrnoId(void)
Returns a symbolic name corresponding to the current value oferrno , such
asENOENT.

char *Tcl_SignalId(int sig)
Returns the symbolic name forsig , such asSIGINT .

char *Tcl_SignalMsg(int sig)
Returns a human-readable message describing signalsig .

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc, char
*argv[],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes cre-
ated, and stores at*pidPtr the address of amalloc -ed array of process
identifiers. If an error occurs, returns-1 and leaves an error message in
interp->result . InPipePtr , outPipePtr , anderrFilePtr are
used to control default I/O redirection (see text for details).

Tcl_DetachPids(int numPids, int *pidPtr)
Passes responsibility fornumPids at*pidPtr to Tcl: Tcl will allow them
to run in backround and reap them in some future call toTcl_ReapDe-
tachedProcs .

Tcl_ReapDetachedProcs(void)
Checks to see if any detached processes have exited; if so, cleans up their
state.

35.2 Generating messages 317

DRAFT (4/16/93): Distribution Restricted

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {

return TCL_ERROR;
}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);
...

Tcl_TildeSubst takes as arguments an interpreter, a file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with~), a new tilde-expanded name, orNULL if an error occurred; in the last
case an error message is left in the interpreter’s result.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by its final argument to store the name. WhenTcl_TildeSubst is called the dynamic
string should either be uninitialized or empty. Tcl_TildeSubst initializes it and then
uses it for the new name if needed. Once the caller has finished using the new file name it
must invokeTcl_DStringFree to release any memory that was allocated for the
dynamic string.

35.2 Generating messages

When an error or signal occurs in the C code of a Tcl application, the application should
report the error or signal back to the Tcl script that triggered it, usually as a Tcl error. To do
this, information about the error or signal must be converted from the binary form used in
C to a string form for use in Tcl scripts. Tcl provides four procedures to do this:
Tcl_PosixError , Tcl_ErronId , Tcl_SignalId , andTcl_SignalMsg .

Tcl_PosixError provides a simple “all in one” mechanism for reporting errors in
system calls.Tcl_PosixError examines the C variableerrno to determine what
kind of error occurred, then it callsTcl_SetErrorCode to set theerrorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure:

FILE *f;
...
f = fopen("prolog.ps", "r");
if (f == NULL) {

char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,

"couldn’t open prolog.ps: ", msg,
(char *) NULL);

return TCL_ERROR;
}

318 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

If the file doesn’t exist or isn’t readable then an error will occur whenfopen invokes a
system call to open the file. An integer code will be stored in theerrno variable to iden-
tify the error andfopen will return a null pointer. The above code detects such errors and
invokesTcl_PosixError . If the file didn’t exist thenTcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the string “no such f ile or directory ”. The code above incorporates
Tcl_PosixError ’s return value into its own error message, which it stores in
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory ” as its error
message.

Tcl_ErrnoId takes no arguments and returns the official POSIX name for the error
indicated byerrno . The names are the symbolic ones defined in the header file
errno.h . For example, iferrno ’s value isENOENT thenTcl_ErrnoId will return
the string “ENOENT”. The return value fromTcl_ErrnoId is the same as the value that
Tcl_PosixError will store in the second element oferrorCode .

Tcl_SignalId andTcl_SignalMsg each take a POSIX signal number as argu-
ment, and each returns a string describing the signal.Tcl_SignalId returns the official
POSIX name for the signal as defined insignal.h , andTcl_SignalMsg returns a
human-readable message describing the signal. For example,

Tcl_SignalId(SIGILL)

returns the string “SIGILL ”, and

Tcl_SignalMsg(SIGILL)

returns “illegal instruction ”.

35.3 Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses forexec andopen . It creates one or more subprocesses in a pipeline con-
figuration. It has the following arguments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,
char *argv[], int **pidPtr, int *inPipePtr,
int *outPipePtr, int *errFilePtr)

Theargc andargv arguments describe the commands for the subprocesses in the same
form they would be specified toexec . Each string inargv becomes one word of one
command, except for special strings like “>” and “| ” that are used for I/O redirection and
separators between commands.Tcl_CreatePipeline normally returns a count of the
number of subprocesses created, and it stores at*pidPtr a pointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

35.4 Background processes 319

DRAFT (4/16/93): Distribution Restricted

be freed by the caller by passing it tofree . If an error occurred while spawning the sub-
processes (e.g.argc andargv specified that output should be redirected to a file but the
file couldn’t be opened) thenTcl_CreatePipeline returns-1 and leaves an error
message ininterp- >result .

The last three arguments toTcl_CreatePipeline are used to control I/O to and
from the pipeline ifargv andargc don’t specify I/O redirection. If these arguments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the parent’s standard error channel for their
error message. IfinPipePtr is notNULL then it points to an integer;Tcl_Cre-
atePipeline will create a pipe, connect its output to the standard input of the first sub-
process, and store a writable file descriptor for its input at*inPipePtr . If
outPipePtr is notNULL then standard output goes to a pipe and a read descriptor for
the pipe is stored at*outPipePtr . If errFilePtr is notNULL thenTcl_Cre-
atePipeline creates a temporary file and connects the standard error files for all of the
subprocesses to that file; a readable descriptor for the file will be stored at*errFi-
lePtr . Tcl_CreatePipeline removes the file before it returns, so the file will only
exist as long as it is open.

If argv specifies input or output redirection then this overrides the requests made in
the arguments toTcl_CreatePipeline . For example, ifargv redirects standard
input then no pipe is created for standard input; ifinPipePtr is notNULL then-1 is
stored at*inPipePtr to indicate that standard input was redirected. Ifargv redirects
standard output then no pipe is created for it; ifoutPipePtr is notNULL then-1 is
stored at*outPipePtr . If argv redirects some or all of the standard error output and
errFilePtr is notNULL, the file will still be created and a descriptor will be returned,
even though it’s possible that no messages will actually appear in the file.

35.4 Background processes

Tcl_DetachPids andTcl_ReapDetachedProcs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
dons it (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a “zombie”. It remains a zom-
bie until its parent officially waits for it or until the parent exits. Zombie processes occupy
space in the system’s process table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more processes. To keep this
from happening, you must invoke a system call such aswaitpid , which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishes its slot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processes toTcl_DetachPids :

320 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

Tcl_DetachPids(int numPids, int *pidPtr)

ThepidPtr argument points to an array of process identifiers andnumPids gives the
size of the array. Each of these processes now becomes the property of Tcl and the caller
should not refer to them again. Tcl will assume responsibility for waiting for the processes
after they exit.

In order for Tcl to clean up background processes you may need to callTcl_Reap-
DetachedProcs from time to time.Tcl_ReapDetachedProcs invokes the
waitpid kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executing thenTcl_ReapDetached-
Procs doesn’t actually wait for them to exit; it only cleans up the processes that have
already exited. Tcl automatically invokesTcl_ReapDetachedProcs each time
Tcl_CreatePipeline is invoked, so under normal circumstances you won’t ever
need to invoke it. However, if you create processes without callingTcl_CreatePipe-
line (e.g. by invoking thefork system call) and subsequently pass the processes to
Tcl_DetachPids , then you should also invokeTcl_ReapDetachedProcs from
time to time. For example, a good place to callTcl_ReapDetachedProcs is in the
code that creates new subprocesses.

1

DRAFT (7/10/93): Distribution Restricted

Chapter 36 Introduction 323
36.1 What’s in a widget? 324

36.2 Widgets are event-driven325

36.3 Tk vs. Xlib 325

36.4 Square: an example widget326

36.5 Design for re-usability 328

Chapter 37 Creating Windows 329
37.1 Tk_Window structures 329

37.2 Creating Tk_Windows 329

37.3 Setting a window’s class 331

37.4 Deleting windows 332

37.5 Basic operations on Tk_Windows 332

37.6 Create procedures333

37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337
38.1 Tk_ConfigureWidget 337

38.1.1 Tk_ConfigSpec tables 339
38.1.2 Invoking Tk_ConfigureWidget 341
38.1.3 Errors 342
38.1.4 Reconfiguring 342
38.1.5 Tk_ConfigureInfo 342
38.1.6 Tk_FreeOptions 343
38.1.7 Other uses for configuration tables 343

38.2 Resource caches343
38.2.1 Graphics contexts 344
38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes347

38.6 The square configure procedure348

38.7 The square widget command procedure349

2

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353
39.1 X events 353

39.2 File events 357

39.3 Timer events 359

39.4 Idle callbacks 360

39.5 Generic event handlers361

39.6 Invoking the event dispatcher362

Chapter 40 Displaying Widgets 365
40.1 Delayed redisplay 365

40.2 Double-buffering with pixmaps 367

40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371
41.1 Basics 371

41.2 Delayed cleanup 372

Chapter 42 Managing the Selection377
42.1 Selection handlers377

42.2 Claiming the selection 380

42.3 Retrieving the selection381

Chapter 43 Geometry Management383
43.1 Requesting a size for a widget383

43.2 Internal borders 385

43.3 Grids 386

43.4 Geometry managers387

43.5 Claiming ownership 388

43.6 Retrieving geometry information388

43.7 Mapping and setting geometry389

Part IV:

Tk’ s C Interfaces

322

DRAFT (7/10/93): Distribution Restricted

323

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 36
Intr oduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-
lection of library procedures that you can invoke from C code in the enclosing application.
Although you can do many interesting things with Tk without writing any C code, just by
writing Tcl scripts forwish, you’ll probably find that most large GUI applications require
some C code too. The most common reason for using Tk’s C interfaces is to build new
kinds of widgets. For example, if you write a Tk-based spreadsheet you’ll probably need
to implement a new widget to display the contents of the spreadsheet; if you write a chart-
ing package you’ll probably build one or two new widgets to display charts and graphs in
various forms; and so on. Some of these widgets could probably be implemented with
existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the
needs of your application can probably do the job more simply and efficiently than any of
Tk’s general-purpose widgets. Typically you’ll build one or two new widget classes to dis-
play your application’s new objects, then combine your custom widgets with Tk’s built-in
widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most of Tk’s
library procedures exist for this purpose, and most of the text in this part of the book is ori-
ented towards widget builders. However, you can also use Tk’s library procedures to build
new geometry managers; this is described in Chapter 43. Or, you may simply need to pro-
vide access to some window system feature that isn’t supported by the existing Tcl com-
mands, such as the ability to set the border width of a top-level window. In any event, the
new features you implement should appear as Tcl commands so that you can use them in
scripts. Both the philosophical issues and the library procedures discussed in Part III apply
to this part of the book also.

FIGURE 36

TABLE 36

324 Introduction

DRAFT (7/10/93): Distribution Restricted

36.1 What’ s in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C
procedures that implement the widget’s look and feel. More complex widgets may have
additional data structures and procedures besides theses, but all widgets have at least these
basic components.

 A widget record is the C data structure that represents the state of a widget. It
includes all of the widget’s configuration options plus anything else the widget needs for
its own internal use. For example, the widget record for a label widget contains the label’s
text or bitmap, its background and foreground colors, its relief, and so on. Each instance of
a widget has its own widget record, but all widgets of the same class have widget records
with the same structure. One of the first things you will do when designing a new widget
class is to design the widget record for that class.

Of the widget’s six core procedures, two are Tcl command procedures. The first of
these is called thecreate procedure; it implements the Tcl command that creates widgets
of this class. The command’s name is the same as the class name, and the command
should have the standard syntax described in Section XXX for creating widgets. The com-
mand procedure initializes a new widget record, creates the window for the widget, and
creates the widget command for the widget. It is described in more detail in Chapters 37
and 38.

The second command procedure is thewidget command procedure; it implements the
widget commands for all widgets of this class. When the widget command is invoked its
clientData argument points to the widget record for a particular widget; this allows
the same C procedure to implement the widget commands for many different widgets (the
counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class is itsconfigure procedure. Given one or
more options in string form, such as “-background red”, it parses the options and
fills in the widget record with corresponding internal representations such as anXColor
structure. The configure procedure is invoked by the create procedure and the widget com-
mand procedure to handle configuration options specified on their command lines. Chap-
ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is theevent procedure. It is invoked by Tk’s event dis-
patcher and typically handles exposures (part of the window needs to be redrawn), win-
dow size changes, focus changes, and the destruction of the window. The event procedure
does not normally deal with user interactions such as mouse motions and key presses;
these are usually handled with class bindings created with thebind command as
described in Chapter XXX. Chapter 39 describes the Tk event dispatcher, including its
facilities for managing X events plus additional features for timers, event-driven file I/O,
and idle callbacks

The fifth core procedure is thedisplay procedure. It is invoked to redraw part or all of
the widget on the screen. Redisplays can be triggered by many things, including window
exposures, changes in configuration options, and changes in the input focus. Chapter 40

36.2 Widgets are event-driven 325

DRAFT (7/10/93): Distribution Restricted

discusses several issues related to redisplay, such as deferred redisplay, double-buffering
with pixmaps, and Tk’s support for drawing 3-D effects.

The last of a widget’s core procedures is itsdestroy procedure. This procedure is
called when the widget is destroyed and is responsible for freeing up all of the resources
allocated for the widget such as the memory for the widget record and X resources such as
colors and pixmaps. Widget destruction is tricky because the widget could be in use at the
time it is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-
tial problems.

36.2 Widgets are event-driven

Part II described how the Tcl scripts for Tk applications are event-driven, in that they con-
sist mostly of short responses to user interactions and other events. The C code that imple-
ments widgets is also event-driven. Each of the core procedures described in the previous
section responds to events of some sort. The create, widget command, and configure pro-
cedures all respond to Tcl commands. The event procedure responds to X events, and the
display and destroy procedures respond to things that occur either in X or in Tcl scripts.

36.3 Tk vs. Xlib

Xlib is the C library package that provides the lowest level of access to the X Window
System. Tk is implemented using Xlib but it hides most of the Xlib procedures from the C
code in widgets, as shown in Figure 36.1. For example, Xlib provides a procedureXCre-
ateWindow to create a new windows, but you should not use it; instead, callTk_Cre-
ateWindowFromPath or one of the other procedures provided by Tk for this purpose.
Tk’s procedures call the Xlib procedures but also do additional things such as associating
a textual name with the window. Similarly, you shouldn’t normally call Xlib procedures
like XAllocColor to allocate colors and other resources; call the corresponding Tk pro-

Xlib

Tk

Widget

Figure 36.1.Tk hides many of the Xlib interfaces from widgets, but widgets still invoke Xlib
directly for a few purposes such as drawing on the screen.

326 Introduction

DRAFT (7/10/93): Distribution Restricted

cedures likeTk_GetColor instead. In the case of colors, Tk calls Xlib to allocate the
color, but it also remembers the colors that are allocated; if you use the same color in
many different places, Tk will only communicate with the X server once.

However, Tk does not totally hide Xlib from you. When widgets redisplay themselves
they make direct calls to Xlib procedures such asXDrawLine andXDrawString. Fur-
thermore, many of the structures manipulated by Tk are the same as the structures pro-
vided by Xlib, such as graphics contexts and window attributes. Thus you’ll need to know
quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you
are familiar with the following concepts from Xlib:

• Window attributes such asbackground_pixel, which are stored inXSetWindo-
wAttributes structures.

• Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.

• Procedures for redisplaying, such asXDrawLine andXDrawString.

• Event types and theXEvent structure.

You’ll probably find it useful to keep a book on Xlib nearby when reading this book and to
refer to the Xlib documentation for specifics about the Xlib structures and procedures. If
you haven’t used Xlib before I’d suggest waiting to read about Xlib until you need the
information. That way you can focus on just the information you need and avoid learning
about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldn’t need to know anything about any other X toolkit or
library. For example, Tk is completely independent from the Xt toolkit so you don’t need
to know anything about Xt. For that matter, if you’re using Tk youcan’t use Xt: their wid-
gets are incompatible and can’t be mixed together.

36.4 Square: an example widget

I’ll use a simple widget called “square” for examples throughout Part IV. The square wid-
get displays a colored square on a background as shown in Figure 36.2. The widget sup-
ports several configuration options, such as colors for the background and for the square, a
relief for the widget, and a border width used for both the widget and the square. It also
provides three widget commands:configure, which is used in the standard way to
query and change options;position, which sets the position of the square’s upper-left
corner relative to the upper-left corner of the window, andsize, which sets the square’s
size. Figure 36.2 illustrates theposition andsize commands.

Given these simple commands many other features can be written as Tcl scripts. For
example, the following script arranges for the square to center itself over the mouse cursor
on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes
that the square widget is named “.s”.

36.4 Square: an example widget 327

DRAFT (7/10/93): Distribution Restricted

proc center {x y} {
set a [.s size]
.s position [expr $x-($a/2)] [expr $y-($a/2)]

}
bind .s <1> {center %x %y}
bind .s <B1-Motion> {center %x %y}

Note: For this particular widget it would probably make more sense to use configuration options
instead of theposition andsize commands; I made them widget commands just to
illustrate how to write widget commands.

Figure 36.2.A sequence of scripts and the displays that they produce. Figure (a) creates a square
widget, Figure (b) invokes theposition widget command to move the square within its widget,
and Figure (c) changes the size of the square.

square .s
pack .s
wm title .s "Square widget example"

.s position 100 75

.s size 40

(a) (b)

(c)

328 Introduction

DRAFT (7/10/93): Distribution Restricted

The implementation of the square widget requires about 320 lines of C code exclud-
ing comments, or about 750 lines in a copiously-commented version. The square widget
doesn’t use all of the features of Tk but it illustrates the basic things you must do to create
a new widget. For examples of more complex widgets you can look at the source code for
some of Tk’s widgets; they have the same basic structure as the square widget and they
use the same library procedures that you’ll read about in the chapters that follow.

36.5 Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If
you do this then it may be possible for you or someone else to use your widget in new
ways that you didn’t foresee when you created it. Here are a few specific things to think
about:

1. Store all the information about the widget in its widget record. If you use static or glo-
bal variables to hold widget state then it may not be possible to have more than one
instance of the widget in any given application. Even if you don’t envision using more
than one instance per application, don’t do anything to rule this out.

2. Make sure that all of the primitive operations on your widget are available through its
widget command. Don’t hard-wire the widget’s behavior in C. Instead, define the
behavior as a set of class bindings using thebind command. This will make it easy to
change the widget’s behavior.

3. Provide escapes to Tcl. Think about interesting ways that you can embed Tcl commands
in your widget and invoke them in response to various events. For example, the actions
for button widgets and menu items are stored as a Tcl commands that are evaluated
when the widgets are invoked, and canvases and texts allow you to associate Tcl com-
mands with their internal objects in order to give them behaviors.

4. Organize the code for your widget in one or a few files that can easily be linked into
other applications besides the one you’re writing.

329

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 37
Creating Windows

This chapter presents Tk’s basic library procedures for creating windows. It describes the
Tk_Window type, which is used as a token for windows, then introduces the Tk proce-
dures for creating and deleting windows. Tk provides several macros for retrieving infor-
mation about windows, which are introduced next. Then the chapter discusses what
should be in the create procedure for a widget, using the square widget as an example. The
chapter closes with a discussion of delayed window creation. See Table 37.1 for a sum-
mary of the procedures discussed in the chapter.

37.1 Tk_Window structures

Tk uses a token of typeTk_Window to represent each window. When you create a new
window Tk returns aTk_Window token, and you must pass this token back to Tk when
invoking procedures to manipulate the window. A Tk_Window is actually a pointer to a
record containing information about the window, such as its name and current size, but Tk
hides the contents of this structure and you may not read or write its fields directly. The
only way you can manipulate aTk_Window is to invoke procedures and macros provided
by Tk.

37.2 Creating Tk_W indows

Tk applications typically use two procedures for creating windows:Tk_CreateMain-
Window andTk_CreateWindowFromPath. Tk_CreateMainWindow creates a

FIGURE 37

TABLE 37

330 Creating Windows

DRAFT (7/10/93): Distribution Restricted

new application; it’s usually invoked in the main program of an application. Before invok-
ing Tk_CreateMainWindow you should create a Tcl interpreter to use for the applica-
tion.Tk_CreateMainWindow takes three arguments, consisting of the interpreter plus
two strings:

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

ThescreenName argument gives the name of the screen on which to create the main
window. It can have any form acceptable to your X server. For example, on most UNIX-
like systems “unix:0” selects the default screen of display 0 on the local machine, or
“ginger.cs.berkeley.edu:0.0” selects screen 0 of display 0 on the machine
whose network address is “ginger.cs.berkeley.edu”. ScreenName may be
specified asNULL, in which case Tk picks a default server. On UNIX-like systems the
default server is normally determined by theDISPLAY environment variable.

Table 37.1.A summary of basic procedures for window creation and deletion.

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

Creates a new application and returns a token for the application’s main win-
dow. ScreenName gives the screen on which to create the main window (if
NULL then Tk picks default), andappName gives a base name for the appli-
cation. If an error occurs, returnsNULL and stores an error message in
interp->result.

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName)

Creates a new window intkwin’s application whose path name ispath-
Name. If screenName isNULL the new window will be an internal win-
dow; otherwise it will be a top-level window onscreenName. Returns a
token for the new window. If an error occurs, returnsNULL and stores an
error message ininterp->result.

Tk_SetClass(Tk_Window tkwin, char *class)
Setstkwin’s class toclass.

Tk_DestroyWindow(TkWindow tkwin)
Destroytkwin and all of its descendants in the window hierarchy.

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

Returns the token for the window whose path name ispathName in the
same application astkwin. If no such name exists then returnsNULL and
stores an error message ininterp->result.

Tk_MakeWindowExist(TkWindow tkwin)
Force the creation of the X window fortkwin, if it didn’t already exist.

37.3 Setting a window’s class 331

DRAFT (7/10/93): Distribution Restricted

The last argument toTk_CreateMainWindow is a name to use for the application,
such as “clock” for a clock program or “mx foo.c” for an editor namedmx editing a
file namedfoo.c. This is the name that other applications will use to send commands to
the new application. Each application must have a unique name; ifappName is already in
use by some other application then Tk adds a suffix like “ #2” to make the name unique.
Thus the actual name of the application may be something like “clock #3” or “mx
foo.c #4”. You can find out the actual name for the application using theTk_Name
macro or by invoking the Tcl command “winfo name .”.

Tk_CreateMainWindow creates the application’s main window, registers its name
so that other applications can send commands to it, and adds all of Tk’s commands to the
interpreter. It returns theTk_Window token for the main window. If an error occurs (e.g.
screenName doesn’t exist or the X server refused to accept a connection) then
Tk_CreateMainWindow returnsNULL and leaves an error message in
interp->result.

Tk_CreateWindowFromPath adds a new window to an existing application. It’s
the procedure that’s usually called when creating new widgets and it has the following
prototype:

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName);

Thetkwin argument is a token for an existing window; its only purpose is to identify the
application in which to create the new window. PathName gives the full name for the
new window, such as “.a.b.c”. There must not already exist a window by this name,
but its parent (for example, “.a.b”) must exist. IfscreenName isNULL then the new
window is an internal window; otherwise the new window will be a top-level window on
the indicated screen.Tk_CreateWindowFromPath returns a token for the new win-
dow unless an error occurs, in which case it returnsNULL and leaves an error message in
interp->result.

Tk also provides a third window-creation procedure calledTk_CreateWindow.
This procedure is similar toTk_CreateWindowFromPath except that the new win-
dow’s name is specified a bit differently. See the reference documentation for details.

37.3 Setting a window’ s class

The procedureTk_SetClass assigns a particular class name to a window. For example,

Tk_SetClass(tkwin, "Foo");

sets the class of windowtkwin to “Foo”. Class names are used by Tk for several pur-
poses such as finding options in the option database and event bindings. You can use any
string whatsoever as a class name when you invokeTk_SetClass, but you should make
sure the first letter is capitalized: Tk assumes in several places that uncapitalized names
are window names and capitalized names are classes.

332 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.4 Deleting windows

The procedureTk_DestroyWindow takes aTk_Window as argument and deletes the
window. It also deletes all of the window’s children recursively. Deleting the main win-
dow of an application will delete all of the windows in the application and usually causes
the application to exit.

37.5 Basic operations on Tk_W indows

Given a textual path name for a window, Tk_NameToWindow may be used to find the
Tk_Window token for the window:

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin);

PathName is the name of the desired window, such as “.a.b.c”, andtkwin is a token
for any window in the application of interest (it isn’t used except to select a specific appli-
cation). NormallyTk_NameToWindow returns a token for the given window, but if no
such window exists it returnsNULL and leaves an error message ininterp->result.

Tk maintains several pieces of information about eachTk_Window and it provides a
set of macros that you can use to access the information. See Table 37.2 for a summary of
all the macros. Each macro takes aTk_Window as an argument and returns the corre-
sponding piece of information for the window. For example iftkwin is aTk_Window
then

Tk_Width(tkwin)

returns an integer value giving the current width oftkwin in pixels. Here are a few of the
more commonly used macros:

• Tk_Width andTk_Height return the window’s dimensions; this information is used
during redisplay for purposes such as centering text.

• Tk_WindowId returns the X identifier for the window; it is needed when invoking
Xlib procedures during redisplay.

• Tk_Display returns a pointer to Xlib’sDisplay structure corresponding to the
window; it is also needed when invoking Xlib procedures.

Some of the macros, likeTk_InternalBorderWidth andTk_ReqWidth, are only
used by geometry managers (see Chapter 43) and others such asTk_Visual are rarely
used by anyone.

37.6 Create procedures 333

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

The create procedure for a widget must do five things: create a newTk_Window; create
and initialize a widget record; set up event handlers; create a widget command for the wid-
get; and process configuration options for the widget. The create procedure should be the
command procedure for a Tcl command named after the widget’s class, and itsclient-

Table 37.2.Macros defined by Tk for retrieving window state. Each macro takes aTk_Window as
argument and returns a result whose type is given in the second column. All of these macros are fast
(they simply return fields from Tk’s internal structures and don’t require any interactions with the X
server).

Macro Name Result Type Meaning

Tk_Attributes XSetWindowAttributes
 *

Window attributes such as border pixel
and cursor.

Tk_Changes XWindowChanges * Window position, size, stacking order.

Tk_Class Tk_Uid Name of window’s class.

Tk_Colormap Colormap Colormap for window.

Tk_Depth int Bits per pixel.

Tk_Display Display X display for window.

Tk_Height int Current height of window in pixels.

Tk_InternalBorderWidth int Width of internal border in pixels.

Tk_IsMapped int 1 if window mapped, 0 otherwise.

Tk_IsTopLevel int 1 if top-level, 0 if internal.

Tk_Name Tk_Uid Name within parent. For main window,
returns application name.

Tk_Parent Tk_Window Parent, orNULL for main window.

Tk_PathName char * Full path name of window.

Tk_ReqWidth int Requested width in pixels.

Tk_ReqHeight int Requested height in pixels.

Tk_Screen Screen * X Screen for window.

Tk_ScreenNumber int Index of window’s screen.

Tk_Visual Visual * Information about window’s visual char-
acteristics.

Tk_Width int Current width of window in pixels.

Tk_WindowId Window X identifier for window.

Tk_X int X-coordinate within parent window.

Tk_Y int Y-coordinate within parent window.

334 Creating Windows

DRAFT (7/10/93): Distribution Restricted

Data argument should be theTk_Window token for the main window of the application
(this is needed in order to create a newTk_Window in the application).

Figure 37.1 shows the code forSquareCmd, which is the create procedure for square
widgets. After checking its argument count,SquareCmd creates a new window for the
widget and invokesTk_SetClass to assign it a class of “Square”. The middle part of
SquareCmd allocates a widget record for the new widget and initializes it. The widget
record for squares has the following definition:

typedef struct {
Tk_Window tkwin;
Display *display;
Tcl_Interp *interp;
int x, y;
int size;
int borderWidth;
Tk_3DBorder bgBorder;
Tk_3DBorder fgBorder;
int relief;
GC gc;
int updatePending;

} Square;

The first field of the record is theTk_Window for the widget. The next field,display,
identifies the X display for the widget (it’s needed during cleanup after the widget is
deleted).Interp holds a pointer to the interpreter for the application. Thex andy fields
give the position of the upper-left corner of the square relative to the upper-left corner of
the window, and thesize field specifies the square’s size in pixels. The last six fields are
used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget recordSquareCmd callsTk_Cre-
ateEventHandler; this arranges forSquareEventProc to be called whenever the
widget needs to be redrawn or when various other events occur, such as deleting its win-
dow or changing its size; events will be discussed in more detail in Chapter 39. Next
SquareCmd callsTcl_CreateCommand to create the widget command for the wid-
get. The widget’s name is the name of the command,SquareWidgetCmd is the com-
mand procedure, and a pointer to the widget record is theclientData for the command
(using a pointer to the widget record asclientData allows a single C procedure to
implement the widget commands for all square widgets;SquareWidgetCommand will
receive a differentclientData argument depending on which widget command was
invoked). ThenSquareCmd callsConfigureSquare to process any configuration
options specified as arguments to the command; Chapter 38 describes how the configura-
tion options are handled. If an error occurs in processing the configuration options then
SquareCmd destroys the window and returns an error. Otherwise it returns success with
the widget’s path name as result.

37.6 Create procedures 335

DRAFT (7/10/93): Distribution Restricted

int SquareCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Tk_Window main = (Tk_Window) clientData;
Square *squarePtr;
Tk_Window tkwin;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR;

}

tkwin = Tk_CreateWindowFromPath(interp, main, argv[1],
(char *) NULL);

if (tkwin == NULL) {
return TCL_ERROR;

}
Tk_SetClass(tkwin, "Square");

squarePtr = (Square *) malloc(sizeof(Square));
squarePtr->tkwin = tkwin;
squarePtr->display = Tk_Display(tkwin);
squarePtr->interp = interp;
squarePtr->x = 0;
squarePtr->y = 0;
squarePtr->size = 20;
squarePtr->bgBorder = NULL;
squarePtr->fgBorder = NULL;
squarePtr->gc = None;
squarePtr->updatePending = 0;

Tk_CreateEventHandler(tkwin,
ExposureMask|StructureNotifyMask, SquareEventProc,
(ClientData) squarePtr);

Tcl_CreateCommand(interp, Tk_PathName(tkwin),
SquareWidgetCmd, (ClientData squarePtr),
(Tcl_CmdDeleteProc *) NULL);

if (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
!= TCL_OK) {

Tk_DestroyWindow(squarePtr->tkwin);
return TCL_ERROR;

}
interp->result = Tk_PathName(tkwin);
return TCL_OK;

}

Figure 37.1.The create procedure for square widgets. This procedure is the command procedure
for thesquare command.

336 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.7 Delayed window creation

Tk_CreateMainWindow andTk_CreateWindowFromPath create the Tk data
structures for a window, but they do not communicate with the X server to create an actual
X window. If you create aTk_Window and immediately fetch its X window identifier
usingTk_WindowId, the result will beNone. Tk doesn’t normally create the X window
for aTk_Window until the window is mapped, which is normally done by a geometry
manager (see Chapter 43). The reason for delaying window creation is performance.
When aTk_Window is initially created, all of its attributes are set to default values.
Many of these attributes will be modified almost immediately when the widget configures
itself. It’s more efficient to delay the window’s creation until all of its attributes have been
set, rather than first creating the window and then asking the X server to modify the
attributes later.

Delayed window creation is normally invisible to widgets, since the only time a wid-
get needs to know the X identifier for a window is when it invokes Xlib procedures to dis-
play it. This doesn’t happen until after the window has been mapped, so the X window
will have been created by then. If for some reason you should need the X window identi-
fier before aTk_Window has been mapped, you can invokeTk_MakeWindowExist:

void Tk_MakeWindowExist(tkwin);

This forces the X window fortkwin to be created immediately if it hasn’t been created
yet. OnceTk_MakeWindowExist returns,Tk_WindowId can be used to retrieve the
Window token for it.

337

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 38
Configuring Widgets

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-
ally drawing the widget’s contents on the screen. A widget is configured initially as part of
creating it, and it may be reconfigured by invoking its widget command. One of the largest
components of configuring a widget is processing configuration options such as
“-borderwidth 1m”. For each option the textual value must be translated to an inter-
nal form suitable for use in the widget. For example, distances specified in floating-point
millimeters must be translated to integer pixel values and font names must be mapped to
correspondingXFontStruct structures. Configuring a widget also includes other tasks
such as preparing X graphics contexts to use when drawing the widget and setting
attributes of the widget’s window, such as its background color.

This chapter describes the Tk library procedures for configuring widgets, and it pre-
sents the square widget’s configure procedure and widget command procedure. Chapter 40
will show how to draw a widget once configuration is complete.

38.1 Tk_ConfigureW idget

Tk provides three library procedures,Tk_ConfigureWidget, Tk_Configure-
Info, andTk_FreeOptions, that do most of the work of processing configuration
options (see Table 38.1). To use these procedures you first create aconfiguration table that
describes all of the configuration options supported by your new widget class. When creat-
ing a new widget, you pass this table toTk_ConfigureWidget along withargc/
argv information describing the configuration options (i.e. all the arguments in the cre-
ation command after the widget name). You also pass in a pointer to the widget record for

FIGURE 38

TABLE 38

338 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

the widget.Tk_ConfigureWidget processes each option specified inargv according
to the information in the configuration table, converting string values to appropriate inter-
nal forms, allocating resources such as fonts and colors if necessary, and storing the results
into the widget record. For options that aren’t explicitly specified inargv, Tk_Config-
ureWidget checks the option database to see if a value is specified there. For options
that still haven’t been set,Tk_ConfigureWidget uses default values specified in the
table.

When theconfigure widget command is invoked to change options, you call
Tk_ConfigureWidget again with theargc/argv information describing the new
option values.Tk_ConfigureWidget will process the arguments according to the
table and modify the information in the widget record accordingly. When theconfig-
ure widget command is invoked to read out the current settings of options, you call
Tk_ConfigureInfo. It generates a Tcl result describing one or all of the widget’s

Table 38.1.A summary ofTk_ConfigureWidget and related procedures and macros.

int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char *argv[], char *widgRec,
int flags)

Processes a set of arguments from a Tcl command (argc andargv) using a
table of allowable configuration options (specs) and sets the appropriate
fiels of a widget record (widgRec). Tkwin is the widget’s window. Nor-
mally returnsTCL_OK; if an error occurs, returnsTCL_ERROR and leaves
an error message ininterp->result. Flags is normally 0 orTK_CON-
FIG_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char * argvName, flags)

Finds the configuration option inspecs whose command-line name is
argvName, locates the value of that option inwidgRec, and generates in
interp->result a list describing that configuration option. If
argvName isNULL, generates a list of lists describing all of the options in
specs. Normally returnsTCL_OK; if an error occurs, returnsTCL_ERROR
and leaves an error message ininterp->result. Flags is normally 0
(see the reference documentation for other possibilities).

Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags)

Frees up any resources inwidgRec that are used byspecs. Display
must be the widget’s display. Flags is normally 0 but can be used to select
particular entries inspecs (see reference documentation for details).

int Tk_Offset(type, field)
This is a macro that returns the offset of a field namedfield within a struc-
ture whose type istype. Used when creating configuration tables.

38.1 Tk_ConfigureWidget 339

DRAFT (7/10/93): Distribution Restricted

options in exactly the right form, so all you have to do is return this result from the widget
command procedure.

Finally, when a widget is deleted you invokeTcl_FreeOptions. Tcl_FreeOp-
tions scans through the table to find options for which resources have been allocated,
such as fonts and colors. For each such option it uses the information in the widget record
to free up the resource.

38.1.1 Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is
an array of records, each with the following structure:

typedef struct {
int type;
char *argvName;
char *dbName;
char *dbClass;
char *defValue;
int offset;
int specFlags;
Tk_CustomOption *customPtr;

} Tk_ConfigSpec;

Thetype field specifies the internal form into which the option’s string value should be
converted. For example,TK_CONFIG_INT means the option’s value should be converted
to an integer andTK_CONFIG_COLOR means that the option’s value should be converted
to a pointer to anXColor structure. ForTK_CONFIG_INT the option’s value must have
the syntax of a decimal, hexadecimal, or octal integer and forTK_CONFIG_COLOR the
option’s value must have one of the forms for colors described in Section XXX. For
TK_CONFIG_COLOR Tk will allocate anXColor structure, which must later be freed
(e.g. by callingTk_FreeOptions). More than 20 different option types are defined by
Tk; see the reference documentation for details on each of the supported types.

ArgvName is the option’s name as specified on command lines, e.g.
“-background” or “-font”. ThedbName anddbClass fields give the option’s
name and class in the option database. ThedefValue field gives a default value to use
for the option if it isn’t specified on the command line and there isn’t a value for it in the
option database;NULL means there is no default for the option.

Theoffset field tells where in the widget record to store the converted value of the
option. It is specified as a byte displacement from the beginning of the record. You should
use theTk_Offset macro to generate values for this field. For example,

Tk_Offset(Square, relief)

produces an appropriate offset for therelief field of a record whose type isSquare.
ThespecFlags field contains an OR-ed combination of flag bits that provide addi-

tional control over the handling of the option. A few of the flags will be discussed below;
see the reference documentation for a complete listing. Finally, thecustomPtr field pro-

340 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

vides additional information for application-defined options. It’s only used when the type
isTK_CONFIG_CUSTOM and should beNULL in other cases. See the reference documen-
tation for details on defining custom option types.

Here is the option table for square widgets:

Tk_ConfigSpec configSpecs[] = {
{TK_CONFIG_BORDER, "-background", "background",

"Background",
"#cdb79e", Tk_Offset(Square, bgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
"BorderWidth", "1m", Tk_Offset(Square, borderWidth),
0, (Tk_CustomOption *) NULL},

TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
"raised", Tk_Offset(Square, relief), 0,
(Tk_CustomOption *) NULL},

{TK_CONFIG_END, (char *) NULL, (char *) NULL, ,
(char *) NULL, (char *) NULL, 0, 0,
(Tk_CustomOption *) NULL}

};

This table illustrates three additional features ofTk_ConfigSpecs structures. First,
there are two entries each for the-background and-foreground options. The first
entry for each option has theTK_CONFIG_COLOR_ONLY flag set, which causes Tk to
use that option if the display is a color display and to ignore it if the display is mono-
chrome. The second entry specifies theTK_CONFIG_MONO_ONLY flag so it is only used
for monochrome displays. This feature allows different default values to be specified for
color and mono displays (the current color model for the window determines whether the
it considered to be color or monochrome; see Section XXX). Second, the options-bd, -
bg, and-fg have typeTK_CONFIG_SYNONYM. This means that each of these options is
a synonym for some other option; thedbName field identifies the other option and the
other fields are ignored. For example, if the -bd option is specified with the above table,
Tk will actually use the table entry for the-borderwidth option. Third, the last entry

38.1 Tk_ConfigureWidget 341

DRAFT (7/10/93): Distribution Restricted

in the table must have typeTK_CONFIG_END; Tk depends on this to locate the end of the
table.

38.1.2 Invoking Tk_ConfigureW idget

Suppose thatTk_ConfigureWidget is invoked as follows:

Tcl_Interp *interp;
Tk_Window tkwin;
char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
int code;
...
code = Tk_ConfigureWidget(interp, tkwin, configSpecs,

4, argv, (char *) squarePtr, 0);

A call much like this will occur if a square widget is created with the Tcl command

square .s -relief sunken -bg blue

The-relief option will be processed according to typeTK_CONFIG_RELIEF, which
dictates that the option’s value must be a valid relief, such as “raised” or “sunken”. In
this case the value specified issunken; Tk_ConfigureWidget converts this string
value to the integer valueTK_RELIEF_SUNKEN and stores that value in
squarePtr->relief. The-bg option will be processed according to theconfig-
Specs entry for-background, which has typeTK_CONFIG_BORDER. This type
requires that the option’s value be a valid color name; Tk creates a data structure suitable
for drawing graphics in that color intkwin, and it computes additional colors for draw-
ing light and dark shadows to produce 3-dimensional effects. All of this information is
stored in the new structure and a token for that structure is stored in thebgBorder field
of squarePtr. In Chapter 40 you’ll see how this token is used to draw the widget.

Since the-borderwidth and-foreground options weren’t specified inargv,
Tk_ConfigureWidget looks them up in the option database using the information for
those options inconfigSpecs. If it finds values in the option database then it will use
them in the same way as if they had been supplied inargv.

If an option isn’t specified in the option database thenTk_ConfigureWidget uses
the default value specified in its table entry. For example, for-borderwidth it will use
the default value “1m”. Since the option has typeTK_CONFIG_PIXELS, this string must
specify a screen distance in one of the forms described in Section XXX. “1m” specifies a
distance of one millimeter; Tk converts this to the corresponding number of pixels and
stores the result as an integer insquarePtr->borderWidth. If the default value for
an option isNULL thenTk_ConfigureWidget does nothing at all if there is no value
in eitherargv or the option database; the value in the widget record will retain whatever
value it had whenTk_ConfigureWidget is invoked.

Note: If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widget record before invokingTk_ConfigureWidget. If

342 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

there is a default value then you need not initialize the field in the widget record since
Tk_ConfigureWidget will always store a proper value there.

38.1.3 Errors

Tk_ConfigureWidget normally returnsTCL_OK. If an error occurs then it returns
TCL_ERROR and leaves an error message ininterp->result. The most common
form of error is a value that doesn’t make sense for the option type, such as “abc” for the
-bd option.Tk_ConfigureWidget returns as soon as it encounters an error, which
means that some of the fields of the widget record may not have been set yet; these fields
will be left in an initialized state (such asNULL for pointers,0 for integers,None for X
resources, etc.).

38.1.4 Reconfiguring

Tk_ConfigureWidget gets invoked not only when a widget is created but also during
theconfigure widget command. When reconfiguring you probably won’t want to con-
sider the option database or default values. You’ll want to process only the options that are
specified explicitly inargv, leaving all the unspecified options with their previous values.
To accomplish this, specifyTK_CONFIG_ARGV_ONLY as the last argument toTk_Con-
figureWidget:

code = Tk_ConfigureWidget(interp, tkwin, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFIG_ARGV_ONLY);

38.1.5 Tk_ConfigureInfo

If a configure widget command is invoked with a single argument, or with no argu-
ments, then it returns configuration information. For example, if.s is a square widget
then

.s configure -background

should return a list of information about the-background option and

.s configure

should return a list of lists describing all the options, as described in Section XXX.
Tk_ConfigureInfo does all the work of generating this information in the proper for-
mat. For the square widget it might be invoked as follows:

code = Tk_ConfigureInfo(interp, tkwin, configSpecs,
(char *) squarePtr, argv[2], 0);

Argv[2] specifies the name of a particular option (e.g.-background in the first
example above). If information is to be returned about all options, as in the second exam-
ple above, thenNULL should be specified as the option name.Tk_ConfigureInfo sets
interp->result to hold the proper value and returnsTCL_OK. If an error occurs

38.2 Resource caches 343

DRAFT (7/10/93): Distribution Restricted

(because a bad option name was specified, for example) thenTk_ConfigureInfo
stores an error message ininterp->result and returnsTCL_ERROR. In either case,
the widget command procedure can leaveinterp->result as it is and returncode as
its completion code.

38.1.6 Tk_FreeOptions

The library procedureTk_FreeOptions is usually invoked after a widget is deleted in
order to clean up its widget record. For some option types, such asTK_CONFIG_BOR-
DER, Tk_ConfigureWidget allocates resources which must eventually be freed.
Tk_FreeOptions takes care of this:

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags);

Specs andwidgRec should be the same as in calls to Tk_ConfigureWidget.Display
identifies the X display containing the widget (it’s needed for freeing certain options) and
flags should normally be 0 (see the reference documentation for other possibilities).
Tk_FreeOptions will scanspecs looking for entries such asTK_CONFIG_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure
a resource is actually allocated (for example, if the value of a string resource isNULL it
means that no memory is allocated). If there is a resource allocated thenTk_FreeOp-
tions passes the value from the widget record to an appropriate procedure to free up the
resource and resets the value in the widget record to a state such asNULL to indicate that it
has been freed.

38.1.7 Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for
any situation where textual information must be converted to an internal form and stored
in fields of a structure, particularly if the information is specified in the same form as for
widget options, e.g.

-background blue -width 1m

Tk uses configuration tables internally for configuring menu entries, for configuring can-
vas items, and for configuring display attributes of tags in text widgets.

38.2 Resource caches

The X window system provides a number of different resources for applications to use.
Windows are one example of a resource; other examples are graphics contexts, fonts, pix-
maps, colors, and cursors. An application must allocate resources before using them and
free them when they’re no longer needed. X was designed to make resource allocation and

344 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

deallocation as cheap as possible, but it is still expensive in many situations because it
requires communication with the X server (for example, font allocation requires commu-
nication with the server to make sure the font exists). If an application uses the same
resource in several different places (e.g. the same font in many different windows) it is
wasteful to allocate separate resources for each use: this wastes time communicating with
the server and it wastes space in the X server to keep track of the copies of the resource.

Tk provides a collection ofresource caches in order to reduce the costs of resource
management. When your application needs a particular resource you shouldn’t call Xlib to
allocate it; call the corresponding Tk procedure instead. Tk keeps track of all the resources
used by the application and allows them to be shared. If you use the same font in many dif-
ferent widgets, Tk will call X to allocate a font for the first widget, but it will re-use this
font for all the other widgets. When the resource is no longer needed anywhere in the
application (e.g. all the widgets using the font have been destroyed) then Tk will invoke
the Xlib procedure to free up the resource. This approach saves time as well as memory in
the X server.

If you allocate a resource through Tk you must treat it as read-only since it may be
shared. For example, if you allocate a graphics context withTk_GetGC you must not
change the background color of the graphics context, since this would affect the other uses
of the graphics context. If you need to modify a resource after creating it then you should
not use Tk’s resource caches; call Xlib directly to allocate the resource so that you can
have a private copy.

Most of the resources for a widget are allocated automatically byTk_Configure-
Widget, andTk_ConfigureWidget uses the Tk resource caches. The following sub-
sections describe how to use the Tk resource caches directly, without going through
Tk_ConfigureWidget.

38.2.1 Graphics contexts

Graphics contexts are the resource that you are most likely to allocate directly. They are
needed whenever you draw information on the screen andTk_ConfigureWidget
does not provide facilities for allocating them. Thus most widgets will need to allocate a
few graphics contexts in their configure procedures. The procedureTk_GetGC allocates a
graphics context and is similar to the Xlib procedureXCreateGC:

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask,
XGCValues *valuePtr)

Thetkwin argument specifies the window in which the graphics context will be used.
ValueMask andValuePtr specify the fields of the graphics context.ValueMask is
an OR-ed combination of bits such asGCForeground orGCFont that indicate which
fields ofvaluePtr are significant.ValuePtr specifies values of the selected fields.
Tk_GetGC returns the X resource identifier for a graphics context that matchesvalue-
Mask andvaluePtr. The graphics context will have default values for all of the unspec-
ified fields.

38.2 Resource caches 345

DRAFT (7/10/93): Distribution Restricted

When you’re finished with a graphics context you must free it by calling
Tk_FreeGC:

Tk_FreeGC(Display *display, GC gc)

Thedisplay argument indicates the display for which the graphics context was allo-
cated and thegc argument identifies the graphics context (gc must have been the return
value from some previous call toTk_GetGC). There must be exactly one call to
Tk_FreeGC for each call toTk_GetGC.

38.2.2 Other resources

Although resources other than graphics contexts are normally allocated and deallocated
automatically byTk_ConfigureWidget andTk_FreeOptions, you can also allo-
cate them explicitly using Tk library procedures. For each resource there are three proce-
dures. The first procedure (such asTk_GetColor) takes a textual description of the
resource in the same way it might be specified as a configuration option and returns a suit-
able resource or an error. The second procedure (such asTk_FreeColor) takes a
resource allocated by the first procedure and frees it. The third procedure takes a resource
and returns the textual description that was used to allocate it. The following resources are
supported in this way:

Bitmaps: the proceduresTk_GetBitmap, Tk_FreeBitmap, andTk_NameOf-
Bitmap managePixmap resources with depth one. You can also invokeTk_De-
fineBitmap to create new internally-defined bitmaps, andTk_SizeOfBitmap
returns the dimensions of a bitmap.

Colors : the proceduresTk_GetColor, Tk_FreeColor, andTk_NameOfColor
manageXColor structures. You can also invokeTk_GetColorByValue to specify
a color with integer intensities rather than a string.

Cursors: the proceduresTk_GetCursor, Tk_FreeCursor, and
Tk_NameOfCursor manageCursor resources. You can also invokeTk_GetCur-
sorFromData to define a cursor based on binary data in the application.

Fonts: the proceduresTk_GetFontStruct, Tk_NameOfFontStruct, and
Tk_FreeFontStruct manageXFontStruct structures.

3-D borders: the proceduresTk_Get3DBorder, Tk_Free3DBorder, and
Tk_NameOf3DBorder manageTk_3DBorder resources, which are used to draw
objects with beveled edges that produce 3-D effects. Associated with these procedures
are other procedures such asTk_Draw3DRectangle that draw objects on the screen
(see Section 40.3). In addition you can invokeTk_3DBorderColor to retrieve the
XColor structure for the border’s base color.

346 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

38.3 Tk_Uids

When invoking procedures likeTk_GetColor you pass in a textual description of the
resource to allocate, such as “red” for a color. However, this textual description is not a
normal C string but rather aunique identifier, which is represented with the typeTk_Uid:

typedef char *Tk_Uid;

A Tk_Uid is like an atom in Lisp. It is actually a pointer to a character array, just like a
normal C string, and aTk_Uid can be used anywhere that a string can be used. However,
Tk_Uid’s have the property that any twoTk_Uid’s with the same string value also have
the same pointer value: ifa andb areTk_Uid’s and

(strcmp(a,b) == 0)

then

(a == b)

Tk usesTk_Uid’s to specify resources because they permit fast comparisons for equality.
If you useTk_ConfigureWidget to allocate resources then you won’t have to

worry aboutTk_Uid’s (Tk automatically translates strings from the configuration table
intoTk_Uid’s). But if you call procedures likeTk_GetColor directly then you’ll need
to useTk_GetUid to turn strings into unique identifiers:

Tk_Uid Tk_GetUid(char *string)

Given a string argument,Tk_GetUid returns the correspondingTk_Uid. It just keeps a
hash table of all unique identifiers that have been used so far and returns a pointer to the
key stored in the hash table.

Note: If you pass strings directly to procedures likeTk_GetColor without converting them to
unique identifiers then you will get unpredictable results. One common symptom is that the
application uses the same resource over and over even though you think you’ve specified
different values for each use. Typically what happens is that the same string buffer was
used to store all of the different values. Tk just compares the string address rather than its
contents, so the values appear to Tk to be the same.

38.4 Other translators

Tk provides several other library procedures that translate from strings in various forms to
internal representations. These procedures are similar to the resource managers in Section
38.2 except that the internal forms are not resources that require freeing, so typically there
is just a “get” procedure and a “name of” procedure with no “free” procedure. Below is a
quick summary of the availabile translators (see the reference documentation for details):

Anchors: Tk_GetAnchor andTk_NameOfAnchor translate between strings con-
taining an anchor positions such as “center” or “ne” and integers with values
defined by symbols such asTK_ANCHOR_CENTER orTK_ANCHOR_NE.

38.5 Changing window attributes 347

DRAFT (7/10/93): Distribution Restricted

Cap styles: Tk_GetCapStyle andTk_NameOfCapStyle translate betwen
strings containing X cap styles (“butt”, “projecting”, or “round”) and integers
with values defined by the X symbolsCapButt, CapProjecting, andCapRound.

Join styles: Tk_JoinStyle andTk_NameOfJoinStyle translate between strings
containing X join styles (“bevel”, “miter”, or “round”) and integers with values
defined by the X symbolsJoinBevel, JoinMiter, andJoinRound.

Justify styles: Tk_GetJustify andTk_NameOfJustify translate between
strings containing styles of justification (“left”, “right”, “center”, or “fill”)
and integers with values defined by the symbolsTK_JUSTIFY_LEFT, TK_JUSTI-
FY_RIGHT, TK_JUSTIFY_CENTER, andTK_JUSTIFY_FILL.

Reliefs: Tk_GetRelief andTk_NameOfRelief translate between strings con-
taining relief names (“raised”, “sunken”, “flat”, “groove”, or “ridge”) and
integers with values defined by the symbolsTK_RELIEF_RAISED, TK_RELIEF_-
SUNKEN, etc.

Screen distances: Tk_GetPixels andTk_GetScreenMM process strings that con-
tain screen distances in any of the forms described in Section XXX, such as “1.5m” or
“2”. Tk_GetPixels returns an integer result in pixel units, andTk_GetScreenMM
returns a real result whose units are millimeters.

Window names: Tk_NameToWindow translates from a string containing a window
path name such as “.dlg.quit” to theTk_Window token for the corresponding
window.

X atoms: Tk_InternAtom andTk_GetAtomName translate between strings con-
taining the names of X atoms (e.g. “RESOURCE_MANAGER”) and XAtom tokens.
Tk keeps a cache of atom names to avoid communication with the X server.

38.5 Changing window attributes

Tk provides a collection of procedures for modifying a window’s attributes (e.g. back-
ground color or cursor) and configuration (e.g. position or size). These procedures are
summarized in Table 38.2. The procedures have the same arguments as the Xlib proce-
dures with corresponding names. They perform the same functions as the Xlib procedures
except that they also retain a local copy of the new information so that it can be returned
by the macros described in Section 37.5. For example,Tk_ResizeWindow is similar to
the Xlib procedureXResizeWindow in that it modifies the dimensions of a window.
However, it also remembers the new dimensions so they can be accessed with the
Tk_Width andTk_Height macros.

Only a few of the procedures in Table 38.2, such asTk_SetWindowBackground,
are normally invoked by widgets. Widgets should definitelynot invoke procedures like

348 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

Tk_MoveWindow orTk_ResizeWindow: only geometry managers should change the
size or location of a window.

38.6 The square configure procedure

Figure 38.1 contains the code for the square widget’s configure procedure. Itsargv argu-
ment contains pairs of strings that specify configuration options.Most of the work is done
by Tk_ConfigureWidget. OnceTk_ConfigureWidget returns,Configur-

Table 38.2.Tk procedures for modifying attributes and window configuration information.
Tk_ChangeWindowAttributes andTk_ConfigureWindow allow any or all of the
attributes or configuration to be set at once (valueMask selects which values should be set); the
other procedures set selected fields individually.

Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned int value-
Mask,

XSetWindowAttributes *attsPtr)

Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_DefineCursor(Tk_Window tkwin, Cursor cursor)

Tk_MoveWindow(Tk_Window tkwin, int x, int y)

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Tk_ResizeWindow(Tk_Window tkwin, unsgined int width,
unsigned int height)

Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)

Tk_UndefineCursor(Tk_Window tkwin)

38.7 The square widget command procedure 349

DRAFT (7/10/93): Distribution Restricted

eSquare extracts the color associated with the-background option and calls
Tk_SetWindowBackground to use it as the background color for the widget’s win-
dow. Then it allocates a graphics context that will be used during redisplay to copy bits
from an off-screen pixmap into the window (unless some previous call to the procedure
has already allocated the graphics context). NextConfigureSquare callsTk_Geom-
etryRequest andTk_SetInternalBorderWidth to provide information to its
geometry manager (this will be discussed in Chapter 43). Finally, it arranges for the wid-
get to be redisplayed; this will be discussed in Chapter 40.

38.7 The square widget command procedure

Figures 38.2 and 38.3 contain the C code forSquareWidgetCommand, which
implements widget commands for square widgets. The main portion of the procedure con-
sists of a series ofif statements that compareargv[1] successively to “configure”,
“position”, and “size”, which are the three widget commands defined for squares. If

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {

if (Tk_ConfigureWidget(interp, squarePtr->tkwin, configSpecs,
argc, argv, (char *) squarePtr, flags) != TCL_OK) {

return TCL_ERROR;
}
Tk_SetWindowBackground(squarePtr->tkwin,

Tk_3DBorderColor(squarePtr->bgBorder));
if (squarePtr->gc == None) {

XGCValues gcValues;
gcValues.function = GXcopy;
gcValues.graphics_exposures = False;
squarePtr->gc = Tk_GetGC(squarePtr->tkwin,

GCFunction|GCGraphicsExposures, &gcValues);
}
Tk_GeometryRequest(squarePtr->tkwin, 200, 150);
Tk_SetInternalBorder(squarePtr->tkwin,

squarePtr->borderWidth);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
return TCL_OK;

}

Figure 38.1.The configure procedure for square widgets. It is invoked by the creation procedure
and by the widget command procedure to set and modify configuration options.

350 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

int SquareWidgetCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Square *squarePtr = (Square *) clientData;
int result = TCL_OK;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " option ?arg arg ...?\"",
(char *) NULL);

return TCL_ERROR;
}

Tk_Preserve((ClientData) squarePtr);
if (strcmp(argv[1], "configure") == 0) {

if (argc == 2) {
result = Tk_ConfigureInfo(interp, squarePtr->tkwin,

(char *) squarePtr, (char *) NULL, 0);
} else if (argc == 3) {

result = Tk_ConfigureInfo(interp, squarePtr->tkwin,
(char *) squarePtr, argv[2], 0);

} else {
result = ConfigureSquare(interp, squarePtr,

argc-2, argv+2, TK_CONFIG_ARGV_ONLY);
}

} else if (strcmp(argv[1], "position") == 0) {
if ((argc != 2) && (argc != 4)) {

Tcl_AppendResult(interp,"wrong # args: should be \"",
argv[0], " position ?x y?\"", (char *) NULL);

goto error;
}
if (argc == 4) {

if ((Tk_GetPixels(interp, squarePtr->tkwin,
argv[2], &squarePtr->x) != TCL_OK) ||
(Tk_GetPixels(interp, squarePtr->tkwin,
argv[3], &squarePtr->y) != TCL_OK)) {

goto error;
}
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d %d", squarePtr->x,

squarePtr->y);
} else if (strcmp(argv[1], "size") == 0) {

Figure 38.2.The widget command procedure for square widgets. Continued in Figure 38.3.

38.7 The square widget command procedure 351

DRAFT (7/10/93): Distribution Restricted

argv[1] matches one of these strings then the corresponding code is executed; other-
wise an error is generated.

Theconfigure widget command is handled in one three ways, depending on how
many additional arguments it receives. If at most one additional argument is provided then
SquareWidgetCmd callsTk_ConfigureInfo to create descriptive information for
one or all of the widget’s configuration options. If two or more additional arguments are

if ((argc != 2) && (argc != 3)) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
if (argc == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwin, argv[2],

&i) != TCL_OK) {
goto error;

}
if ((i <= 0) || (i > 100)) {

Tcl_AppendResult(interp, "bad size \"", argv[2],
"\"", (char *) NULL);

goto error;
}
squarePtr->size = i;
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d", squarePtr->size);

} else {
Tcl_AppendResult(interp, "bad option \"", argv[1],

"\": must be configure, position, or size",
(char *) NULL);

goto error;
}
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
Tk_Release((ClientData) squarePtr);
return result;

error:
Tk_Release((ClientData) squarePtr);
return TCL_ERROR;

}

Figure 38.3.The widget command procedure for square widgets, continued from Figure 38.2.

352 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

provided thenSquareWidgetCmd passes the additional arguments toConfigur-
eSquare for processing;SquareWidgetCmd specifies the
TK_CONFIG_ARGV_ONLY flag, whichConfigureSquare passes on toTk_Con-
figureWidget so that options not specified explicitly byargv are left as-is.

Theposition andsize widget commands change the geometry of the square dis-
played in the widget, and they have similar implementations. If new values for the geome-
try are specified then each command callsTk_GetPixels to convert the argument(s) to
pixel distances. Thesize widget command also checks to make sure that the new size is
within a particular range of values. Then both commands invokeKeepInWindow, which
adjusts the position of the square if necessary to ensure that it is fully visible in the wid-
get’s window (see Figure 38.4). Finally, the commands print the current values into
interp->result to return them as result.

SquareWidgetCmd invokes the proceduresTk_Preserve andTk_Release as
a way of preventing the widget record from being destroyed while the widget command is
executing. Chapter 41 will discuss these procedures in more detail. The square widget is
so simple that the calls aren’t actually needed, but virtually all real widgets do need them
so I put them inSquareWidgetCmd too.

void KeepInWindow(Square *squarePtr) {
int i, bd;
bd = 0;
if (squarePtr->relief != TK_RELIEF_FLAT) {

bd = squarePtr->borderWidth;
}
i = (Tk_Width(squarePtr->tkwin) - bd)

- (squarePtr->x + squarePtr->size);
if (i < 0) {

squarePtr->x += i;
}
i = (Tk_Height(squarePtr->tkwin) - bd)

- (squarePtr->y + squarePtr->size);
if (i < 0) {

squarePtr->y += i;
}
if (squarePtr->x < bd) {

squarePtr->x = bd;
}
if (squarePtr->y < bd) {

squarePtr->y = bd;
}

}

Figure 38.4.TheKeepInWindow procedure adjusts the location of the square to make sure that it
is visible in the widget’s window.

353

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 39
Events

This chapter describes Tk’s library procedures for event handling. The code you’ll write
for event handling divides into three parts. The first part consists of code that creates event
handlers: it informs Tk that certain callback procedures should be invoked when particular
events occur. The second part consists of the callbacks themselves. The third part consists
of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just
become readable), and timer events. Tk also allows you to createidle callbacks, which
cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are
used to defer redisplays and other computations until all pending events have been pro-
cessed. Tk’s procedures for event handling are summarized in Table 39.1.

If you are not already familiar with X events, I recommend reading about them in
your favorite Xlib documentation before reading this chapter.

39.1 X events

The X window server generates a number of different events to report interesting things
that occur in the window system, such as mouse presses or changes in a window’s size.
Chapter XXX showed how you can use Tk’sbind command to write event handlers as
Tcl scripts. This section describes how to write event handlers in C. Typically you’ll only
use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-
played.

FIGURE 39

TABLE 39

354 Events

DRAFT (7/10/93): Distribution Restricted

Table 39.1.A summary of the Tk library procedures for event handling.

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Arranges forproc to be invoked whenever any of the events selected by
mask occurs fortkwin.

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Deletes the event handler that matchesmask, proc, andclientData, if
such a handler exists.

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)

Arranges forproc to be invoked whenver one of the conditions indicated by
mask occurs for the file whose descriptor number isfd.

void Tk_DeleteFileHandler(int fd)
Deletes the file handler forfd, if one exists.

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData)

Arranges forproc to be invoked aftermilliseconds have elapsed.
Returns a token that can be used to cancel the callback.

void Tk_DeleteTimerHandler(Tk_TimerToken token)
Cancels the timer callback indicated bytoken, if it hasn’t yet triggered.

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData)
Arranges forproc to be invoked when Tk has nothing else to do.

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData clientData)
Deletes any existing idle callbacks foridleProc andclientData.

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Arranges forproc to be invoked whenever any X event is received by this
process.

void Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Deletes the generic handler given byproc andclientData, if such a
handler exists.

void Tk_MainLoop(void)
Processes events until there are no more windows left in this process.

int Tk_DoOneEvent(int flags)
Processes a single event of any sort and then returns.Flags is normally 0
but may be used to restrict the events that will be processed or to return
immediately if there are no pending events.

39.1 X events 355

DRAFT (7/10/93): Distribution Restricted

ConfigureNotify: these events occur when the window’s size or position changes
so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-
tioned).

FocusIn andFocusOut: these events notify the widget that it has gotten or lost the
input focus, so it can turn on or off its insertion cursor.

DestroyNotify: these events notify the widget that its window has been destroyed,
so it should free up the widget record and any associated resources.

The responses to these events are all relatively obvious and it is unlikely that a user or
application developer would want to deal with the events so it makes sense to hard-code
the responses in C. For most other events, such as key presses and mouse actions, it’s bet-
ter to define the handlers in Tcl with thebind command. As a widget writer you can cre-
ate class bindings to give the widget its default behavior, then users can modify the class
bindings or augment them with additional widget-specific bindings. By using Tcl as much
as possible you’ll make your widgets more flexible.

The procedureTk_CreateEventHandler is used by widgets to register interest
in X events:

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

Thetkwin argument identifies a particular window andmask is an OR’ed combination
of bits likeKeyPressMask andStructureNotifyMask that select the events of
interest (refer to Xlib documentation for details on the mask values that are available).
When one of the requested events occurs fortkwin Tk will invokeproc to handle the
event.Proc must match the following prototype:

typedef void Tk_EventProc(ClientData clientData, XEvent
*eventPtr);

Its first argument will be the same as theclientData value that was passed to
Tk_CreateEventHandler and the second argument will be a pointer to a structure
containing information about the event (see your Xlib documentation for details on the
contents of anXEvent structure). There can exist any number of event handlers for a
given window and mask but there can be only one event handler with a particulartkwin,
mask, proc, andclientData. If a particular event matches thetkwin andmask for
more than one handler then all of the matching handlers are invoked, in the order in which
they were created.

For example, the C code for the square widget deals withExpose, ConfigureNo-
tify, andDestroyNotify events. To process these events, the following code is
present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_CreateEventHandler(squarePtr->tkwin,
ExposureMask|StructureNotifyMask,
SquareEventProc, (ClientData) squarePtr);

356 Events

DRAFT (7/10/93): Distribution Restricted

TheExposureMask bit selectsExpose events andStructureNotifyMask selects
bothConfigureNotify andDestroyNotify events, plus several other types of
events. The address of the widget’s record is used as theClientData for the callback,
so it will be passed toSquareEventProc as its first argument.

Figure 39.1 contains the code forSquareEventProc, the event procedure for
square widgets. Whenever an event occurs that matchesExposureMask orStruc-
tureNotifyMask Tk will invokeSquareEventProc. SquareEventProc casts
its clientData argument back into aSquare * pointer, then checks to see what kind
of event occurred. ForExpose eventsSquareEventProc arranges for the widget to
be redisplayed. ForConfigureNotify events,SquareEventProc callsKeepIn-
Window to make sure that the square is still visible in the window (see Figure 38.4 on
page 352), thenSquareEventProc arranges for the widget to be redrawn. For
DestroyNotify eventsSquareEventProc starts the process of destroying the wid-
get and freeing its widget record; this process will be discussed in more detail in Chapter
41.

void SquareEventProc(ClientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {

if ((eventPtr->xexpose.count == 0)
&& !squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == ConfigureNotify) {

KeepInWindow(squarePtr);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == DestroyNotify) {

Tcl_DeleteCommand(squarePtr->interp,
Tk_PathName(squarePtr->tkwin));

squarePtr->tkwin = NULL;
if (squarePtr->flags & REDRAW_PENDING) {

Tk_CancelIdleCall(DisplaySquare,
(ClientData) squarePtr);

}
Tk_EventuallyFree((ClientData) squarePtr, DestroySquare);

}
}

Figure 39.1.The event procedure for square widgets.

39.2 File events 357

DRAFT (7/10/93): Distribution Restricted

If you should need to cancel an existing X event handler you can invokeTk_Dele-
teEventHandler with the same arguments that you passed toTk_Cre-
ateEventHandler when you created the handler:

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

This deletes the handler corresponding totkwin, mask, proc, andclientData so
that its callback will not be invoked anymore. If no such handler exists then the procedure
does nothing. Tk automatically deletes all of the event handlers for a window when the
window is destroyed, so most widgets never need to callTk_DeleteEventHandler.

39.2 File events

Event-driven programs like Tk applications should not block for long periods of time
while executing any one operation, since this prevents other events from being serviced.
For example, suppose that a Tk application attempts to read from its standard input at a
time when no input is available. The application will block until input appears. During this
time the process will be suspended by the operating system so it cannot service X events.
This means, for example, that the application will not be able to respond to mouse actions
nor will it be able to redraw itself. Such behavior is likely to be annoying to the user, since
he or she expects to be able to interact with the application at any time.

File handlers provide an event-driven mechanism for reading and writing files that
may have long I/O delays. The procedureTk_CreateFileHandler creates a new file
handler:

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);

Thefd argument gives the number of a POSIX file descriptor (e.g. 0 for standard input, 1
for standard output, and so on).Mask indicates whenproc should be invoked. It is an
OR’ed combination of the following bits:

TK_READABLE means that Tk should invokeproc whenever there is data waiting to
be read onfd;

TK_WRITABLE means that Tk should invokeproc wheneverfd is capable of accept-
ing more output data;

TK_EXCEPTION means that Tk should invokeproc whenever an exceptional condi-
tion is present forfd.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(ClientData clientData,
int mask);

358 Events

DRAFT (7/10/93): Distribution Restricted

TheclientData argument will be the same as theclientData argument to
Tk_CreateFileHandler andmask will contain a combination of the bits
TK_READABLE, TK_WRITABLE, andTK_EXCEPTION to indicate the state of the file at
the time of the callback. There can exist only one file handler for a given file at a time; if
you callTk_CreateFileHandler at a time when there exists a handler forfd then
the new handler replaces the old one.

Note: You can temporarily disable a file handler by setting its mask to 0. You can reset the mask
later when you want to re-enable the handler.

To delete a file handler, callTk_DeleteFileHandler with the samefd argu-
ment that was used to create the handler:

void Tk_DeleteFileHandler(int fd);

This removes the handler forfd so that its callback will not be invoked again.
With file handlers you can do event-driven file I/O. Rather than opening a file, reading

it from start to finish, and then closing the file, you open the file, create a file handler for it,
and then return. When the file is readable the callback will be invoked. It issues exactly
one read request for the file, processes the data returned by the read, and then returns.
When the file becomes readable again (perhaps immediately) then the callback will be
invoked again. Eventually, when the entire file has been read, the file will become readable
and the read call will return an end-of-file condition. At this point the file can be closed
and the file handler deleted. With this approach, your application will still be able to
respond to X events even if there are long delays in reading the file.

For example,wish uses a file handler to read commands from its standard input. The
main program forwish creates a file handler for standard input (file descriptor 0) with the
following statement:

...
Tk_CreateFileHandler(0, TK_READABLE, StdinProc, (ClientData)
NULL);
Tcl_DStringInit(&command);
...

In addition to creating the callback, this code initializes a dynamic string that will be used
to buffer lines of input until a complete Tcl command is ready for evaluation. Then the
main program enters the event loop as will be described in Section 39.6. When data
becomes available on standard inputStdinProc will be invoked. Its code is as follows:

void StdinProc(ClientData clientData, int mask) {
int count, code;
char input[1000];
count = read(0, input, 1000);
if (count <= 0) {

... handle errors and end of file ...
}
Tcl_DStringAppend(&command, input, count);
if (Tcl_CmdComplete(Tcl_DStringValue(&command)) {

code = Tcl_Eval(interp,

39.3 Timer events 359

DRAFT (7/10/93): Distribution Restricted

Tcl_DStringValue(&command));
Tcl_DStringFree(&command);
...

}
...

}

After reading from standard input and checking for errors and end-of file,StdinProc
adds the new data to the dynamic string’s current contents. Then it checks to see if the
dynamic string contains a complete Tcl command (it won’t, for example, if a line such as
“foreach i $x {“ has been entered but the body of theforeach loop hasn’t yet
been typed). If the command is complete thenStdinProc evaluates the command and
clears the dynamic string for the next command.

Note: It is usually best to use non-blocking I/O with file handlers, just to be absolutely sure that
I/O operations don’t block. To request non-blocking I/O, specify the flagO_NONBLOCK to
thefcntl POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockets, it’s essential that you use use non-blocking I/O;
otherwise if you supply too much data in awrite system call the output buffers will fill
and the process will be put to sleep.

Note: For ordinary disk files it isn’t necessary to use the event-driven approach described in this
section, since reading and writing these files rarely incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

39.3 Timer events

Timer events trigger callbacks after particular time intervals. For example, widgets use
timer events to display blinking insertion cursors. When the cursor is first displayed in a
widget (e.g. because it just got the input focus) the widget creates a timer callback that will
trigger in a few tenths of a second. When the timer callback is invoked it turns the cursor
off if it was on, or on if it was off, and then reschedules itself by creating a new timer call-
back that will trigger after a few tenths of a second more. This process repeats indefinitely
so that the cursor blinks on and off. When the widget wishes to stop displaying the cursor
altogether (e.g. because it has lost the input focus) it cancels the callback and turns the cur-
sor off.

The procedureTk_CreateTimerHandler creates a timer callback:

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData);

Themilliseconds argument specifies how many milliseconds should elapse before
the callback is invoked.Tk_CreateTimerHandler returns immediately, and its
return value is a token that can be used to cancel the callback. After the given interval has
elapsed Tk will invokeproc. Proc must match the following prototype:

void Tk_TimerProc(ClientData clientData);

360 Events

DRAFT (7/10/93): Distribution Restricted

Its argument will be the same as theclientData argument passed toTk_Cre-
ateTimerHandler. Proc is only called once, then Tk deletes the callback automati-
cally. If you wantproc to be called over and over at regular intervals thenproc should
reschedule itself by callingTk_CreateTimerHandler each time it is invoked.

Note: There is no guarantee thatproc will be invoked at exactly the specified time. If the
application is busy processing other events when the specified time occurs thenproc
won’t be invoked until the next time the application invokes the event dispatcher, as
described in Section 39.6.

Tk_DeleteTimerHandler cancels a timer callback:

void Tk_DeleteTimerHandler(Tk_TimerToken token);

It takes a single argument, which is a token returned by a previous call toTk_Cre-
ateTimerHandler, and deletes the callback so that it will never be invoked. It is safe
to invokeTk_DeleteTimerHandler even if the callback has already been invoked;
in this case the procedure has no effect.

39.4 Idle callbacks

The procedureTk_DoWhenIdle creates anidle callback:

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData);

This arranges forproc to be invoked the next time the application becomes idle. The
application is idle when Tk’s main event-processing procedure,Tk_DoOneEvent, is
called and no X events, file events, or timer events are ready. Normally when this occurs
Tk_DoOneEvent will suspend the process until an event occurs. However, if there exist
idle callbacks then all of them are invoked. Idle callbacks are also invoked when the
update Tcl command is invoked. Theproc for an idle callback must match the follow-
ing prototype:

typedef void Tk_IdleProc(ClientData clientData);

It returns no result and takes a single argument, which will be the same as theclient-
Data argument passed toTk_DoWhenIdle.

Tk_CancelIdleCall deletes an idle callback so that it won’t be invoked after all:

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData
clientData);

Tk_CancelIdleCall deletes all of the idle callbacks that matchidleProc and
clientData (there can be more than one). If there are no matching idle callbacks then
the procedure has no effect.

Idle callbacks are used to implement the delayed operations described in Section
XXX. The most common use of idle callbacks in widgets is for redisplay. It is generally a
bad idea to redisplay a widget immediately when its state is modified, since this can result
in multiple redisplays. For example, suppose the following set of Tcl commands is
invoked to change the color, size, and location of a square widget.s:

39.5 Generic event handlers 361

DRAFT (7/10/93): Distribution Restricted

.s configure -foreground purple

.s size 2c

.s position 1.2c 3.1c

Each of these commands modifies the widget in a way that requires it to be redisplayed,
but it would be a bad idea for each command to redraw the widget. This would result in
three redisplays, which are unnecessary and can cause the widget to flash as it steps
through a series of changes. It is much better to wait until all of the commands have been
executed and then redisplay the widget once. Idle callbacks provide a way of knowing
when all of the changes have been made: they won’t be invoked until all available events
have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever
it notices that it needs to be redrawn it invokes the following code:

if (!squarePtr->updatePending) {
Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}

This arranges forDisplaySquare to be invoked as an idle handler to redraw the wid-
get. TheupdatePending field of the widget record keeps track of whetherDisplay-
Square has already been scheduled, so that it will only be scheduled once. When
DisplaySquare is finally invoked it resetsupdatePending to zero.

39.5 Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur
for a particular window managed by Tk. Generic event handlers provide access to events
that aren’t associated with a particular window, such asMappingNotify events, and to
events for windows not managed by Tk (such as those in other applications). Generic
event handlers are rarely needed and should be used sparingly.

To create a generic event handler, callTk_CreateGenericHandler:

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

This will arrange forproc to be invoked whenever any X event is received by the appli-
cation.Proc must match the following prototype:

typedef int Tk_GenericProc(ClientData clientData,
XEvent *eventPtr);

Its clientData argument will be the same as theclientData passed toTk_Cre-
ateGenericHandler andeventPtr will be a pointer to the X event. Generic han-
dlers are invoked before normal event handlers, and if there are multiple generic handlers
then they are called in the order in which they were created. Each generic handler returns
an integer result. If the result is non-zero it indicates that the handler has completely pro-

362 Events

DRAFT (7/10/93): Distribution Restricted

cessed the event and no further handlers, either generic or normal, should be invoked for
the event.

The procedureTk_DeleteGenericHandler deletes generic handlers:

Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

Any generic handlers that matchproc andclientData are removed, so thatproc
will not be invoked anymore.

Note: Tk_CreateGenericHandler does nothing to ensure that the desired events are
actually sent to the application. For example, if an application wishes to respond to events
for a window in some other application then it must invokeXSelectInput to notify the
X server that it wants to receive the events. Once the events arrive, Tk will dispatch them
to the generic handler. However, an application should never invokeXSelectInput for
a window managed by Tk, since this will interfere with Tk’s event management.

39.6 Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event
handlers and writing callback procedures. The final part of event management is to invoke
the Tk event dispatcher, which waits for events to occur and invokes the appropriate call-
backs. If you don’t invoke the dispatcher then no events will be processed and no call-
backs will be invoked.

Tk provides two procedures for event dispatching:Tk_MainLoop and
Tk_DoOneEvent. Most applications only useTk_MainLoop. It takes no arguments
and returns no result and it is typically invoked once, in the main program after initializa-
tion.Tk_MainLoop calls the Tk event dispatcher repeatedly to process events. When all
available events have been processed it suspends the process until more events occur, and
it repeats this over and over. It returns only when everyTk_Window created by the pro-
cess has been deleted (e.g. after the “destroy .” command has been executed). A typi-
cal main program for a Tk application will create a Tcl interpreter, call
Tk_CreateMainWindow to create a Tk application plus its main window, perform
other application-specific initialization (such as evaluating a Tcl script to create the appli-
cation’s interface), and then callTk_MainLoop. WhenTk_MainLoop returns the main
program exits. Thus Tk provides top-level control over the application’s execution and all
of the application’s useful work is carried out by event handlers invoked viaTk_Main-
Loop.

The second procedure for event dispatching isTk_DoOneEvent, which provides a
lower level interface to the event dispatcher:

int Tk_DoOneEvent(int flags)

Theflags argument is normally 0 (or, equivalently, TK_ALL_EVENTS). In this case
Tk_DoOneEvent processes a single event and then returns 1. If no events are pending

39.6 Invoking the event dispatcher 363

DRAFT (7/10/93): Distribution Restricted

thenTk_DoOneEvent suspends the process until an event arrives, processes that event,
and then returns 1.

For example,Tk_MainLoop is implemented usingTk_DoOneEvent:

void Tk_MainLoop(void) {
while (tk_NumMainWindows > 0) {

Tk_DoOneEvent(0);
}

}

The variabletk_NumMainWindows is maintained by Tk to count the total number of
main windows (i.e. applications) managed by this process.Tk_MainLoop just calls
Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent is also used by commands such astkwait that want to process
events while waiting for something to happen. For example, the “tkwait window”
command processes events until a given window has been deleted, then it returns. Here is
the C code that implements this command:

int done;
...
Tk_CreateEventHandler(tkwin, StructureNotifyMask,
WaitWindowProc,

(ClientData) &done);
done = 0;
while (!done) {

Tk_DoOneEvent(0);
}
...

The variabletkwin identifies the window whose deletion is awaited. The code creates an
event handler that will be invoked when the window is deleted, then invokes
Tk_DoOneEvent over and over until thedone flag is set to indicate thattkwin has
been deleted. The callback for the event handler is as follows:

void WaitWindowProc(ClientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {

*donePtr = 1;
}

}

TheclientData argument is a pointer to the flag variable.WaitWindowProc checks
to make sure the event is aDestroyNotify event (StructureNotifyMask also
selects several other kinds of events, such asConfigureNotify) and if so it sets the
flag variable to one.

Theflags argument toTk_DoOneEvent can be used to restrict the kinds of
events it will consider. If it contains any of the bitsTK_X_EVENTS, TK_FILE_EVENTS,
TK_TIMER_EVENTS, orTK_IDLE_EVENTS, then only the events indicated by the
specified bits will be considered. Furthermore, ifflags includes the bitTK_DONT_-
WAIT, or if no X, file, or timer events are requested, thenTk_DoOneEvent won’t sus-

364 Events

DRAFT (7/10/93): Distribution Restricted

pend the process; if no event is ready to be processed then it will return immediately with
a 0 result to indicate that it had nothing to do. For example, the “update idletasks”
command is implemented with the following code, which uses theTK_IDLE_EVENTS
flag:

while (Tk_DoOneEvent(TK_IDLE_EVENTS) != 0) {
/* empty loop body */

}

365

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 40
Displaying Widgets

Tk provides relatively little support for actually drawing things on the screen. For the most
part you just use Xlib functions likeXDrawLine andXDrawString. The only proce-
dures provided by Tk are those summarized in Table 40.1, which create three-dimensional
effects by drawing light and dark shadows around objects (they will be discussed more in
Section 40.3). This chapter consists mostly of a discussion of techniques for delaying
redisplays and for using pixmaps to double-buffer redisplays. These techniques reduce
redisplay overheads and help produce smooth visual effects with mimimum flashing.

40.1 Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-
ing the widget every time its state is modified, you should useTk_DoWhenIdle to
schedule the widget’s display procedure for execution later, when the application has fin-
ished processing all available events. This allows any other pending changes to the widget
to be completed before it’s redrawn.

Delayed redisplay requires you to keep track of what to redraw. For simple widgets
such as the square widget or buttons or labels or entries, I recommend the simple approach
of redrawing the entire widget whenever you redraw any part of it. This eliminates the
need to remember which parts to redraw and it will have fine performance for widgets like
the ones mentioned above.

For larger and more complex widgets like texts or canvases it isn’t practical to redraw
the whole widget after each change. This can take a substantial amount of time and cause
annoying delays, particularly for operations like dragging where redisplays happen many

FIGURE 40

TABLE 40

366 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

times per second. For these widgets you should keep information in the widget record
about which parts of the widget need to be redrawn. The display procedure can then use
this information to redraw only the affected parts.

I recommend recording what to redraw in the simplest (coarsest) way that gives ade-
quate performance. Keeping redisplay information on a very fine grain is likely to add
complexity to your widgets and probably won’t improve performance noticeably over a
coarser mechanism. For example, the Tk text widget does not record what to redraw on a
character-by-character basis; instead, it keeps track of which lines on the screen need to be
redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays
only involve one or two lines, and today’s workstations are fast enough to redraw hun-
dreds of lines per second, so the widget can keep up with the user even if redraws are
occurring dozens of times a second (such as when the user is dragging one end of the
selection). Tk’s canvases optimize redisplay by keeping a rectangular bounding box that
includes all of the modified objects. If two small objects at opposite corners of the window
are modified simultaneously then the redisplay area will include the entire window, but

Table 40.1.A summary of Tk’s procedures for drawing 3-D effects.

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Fills the area ofdrawable given byx, y, width, andheight with the
background color fromborder, then draws a 3-D borderborderWidth
pixels wide around (but just inside) the rectangle.Relief specifies the 3-D
appearance of the border.

void Tk_Draw3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Same asTk_Fill3DRectangle except only draws the border.

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Fills the area of a polygon indrawable with the background color from
border. The polygon is specified bypointPtr andnumPoints and
need not be closed. Also draws a 3-D border around the polygon.Border-
Width specifies the width of the border, measured in pixels to the left of the
polygon’s trajectory (if negative then the border is drawn on the right).
LeftRelief specifies the 3-D appearance of the border (e.g.TK_RELIE-
F_RAISED means the left side of the trajectory appears higher than the
right).

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Same asTk_Fill3DPolygon, except only draws the border without fill-
ing the interior of the polygon.

40.2 Double-buffering with pixmaps 367

DRAFT (7/10/93): Distribution Restricted

this doesn’t happen very often. In more common cases, such as dragging a single small
object, the bounding box approach requires only a small fraction of the window’s area to
be redrawn.

40.2 Double-buffering with pixmaps

If you want to achieve smooth dragging and other visual effects then you should not draw
graphics directly onto the screen, because this tends to cause annoying flashes. The reason
for the flashes is that widgets usually redisplay themselves by first clearing an area to its
background color and then drawing the foreground objects. While you’re redrawing the
widget the monitor is continuously refreshing itself from display memory. Sometimes the
widget will be refreshed on the screen after it has been cleared but before the objects have
been redrawn. For this one screen refresh the widget will appear to be empty; by the time
of the next refresh you’ll have redrawn all the objects so they’ll appear again. The result is
that the objects in the widget will appear to flash off, then on. This flashing is particularly
noticeable during dynamic actions such as dragging or animation where redisplays happen
frequently.

To avoid flashing it’s best to use a technique calleddouble-buffering, where you redis-
play in two phases using an off-screen pixmap. The display procedure for the square wid-
get, shown in Figure 40.1, uses this approach. It callsXCreatePixmap to allocate a
pixmap the size of the window, then it callsTk_Fill3DRectangle twice to redraw the
widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are
copied to the screen by callingXCopyArea. With this approach the screen makes a
smooth transition from the widget’s previous state to its new state. It’s still possible for the
screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn
in either its correct old value or its correct new value.

Note: If you compile the square widget intowish you can use the dragging script from Section
36.4 to compare double-buffering with drawing directly on the screen. To make a version
of the square widget that draws directly on the screen, just delete the calls to
XCreatePixmap, XCopyArea, andXFreePixmap in DisplaySquare and
replace thepm arguments toTk_Fill3DRectangle withTkWindowId(tkwin).
Or, you can use the version of the square widget that comes with the Tk distribution; it has
a -dbl option that you can use to turn double-buffering on and off dynamically.

40.3 Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are
summarized in Table 40.1. These procedures make it easy to produce the three-dimen-
sional effects required for Motif widgets, where light and dark shadows are drawn around
objects to make them look raised or sunken.

368 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

Before using any of the procedures in Table 40.1 you must allocate aTk_3DBorder
object. ATk_3DBorder records three colors (a base color for “flat” background sur-
faces and lighter and darker colors for shadows) plus X graphics contexts for displaying
objects using those colors. Chapter 38 described how to allocateTk_3DBorders, for
example by using a configuration table entry of typeTK_CONFIG_BORDER or by calling
Tk_Get3DBorder.

Once you’ve created aTk_3DBorder you can callTk_Fill3DRectangle to
draw rectangular shapes with any of the standard reliefs:

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y,int width, int

height,
int borderWidth, int relief);

Thedisplay anddrawable arguments specify the pixmap or window where the rect-
angle will be drawn.Display is usually specified asTk_Display(tkwin) where
tkwin is the window being redrawn.Drawable is usually the off-screen pixmap being
used for display, but it can also beTk_WindowId(tkwin). Border specifies the col-

void DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_Window tkwin = squarePtr->tkwin;
Pixmap pm;
squarePtr->updatePending = 0;
if (!Tk_IsMapped(tkwin)) {

return;
}
pm = XCreatePixmap(Tk_Display(tkwin), Tk_WindowId(tkwin),

Tk_Width(tkwin), Tk_Height(tkwin), Tk_Depth(tkwin));
Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->bgBorder

 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
squarePtr->borderWidth, squarePtr->relief);

Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>size,
squarePtr->borderWidth, squarePtr->relief);

XCopyArea(Tk_Display(tkwin), pm, Tk_WindowId(tkwin),
squarePtr->copyGC, 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
0, 0);

XFreePixmap(Tk_Display(tkwin), pm);
}

Figure 40.1.The display procedure for square widgets. It first clears
squarePtr->updatePending to indicate that there is no longer an idle callback for
DisplaySquare scheduled, then it makes sure that the window is mapped (if not then there’s no
need to redisplay). It then redraws the widget in an off-screen pixmap and copies the pixmap onto
the screen when done.

40.3 Drawing procedures 369

DRAFT (7/10/93): Distribution Restricted

ors to be used for drawing the rectangle.X, y, width, height, andborderWidth
specify the geometry of the rectangle and its border, all in pixel units (see Figure 40.2).
Lastly, relief specifies the desired 3D effect, such asTK_RELIEF_RAISED or
TK_RELIEF_RIDGE.Tk_Fill3DRectangle first fills the entire area of the rectangle
with the “flat” color fromborder then it draws light and dark shadowsborderWidth
pixels wide around the edge of the rectangle to produce the effect specified byrelief.

Tk_Fill3DPolygon is similar toTk_Fill3DRectangle except that it draws a
polygon instead of a rectangle:

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief);

Display, drawable, andborder all have the same meaning as forTk_Fill3-
DRectangle. PointPtr andnumPoints define the polygon’s shape (see your Xlib
documentation for information aboutXPoint structures) andborderWidth gives the
width of the border, all in pixel units.LeftRelief defines the relief of the left side of
the polygon’s trajectory relative to its right side. For example, ifleftRelief is speci-
fied asTK_RELIEF_RAISED then the left side of the trajectory will appear higher than

Figure 40.2. Figure (a) shows a call toTk_Fill3DRectangle and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows a call to
Tk_Fill3DPolygon and the resulting graphic. The reliefTK_RELIEF_RAISED specifies that
the left side of the path should appear higher than the right, and that the border should be drawn
entirely on the left side of the path ifborderWidth is positive.

(120,80)

100

70

borderWidth

(100,150)

(150,70)

(200,150)
borderWidth

Tk_Fill3DRectangle(display,
drawable,

border, 120, 80, 100, 70,
borderWidth,

TK_RELIEF_RAISED);

static XPoint points[] =
{{200,150},

{150,70}, {100,150}};
Tk_Fill3DPolygon(display,
drawable,

(a) (b)

370 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

the right side. IfleftRelief isTK_RELIEF_RIDGE orTK_RELIEF_GROOVE then
the border will be centered on the polygon’s trajectory; otherwise it will be drawn on the
left side of the polygon’s trajectory ifborderWidth is positive and on the right side if
borderWidth is negative. See Figure 40.2 for an example.

The proceduresTk_Draw3DRectangle andTk_Draw3DPolygon are similar to
Tk_Fill3DRectangle andTk_Fill3DPolygon except that they only draw the
border without filling the interior of the rectangle or polygon.

371

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 41
Destroying Widgets

This chapter describes how widgets should clean themselves up when they are destroyed.
For the most part widget destruction is fairly straightforward: it’s just a matter of freeing
all of the resources associated with the widget. However, there is one complicating factor,
which is that a widget might be in use at the time it is destroyed. This leads to a two-phase
approach to destruction where some of the cleanup may have to be delayed until the wid-
get is no longer in use. Tk’s procedures for window destruction, most of which have to do
with delayed cleanup, are summarized in Table 41.1.

41.1 Basics

Widgets can be destroyed in three different ways. First, thedestroy Tcl command can
be invoked; it destroys one or more widgets and all of their descendants in the window
hierarchy. Second, C code in the application can invokeTk_DestroyWindow, which
has the same effect as thedestroy command:

void Tk_DestroyWindow(Tk_Window tkwin);

Tk_DestroyWindow is not invoked very often but it is used, for example, to destroy a
new widget immediately if an error is encountered while configuring it (see Figure 37.1 on
page 373). The last way for a widget to be destroyed is for someone to delete its X window
directly. This does not occur very often, and is not generally a good idea, but in some cases
it may make sense for a top-level window to be deleted externally (by the window man-
ager, for example).

FIGURE 41

TABLE 41

372 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

A widget should handle all of these forms of window destruction in the same way
using a handler forDestroyNotify events. Tk makes sure that aDestroyNotify
event is generated for each window that is destroyed and doesn’t free up itsTk_Window
structure until after the handlers for the event have been invoked. When a widget receives
aDestroyNotify event it typically does four things to clean itself up:

1. It deletes the widget command for the widget by callingTcl_DeleteCommand.

2. It cancels any idle callbacks and timer handlers for the widget, such as the idle callback
to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling
Tk_FreeOptions, but widgets usually have a few resources such as graphics con-
texts that are not directly associated with configuration options.

4. It frees the widget record.

For square widgets the first two of these actions are carried out in the event procedure, and
the third and fourth actions are carried out in a separate procedure called
DestroySquare. DestroySquare is thedestroy procedure for square widgets; it is
invoked indirectly from the event procedure using the mechanism discussed in Section
41.2 below. Its code is shown in Figure 41.1.

41.2 Delayed cleanup

The most delicate aspect of widget destruction is that the widget could be in use at the
time it is destroyed; special precautions must be taken to delay most of the widget cleanup

Table 41.1.A summary of the Tk library procedures for destroying widgets and delaying object
cleanup.

void Tk_DestroyWindow(Tk_Window tkwin)
Destroystkwin and all of its descendants in the widget hierarchy.

void Tk_Preserve(ClientData clientData)
Makes sure thatclientData will not be freed until a matching call to
Tk_Release has been made.

void Tk_Release(ClientData clientData)
Cancels a previousTk_Preserve call forclientData. May cause
clientData to be freed.

void Tk_EventuallyFree(ClientData clientData Tk_FreeProc
*freeProc)
InvokesfreeProc to free upclientData unlessTk_Preserve has
been called for it; in this casefreeProc won’t be invoked until each
Tk_Preserve call has been cancelled with a call toTk_Release.

41.2 Delayed cleanup 373

DRAFT (7/10/93): Distribution Restricted

until the widget is no longer in use. For example, suppose that a dialog box.dlg contains
a button that is created with the following command:

button .dlg.quit -text Quit -command "destroy .dlg"

The purpose of this button is to destroy the dialog box. Now suppose that the user clicks
on the button with the mouse. The binding for<ButtonRelease-1> invokes the but-
ton’sinvoke widget command:

.dlg.quit invoke

Theinvoke widget command evaluates the button’s-command option as a Tcl script,
which destroys the dialog and all its descendants, including the button itself. When the
button is destroyed aDestroyNotify event is generated, which causes the button’s
event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not
safe for the event procedure to free the button’s widget record because theinvoke wid-
get command is still pending on the call stack: when the event procedure returns, control
will eventually return back to the widget command procedure, which may need to refer-
ence the widget record. If the event procedure frees the widget record then the widget
command procedure will make wild references into memory. Thus in this situation it is
important to wait until the widget command procedure completes before freeing the wid-
get record.

However, a button widget might also be deleted at a time when there is noinvoke
widget command pending (e.g. the user might click on some other button, which destroys
the entire application). In this case the cleanup must be done by the event procedure since
there won’t be any other opportunity for the widget to clean itself up. In other cases there
could be several nested procedures each of which is using the widget record, so it won’t be
safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping
track of whether an object is in use and delaying its cleanup until it is no longer being
used.Tk_Preserve is invoked to indicate that an object is in use and should not be
freed:

void Tk_Preserve(ClientData clientData);

void DestroySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOptions(configSpecs, (char *) squarePtr,

squarePtr->display, 0);
if (squarePtr->gc != None) {

Tk_FreeGC(squarePtr->display, squarePtr->gc);
}
free((char *) squarePtr);

}

Figure 41.1.The destroy procedure for square widgets.

374 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

TheclientData argument is a token for an object that might potentially be freed; typi-
cally it is the address of a widget record. For each call toTk_Preserve there must even-
tually be a call toTk_Release:

void Tk_Release(ClientData clientData);

TheclientData argument should be the same as the corresponding argument to
Tk_Preserve. Each call toTk_Release cancels a call toTk_Preserve for the
object; once all calls toTk_Preserve have been cancelled it is safe to free the object.

WhenTk_Preserve andTk_Release are being used to manage an object you
should callTk_EventuallyFree to free the object:

void Tk_EventuallyFree(ClientData clientData,
Tk_FreeProc *freeProc);

ClientData must be the same as theclientData argument used in calls to
Tk_Preserve andTk_Release, andfreeProc is a procedure that actually frees the
object.FreeProc must match the following prototype:

typedef void Tk_FreeProc(ClientData clientData);

Its clientData argument will be the same as theclientData argument to
Tk_EventuallyFree. If the object hasn’t been protected with calls toTk_Pre-
serve thenTk_EventuallyFree will invoke freeProc immediately. If Tk_Pre-
serve has been called for the object thenfreeProc won’t be invoked immediately;
instead it will be invoked later whenTk_Release is called. IfTk_Preserve has been
called multiple times thenfreeProc won’t be invoked until each of the calls to
Tk_Preserve has been cancelled by a separate call toTk_Release.

I recommend that you use these procedures in the same way as in the square widget.
Place a call toTk_Preserve at the beginning of the widget command procedure and a
call toTk_Release at the end of the widget command procedure, and be sure that you
don’t accidentally return from the widget command procedure without callingTk_Re-
lease, since this would prevent the widget from ever being freed. Then divide the wid-
get cleanup code into two parts. Put the code to delete the widget command, idle
callbacks, and timer handlers directly into the event procedure; this code can be executed
immediately without danger, and it prevents any new invocations of widget code. Put all
the code to cleanup the widget record into a separate delete procedure like
DestroySquare, and callTk_EventuallyFree from the event procedure with the
delete procedure as itsfreeProc argument.

This approach is a bit conservative but it’s simple and safe. For example, most wid-
gets have only one or two widget commands that could cause the widget to be destroyed,
such as theinvoke widget command for buttons. You could move the calls toTk_Pre-
serve andTk_Release so that they only occur around code that might destroy the
widget, such as aTcl_GlobalEval call. This will save a bit of overhead by eliminating
calls toTk_Preserve andTk_Release where they’re not needed. However,
Tk_Preserve andTk_Release are fast enough that this optimization won’t save
much time and it means you’ll constantly have to be on the lookout to add more calls to

41.2 Delayed cleanup 375

DRAFT (7/10/93): Distribution Restricted

Tk_Preserve andTk_Release if you modify the widget command procedure. If you
place the calls the beginning and end of the procedure you can make any modifications
you wish to the procedure without having to worry about issues of widget cleanup. In fact,
the square widget doesn’t need calls toTk_Preserve andTk_Release at all, but I
put them in anyway so that I won’t have to remember to add them later if I modify the
widget command procedure.

For most widgets the only place you’ll need calls toTk_Preserve andTk_Re-
lease is in the widget command procedure. However, if you invoke procedures like
Tcl_Eval anywhere else in the widget’s code then you’ll need additionalTk_Pre-
serve andTk_Release calls there too. For example, widgets like canvases and texts
implement their own event binding mechanisms in C code; these widgets must invoke
Tk_Preserve andTk_Release around the calls to event handlers.

The problem of freeing objects while they’re in use occurs in many contexts in Tk
applications. For example, it’s possible for the -command option for a button to change
the button’s-command option. This could cause the memory for the old value of the
option to be freed while it’s still being evaluated by the Tcl interpreter. To eliminate this
problem the button widget evaluates a copy of the script rather than the original. In general
whenever you make a call whose behavior isn’t completely predictable, such as a call to
Tcl_Eval and its cousins, you should think about all the objects that are in use at the
time of the call and take steps to protect them. In some simple cases making local copies
may be the simplest solution, as with the-command option; in more complex cases I’d
suggest usingTk_Preserve andTk_Release; they can be used for objects of any
sort, not just widget records.

Note: Tk_Preserve andTk_Release implement a form of short-term reference counts.
They are implemented under the assumption that objects are only in use for short periods
of time such as the duration of a particular procedure call, so that there are only a few
protected objects at any given time. You should not use them for long-term reference
counts where there might be hundreds or thousands of objects that are protected at a given
time, since they will be very slow in these cases.

376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

377

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 42
Managing the Selection

This chapter describes how to manipulate the X selection from C code. The low-level pro-
tocols for claiming the selection and transmitting it between applications are defined by
X’s Inter-Client Communications Convention Manual (ICCCM) and are very compli-
cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-
pler operations that you can perform on the selection:

• Create aselection handler, which is a callback procedure that can supply the selection
when it is owned in a particular window and retrieved with a particular target.

• Claim ownership of the selection for a particular window.

• Retrieve the selection from its current owner in a particular target form.

Each of these three operations can be performed either using Tcl scripts or by writing C
code. Chapter XXX described how to manipulate the selection with Tcl scripts and much
of that information applies here as well, such as the use of targets to specify different ways
to retrieve the selection. Tcl scripts usually just retrieve the selection; claiming ownership
and supplying the selection are rarely done from Tcl. In contrast, it’s common to create
selection handlers and claim ownership of the selection from C code but rare to retrieve
the selection. See Table 42.1 for a summary of the Tk library procedures related to the
selection.

42.1 Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more
selection handlers to supply the selection on demand when the widget owns it. Each han-

FIGURE 42

TABLE 42

378 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

dler returns the selection in a particular target form. The procedureTk_Create-
SelHandler creates a new selection handler:

void Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData,
Atom format);

Tkwin is the window from which the selection will be provided; the handler will only be
asked to supply the selection when the selection is owned bytkwin. Target specifies
the target form in which the handler can supply the selection; the handler will only be
invoked when the selection is retrieved with that target.Proc is the address of the handler
callback, andclientData is a one-word value to pass toproc. Format tells Tk how
to transmit the selection to the requestor and is usuallyXA_STRING (see the reference
documentation for other possibilities).

The callback procedure for a selection handler must match the following prototype:

typedef int Tk_SelectionProc(ClientData clientData,
int offset, char *buffer, int maxBytes);

TheclientData argument will be the same as theclientData argument passed to
Tk_CreateSelHandler; it is usually the address of a widget record.Proc should
place a null-terminated string atbuffer containing up tomaxBytes of the selection

Table 42.1.A summary of Tk’s procedures for managing the selection.

Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)

Arranges forproc to be invoked whenever the selection is owned by
tkwin and is retrieved in the form given bytarget. Format specifies the
form in which Tk should transmit the selection to the requestor, and is usu-
ally XA_STRING.

Tk_DeleteSelHandler(Tk_Window tkwin, Atom target)
Removes the handler fortkwin andtarget, if one exists.

Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
ClientData clientData)

Claims ownership of the selection fortkwin and notifies the previous
owner, if any, that it has lost the selection.Proc will be invoked later when
tkwin loses the selection.

Tk_ClearSelection(Tk_Window tkwin)
Cancels any existing selection for the display containingtkwin.

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

Retrieves the selection fortkwin’s display in the format specified bytar-
get and passes it toproc in one or more pieces. ReturnsTCL_OK or
TCL_ERROR and leaves an error message ininterp->result if an error
occurs.

42.1 Selection handlers 379

DRAFT (7/10/93): Distribution Restricted

starting at byteoffset within the selection. The procedure should return a count of the
number of non-null bytes copied, which must bemaxBytes unless there are fewer than
maxBytes left in the selection. If the widget no longer has a selection (because, for
example, the user deleted the selected range of characters) the selection handler should
return -1.

Usually the entire selection will be retrieved in a single request: offset will be 0 and
maxBytes will be large enough to accommodate the entire selection. However, very
large selections will be retrieved in transfers of a few thousand bytes each. Tk will invoke
the callback several times using successively higher values ofoffset to retrieve succes-
sive portions of the selection. If the callback returns a value less thanmaxBytes it means
that the entire remainder of the selection has been returned. If its return value ismax-
Bytes it means that there may be additional information in the selection so Tk will call it
again to retrieve the next portion. You can assume thatmaxBytes will always be at least
a few thousand.

For example, Tk’s entry widgets have a widget record of typeEntry with three
fields that are used to manage the selection:

string points to a null-terminated string containing the text in the entry;

selectFirst is the index instring of the first selected byte (or -1 if nothing is
selected);

selectLast is the index of the last selected byte.

An entry will supply the selection in only one target form (STRING) so it only has a single
selection handler. The create procedure for entries contains a statement like the following
to create the selection handler, whereentryPtr is a pointer to the widget record for the
new widget:

Tk_CreateSelHandler(entryPtr->tkwin, XA_STRING,
EntryFetchSelection, (ClientData) entryPtr,
XA_STRING);

The callback for the selection handler is defined as follows:

int EntryFetchSelection(ClientData clientData, int offset,
char *buffer, int maxBytes) {

Entry *entryPtr = (Entry *) clientData;
int count;
if (entryPtr->selectFirst < 0) {

return -1;
}
count = entryPtr->selectLast + 1 - entryPtr->selectFirst

- offset;
if (count > maxBytes) {

count = maxBytes;
}
if (count <= 0) {

count = 0;
} else {

380 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

}
buffer[count] = 0;
return count;

}

If a widget wishes to supply the selection in several different target forms it should
create a selection handler for each target. When the selection is retrieved, Tk will invoke
the handler for the target specified by the retriever.

Tk automatically provides handlers for the following targets:

APPLICATION: returns the name of the application, which can be used tosend com-
mands to the application containing the selection.

MULTIPLE: used to retrieve the selection in multiple target forms simultaneously.
Refer to ICCCM documenation for details.

TARGETS: returns a list of all the targets supported by the current selection owner
(including all the targets supported by Tk).

TIMESTAMP: returns the time at which the selection was claimed by its current owner.

WINDOW_NAME: returns the path name of the window that owns the selection.

A widget can override any of these default handlers by creating a handler of its own.

42.2 Claiming the selection

The previous section showed how a widget can supply the selection to a retriever. How-
ever, before a widget will be asked to supply the selection it must first claim ownership of
the selection. This usually happens during widget commands that select something in the
widget, such as theselect widget command for entries and listboxes. To claim owner-
ship of the selection a widget should callTk_OwnSelection:

void Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
(ClientData) clientData);

Tk_OwnSelection will communicate with the X server to claim the selection for
tkwin; as part of this process the previous owner of the selection will be notified so that
it can deselect itself.Tkwin will remain the selection owner until either some other win-
dow claims ownership,tkwin is destroyed, orTk_ClearSelection is called. When
tkwin loses the selection Tk will invokeproc so that the widget can deselect itself and
display itself accordingly. Proc must match the following prototype:

typedef void Tk_LostSelProc(ClientData clientData);

TheclientData argument will be the same as theclientData argument to
Tk_OwnSelection; it is usually a pointer to the widget’s record.

42.3 Retrieving the selection 381

DRAFT (7/10/93): Distribution Restricted

Note: Proc will only be called if some other window claims the selection or if
Tk_ClearSelection is invoked. It will not be called if the owning widget is
destroyed.

If a widget claims the selection and then eliminates its selection (for example, the
selected text is deleted) the widget has three options. First, it can continue to service the
selection and return 0 from its selection handlers; anyone who retrieves the selection will
receive an empty string. Second, the widget can continue to service the selection and
return -1 from its selection handlers; this will return an error (“no selection”) to anyone
who attempts to retrieve it. Third, the widget can callTk_ClearSelection:

void Tk_ClearSelection(Tk_Window tkwin);

Thetkwin argument identifies a display. Tk will claim the selection away from whatever
window owned it (either in this application or any other application ontkwin’s display)
and leave the selection unclaimed, so that all attempts to retrieve it will result in errors.
This approach will have the same effect returning -1 from the selection handlers except
that the selection handlers will never be invoked at all.

42.3 Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text
into an entry, it usually does so with the “selection get” Tcl command. This section
describes how to retrieve the selection at C level, but this facility is rarely needed. The
only situation where I recommend writing C code to retrieve the selection is in cases
where the selection may be very large and a Tcl script may be noticeably slow. This might
occur in a text widget, for example, where a user might select a whole file in one window
and then copy it into another window. If the selection has hundreds of thousands of bytes
then a C implementation of the retrieval will be noticeably faster than a Tcl implementa-
tion.

To retrieve the selection from C code, invoke the procedureTk_GetSelection:

typedef int Tk_GetSelection(Tcl_Interp *interp,
Tk_Window tkwin, Atom target, Tk_GetSelProc *proc,
ClientData clientData);

Theinterp argument is used for error reporting.Tkwin specifies the window on whose
behalf the selection is being retrieved (it selects a display to use for retrieval), andtar-
get specifies the target form for the retrieval.Tk_GetSelection doesn’t return the
selection directly to its caller. Instead, it invokesproc and passes it the selection. This
makes retrieval a bit more complicated but it allows Tk to buffer data more efficiently.
Large selections will be retrieved in several pieces, with one call toproc for each piece.
Tk_GetSelection normally returnsTCL_OK to indicate that the selection was suc-
cessfully retrieved. If an error occurs then it returnsTCL_ERROR and leaves an error mes-
sage ininterp->result.

Proc must match the following prototype:

382 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

typedef int Tk_GetSelProc(ClientData clientData,
Tcl_Interp *interp, char *portion);

TheclientData andinterp arguments will be the same as the corresponding argu-
ments toTk_GetSelection. Portion points to a null-terminated ASCII string con-
taining part or all of the selection. For small selections a single call will be made toproc
with the entire contents of the selection. For large selections two or more calls will be
made with successive portions of the selection.Proc should returnTCL_OK if it success-
fully processes the current portion of the selection. If it encounters an error then it should
returnTCL_ERROR and leave an error message ininterp->result; the selection
retrieval will be aborted and this same error will be returned toTk_GetSelection’s
caller.

For example, here is code that retrieves the selection in target formSTRING and
prints it on standard output:

...
if (Tk_GetSelection(interp, tkwin,

Tk_InternAtom(tkwin, "STRING"), PrintSel,
(ClientData) stdout) != TCL_OK) {

...
}
...

int PrintSel(ClientData clientData, Tcl_Interp *interp,
char *portion) {

FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;

}

The call toTk_GetSelection could be made, for example, in the widget command
procedure for a widget, wheretkwin is theTk_Window for the widget andinterp is
the interpreter in which the widget command is being processed. TheclientData argu-
ment is used to pass aFILE pointer toPrintSel. The output could be written to a dif-
ferent file by specifying a differentclientData value.

383

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 43
Geometry Management

Tk provides two groups of library procedures for geometry management. The first group
of procedures implements a communication protocol between slave windows and their
geometry managers. Each widget calls Tk to provide geometry information such as the
widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-
vant geometry manager, so that the widget does not have to know which geometry man-
ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it
will manage, so that Tk will know who to notify when geometry information changes for
the slaves. The second group of procedures is used by geometry managers to place slave
windows. It includes facilities for mapping and unmapping windows and for setting their
sizes and locations. All of these procedures are summarized in Table 43.1.

43.1 Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that
this information is forwarded to any relevant geometry managers. There are three pieces
of information that the slave can provide: requested size, internal border, and grid. The
first piece of information is provided by callingTk_GeometryRequest:

void Tk_GeometryRequest(Tk_Window tkwin, int width, height);

This indicates that the ideal dimensions fortkwin arewidth andheight, both speci-
fied in pixels. Each widget should callTk_GeometryRequest once when it is created
and again whenever its preferred size changes (such as when its font changes); normally
the calls toTk_GeometryRequest are made by the widget’s configure procedure. In

FIGURE 43

TABLE 43

384 Geometry Management

DRAFT (7/10/93): Distribution Restricted

Table 43.1.A summary of Tk’s procedures for geometry management.

Tk_GeometryRequest(Tk_Window tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions for
tkwin arewidth andheight.

Tk_SetInternalBorder(Tk_Window tkwin, int width)
Informs any relevant geometry managers thattkwin has an internal border
width pixels wide and that slave windows should not be placed in this bor-
der region.

Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int widthInc, int heightInc)

Turns on gridded geometry management fortkwin’s top-level window and
specifies the grid geometry. The dimensions requested byTk_Geome-
tryRequest correspond to grid dimensions ofreqWidth and
reqHeight, andwidthInc andheightInc specify the dimensions of a
single grid cell.

Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData)

Arranges forproc to be invoked wheneverTk_GeometryRequest is
invoked fortkwin. Used by geometry managers to claim ownership of a
slave window.

int Tk_ReqHeight(Tk_Window tkwin)
Returns the height specified in the most recent call toTk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_ReqWidth(Tk_Window tkwin)
Returns the width specified in the most recent call toTk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_InternalBorderWidth(Tk_Window tkwin)
Returns the border width specified in the most recent call toTk_Inter-
nalBorderWidth for tkwin (this is a macro, not a procedure).

Tk_MapWindow(Tk_Window tkwin)
Arranges fortkwin to be displayed on the screen whenever its ancestors are
mapped.

Tk_UnmapWindow(Tk_Window tkwin)
Preventstkwin and its descendants from appearing on the screen.

Tk_MoveWindow(Tk_Window tkwin, int x, int y)
Positionstkwin so that its upper-left pixel (including any borders) appears
at coordinatesx andy in its parent.

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Changestkwin’s position within its parent and also its size.
Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height)
Sets the inside dimensions oftkwin (not including its external border, if
any) towidth andheight.

43.2 Internal borders 385

DRAFT (7/10/93): Distribution Restricted

addition, geometry managers will sometimes callTk_GeometryRequest on a win-
dow’s behalf. For example, the packer resets the requested size for each master window
that it manages to match the needs of all of its slaves. This overrides the requested size set
by the widget and results in the shrink-wrap effects shown in Chapter XXX.

43.2 Internal borders

The X window system allows each window to have a border that appears just outside the
window. The official height and width of a window are the inside dimensions, which
describe the usable area of the window and don’t include the border. Unfortunately,
though, X requires the entire border of a window to be drawn with a single solid color or
stipple. To achieve the Motif three-dimensional effects, the upper and left parts of the bor-
der have to be drawn differently than the lower and right parts. This means that X borders
can’t be used for Motif widgets. Instead, Motif widgets draw their own borders, typically
using Tk procedures such asTk_Draw3DRectangle. The border for a Motif widget is
drawn around the perimeter of the widget but inside the official X area of the widget. This
kind of border is called aninternal border. Figure 43.1 shows the difference between
external and internal borders.

If a widget has an internal border then its usable area (the part that’s inside the border)
is smaller than its official X area. This complicates geometry management in two ways.
First, each widget has to include the border width (actually, twice the border width) in the
width and height that it requests viaTk_GeometryRequest. Second, if a master win-

width

height

X border

width

height

Internal border

(a) (b)

Figure 43.1.X borders and internal borders. (a) shows an official X border, which is drawn by X
outside the area of the window. (b) shows an internal border drawn by a widget, where the area
occupied by the border is part of the window’s official area. In both figureswidth andheight
are the official X dimensions of the window.

386 Geometry Management

DRAFT (7/10/93): Distribution Restricted

dow has an internal border then geometry managers should not place slave windows on
top of the border; the usable area for arranging slaves should be the area inside the border.
In order for this to happen the geometry managers must know about the presence of the
internal border. The procedureTk_SetInternalBorder is provided for this purpose:

void Tk_SetInternalBorder(Tk_Window tkwin, int width);

This tells geometry managers thattkwin has an internal border that iswidth pixels
wide and that slave widgets should not overlap the internal border. Widgets with internal
borders normally callTk_SetInternalBorder in their configure procedures at the
same time that they callTk_GeometryRequest. If a widget uses a normal X border, or
if it has an internal border but doesn’t mind slaves being placed on top of the border, then
it need not callTk_SetInternalBorder, or it can call it with awidth of 0.

43.3 Grids

Gridded geometry management was introduced in Section XXX. The goal is to allow the
user to resize a top-level window interactively, but to constrain the resizing so that the
window’s dimensions always lie on a grid. Typically this means that a particular subwin-
dow displaying fixed-width text always has a width and height that are an integral number
of characters. The window manager implements constrained resizes, but the application
must supply it with the geometry of the grid. In order for this to happen, the widget that
determines the grid geometry must callTk_SetGrid:

void Tk_SetGrid(Tk_Window tkwin, int gridWidth, int
gridHeight,

int widthInc, int heightInc);

ThegridWidth andgridHeight arguments specify the number of grid units corre-
sponding to the pixel dimensions requested in the most recent call toTk_GeometryRe-
quest. They allow the window manager to display the window’s current size in grid
units rather than pixels. ThewidthInc andheightInc arguments specify the number
of pixels in a grid unit. Tk passes all of this information on to the window manager, and it
will then constrain interactive resizes so thattkwin’s top-level window always has
dimensions that lie on a grid defined by its requested geometry, gridWidth, andgrid-
Height.

Widgets that support gridding, such as texts, normally have a-setgrid option . If
-setgrid is 0 then the widget doesn’t callTk_SetGrid; this is done if gridded resiz-
ing isn’t wanted (e.g. the widget uses a variable-width font) or if some other widget in the
top-level window is to be the one that determines the grid. If-setgrid is 1 then the
widget callsTk_SetGrid; typically this happens in the configure procedure at the same
time that other geometry-related calls are made. If the widget’s grid geometry changes (for
example, its font might change) then the widget callsTk_SetGrid again.

43.4 Geometry managers 387

DRAFT (7/10/93): Distribution Restricted

43.4 Geometry managers

The remainder of this chapter describes the Tk library procedures that are used by geome-
try managers. It is intended to provide the basic information that you need to write a new
geometry manager. This section provides an overview of the structure of a geometry man-
ager and the following sections describe the Tk library procedures.

A typical geometry manager contains four main procedures. The first procedure is a
command procedure that implements the geometry manager’s Tcl command. Typically
each geometry manager provides a single command that is used by the application
designer to provide information to the geometry manager:pack for the packer, place
for the placer, and so on. The command procedure collects information about each slave
and master window managed by the geometry manager and allocates a C structure for
each window to hold the information. For example, the packer uses a structure with two
parts. The first part is used if the window is a master; it includes information such as a list
of slaves for that master. The second part is used if the window is a slave; it includes infor-
mation such as the side against which the slave is to be packed and padding and filling
information. If a window is both a master and a slave then both parts are used. Each geom-
etry manager maintains a hash table (using Tcl’s hash table facilities) that maps from wid-
get names to the C structure for geometry management.

The second procedure for a geometry manager is itslayout procedure. This procedure
contains all of the actual geometry calculations. It uses the information in the structures
created by the command procedure, plus geometry information provided by all of the
slaves, plus information about the current dimensions of the master. The layout procedure
typically has two phases. In the first phase it scans all of the slaves for a master, computes
the ideal size for the master based on the needs of its slaves, and callsTk_Geome-
tryRequest to set the requested size of the master to the ideal size. This phase only
exists for geometry managers like the packer that reflect geometry information upwards
through the widget hierarchy. For geometry managers like the placer, the first phase is
skipped. In the second phase the layout procedure recomputes the geometries for all of the
slaves of the master.

The third procedure is arequest callback that Tk invokes whenever a slave managed
by the geometry manager callsTk_GeometryRequest. The callback arranges for the
layout procedure to be executed, as will be described below.

The final procedure is an event procedure that is invoked when a master window is
resized or when a master or slave window is destroyed. If a master window is resized then
the event procedure arranges for the layout procedure to be executed to recompute the
geometries of all of its slaves. If a master or slave window is destroyed then the event pro-
cedure deletes all the information maintained by the geometry manager for that window.
The command procedure creates event handlers that cause the event procedure to be
invoked.

The layout procedure must be invoked after each call to the command procedure, the
request callback, or the event procedure. Usually this is done with an idle callback, so that

388 Geometry Management

DRAFT (7/10/93): Distribution Restricted

the layout procedure doesn’t actually execute until all pending work is completed. Using
an idle callback can save a lot of time in situations such as the initial creation of a complex
panel. In this case the command procedure will be invoked once for each of many slave
windows, but there won’t be enough information to compute the final layout until all of
the invocations have been made for all of the slaves. If the layout procedure were invoked
immediately it would just waste time computing layouts that will be discarded almost
immediately. With the idle callback, layout is deferred until complete information is avail-
able for all of the slaves.

43.5 Claiming ownership

A geometry manager uses the procedureTk_ManageGeometry to indicate that it
wishes to manage the geometry for a given slave window:

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData);

From this point on, wheneverTk_GeometryRequest is invoked fortkwin, Tk will
invokeproc. There can be only one geometry manager for a slave at a given time, so any
previous geometry manager is cancelled. A geometry manager can also disown a slave by
callingTk_ManageGeometry with a null value forproc. Proc must match the fol-
lowing prototype:

typedef void Tk_GeometryProc(ClientData clientData,
Tk_Window tkwin);

TheclientData andtkwin arguments will be the same as those passed toTk_Man-
ageGeometry. UsuallyTk_ManageGeometry is invoked by the command procedure
for a geometry manager, and usuallyclientData is a pointer to the structure holding
the geometry manager’s information abouttkwin.

43.6 Retrieving geometry information

When a widget callsTk_GeometryRequest orTk_SetInternalBorder Tk
saves the geometry information in its data structure for the widget. The geometry manag-
er’s layout procedure can retrieve the requested dimensions of a slave with the macros
Tk_ReqWidth andTk_ReqHeight, and it can retrieve the width of a master’s internal
border with the macroTk_InternalBorderWidth. It can also retrieve the master’s
actual dimensions with theTk_Width andTk_Height macros, which were originally
described in Section 37.5.

Note: Geometry managers need not worry about the gridding information provided with the
Tk_SetGrid procedure. This information doesn’t affect geometry managers at all. It is
simply passed on to the window manager for use in controlling interactive resizes.

43.7 Mapping and setting geometry 389

DRAFT (7/10/93): Distribution Restricted

43.7 Mapping and setting geometry

A geometry manager does two things to control the placement of a slave window. First, it
determines whether the slave window is mapped or unmapped, and second, it sets the size
and location of the window.

X allows a window to exist without appearing on the screen. Such a window is called
unmapped: neither it nor any of its descendants will appear on the screen. In order for a
window to appear, it and all of its ancestors (up through the nearest top-level window)
must bemapped. All windows are initially unmapped. When a geometry manager takes
responsibility for a window it must map it by callingTk_MapWindow:

void Tk_MapWindow(Tk_Window tkwin);

Usually the geometry manager will callTk_MapWindow in its layout procedure once it
has decided where the window will appear. If a geometry manager decides not to manage
a window anymore (e.g. in the “pack forget” command) then it must unmap the win-
dow to remove it from the screen:

void Tk_UnmapWindow(Tk_Window tkwin);

Some geometry managers may temporarily unmap windows during normal operation. For
example, the packer unmaps a slave if there isn’t enough space in its master to display it; if
the master is enlarged later then the slave will be mapped again.

Tk provides three procedures that a geometry manager’s layout procedure can use to
position slave windows:

void Tk_MoveWindow(Tk_Window tkwin, int x, int y);
void Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height);
void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,

unsigned int width, unsigned int height);

Tk_MoveWindow moves a window so that its upper left corner appears at the given loca-
tion in its parent;Tk_ResizeWindow sets the dimensions of a window without moving
it; andTk_MoveResize both moves a window and changes its dimensions.

The position specified toTk_MoveWindow orTk_MoveResizeWindow is a
position in the slave’s parent. However, most geometry managers allow the master for a
slave to be not only its parent but any descendant of the parent. Typically the layout proce-
dure will compute the slave’s location relative to its master; before calling
Tk_MoveWindow orTk_MoveResizeWindow it must translate these coordinates to
the coordinate system of the slave’s parent. The following code shows how to transform
coordinatesx andy from the master to the parent, assuming thatslave is the slave win-
dow andmaster is its master:

int x, y;
Tk_Window slave, master, parent, ancestor;
...
for (ancestor = master; ancestor != Tk_Parent(slave);

ancestor = Tk_Parent(ancestor)) {

390 Geometry Management

DRAFT (7/10/93): Distribution Restricted

x += Tk_X(ancestor) + Tk_Changes(ancestor)->border_width;
y += Tk_Y(ancestor) + Tk_Changes(ancestor)->border_width;

}

