An Introduction to Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Next

An Introduction to Tkinter

Fredrik Lundh

Copyright © 1999 by Fredrik Lundh

Table of Contents
Preface

I. Introducing Tkinter
1. What's Tkinter?
2. Hello, Tkinter
Running the Example
Details
3. Hello, Again
Running the Example
Details
More on widget references
More on widget names
4. Tkinter Classes
Widget classes
Mixins
5. Widget Configuration
Configuration Interface
Backwards Compatibility
6. Widget Styling
Colors
Fonts
Text Formatting
Borders
Cursors
7. Events and Bindings
Events

http://www.pythonware.com/library/tkinter/introduction/index.htm (1 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

8. Application Windows
Base Windows
Menus
Toolbars
Status Bars

9. Standard Dialogs
Message Boxes
Data Entry

10. Dialog Windows
Grid Layouts
Validating Data

Il. TKinter Reference

11. The Bitmaplmage Class
When to use the Bitmaplmage Class
Patterns
Methods
Options

12. The Button Widget
When to use the Button Widget
Patterns
Methods

Helpers

Options
13. The Canvas Widget

When to use the Canvas Widget
Concepts
Patterns
Methods
Options
14. The Canvas Arc ltem
Methods

Options
15. The Canvas Bitmap ltem

Bitmaps
Methods

Options
16. The Canvas Image Item

Methods

http://www.pythonware.com/library/tkinter/introduction/index.htm (2 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Options
17. The Canvas Line ltem

Methods
Options

18. The Canvas Oval Item
Methods
Options

19. The Canvas Polygon Item
Methods
Options

20. The Canvas Rectangle Item
Methods
Options

21. The Canvas Text Item
Methods
Options

22. The Canvas Window Item
Methods
Options

23. The Checkbutton Widget
When to use the Checkbutton Widget
Patterns
Methods
Options

24. The DoubleVar Class
When to use the DoubleVar Class
Patterns
Methods

25. The Entry Widget
When to use the Entry Widget
Concepts
Patterns
Methods
Options

26. The Font Class
Patterns
Methods
Functions

http://www.pythonware.com/library/tkinter/introduction/index.htm (3 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Options
27. The Frame Widget

When to use the Frame Widget
Patterns
Methods
Options

28. The Grid Geometry Manager
When to use the Grid Manager
Patterns
Methods
Options

29. The IntVar Class
When to use the IntVar Class
Patterns
Methods

30. The Label Widget
When to use the Label Widget
Patterns
Methods
Options

31. The Listbox Widget
When to use the Listbox Widget
Patterns
Methods
Options

32. The Menu Widget
When to use the Menu Widget
Patterns
Methods
Options

33. The Menubutton Widget
When to use the Menubutton Widget
Patterns
Methods
Options

34. The Message Widget
When to use the Message Widget
Patterns

http://www.pythonware.com/library/tkinter/introduction/index.htm (4 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Methods
Options
35. The Pack Geometry Manager
When to use the Pack Manager
Patterns
Methods
Options
36. The Photolmage Class
When to use the Photolmage Class
Patterns
Methods
Options
37. The Place Geometry Manager
When to use the Place Manager
Patterns
Methods
Options
38. The Radiobutton Widget
When to use the Radiobutton Widget
Patterns
Methods
Options
39. The Scale Widget
When to use the Scale Widget
Patterns
Methods
Options
40. The Scrollbar Widget
When to use the Scrollbar Widget
Patterns
Methods
Options
41. The StringVar Class
When to use the StringVar Class
Patterns
Methods
42. The Text Widget
When to use the Text Widget

http://www.pythonware.com/library/tkinter/introduction/index.htm (5 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Concepts
Patterns

Methods
Options

43. The Toplevel Widget
When to use the Toplevel Widget
Methods
Options

44. Basic Widget Methods
Configuration
Event processing
Event callbacks
Alarm handlers and other non-event callbacks
Window management
Window Related Information
Miscellaneous
TKinter Interface Methods
Option Database

45, Toplevel Window Methods
Visibility Methods
Style Methods
Window Geometry Methods
Icon Methods
Property Access Methods

http://www.pythonware.com/library/tkinter/introduction/index.htm (6 of 6) [3/29/2003 12:44:42 AM]

PYTHONWARE

pythonware.com products ::: library ::: search ::: daily Python-URL!

oasewenst | PYTHONWARE

Products

Library

Downloads Secret Labs The

- AB ar PythonWare

Support specialister ~ group at

Training paattbygga Secret Labs

Store system for att AB designs

About Us h_antera och and develops
visualisera tools and

Search

meteorologisk methodologies
information. for successful

Radar- och deployment of
satellitbilder Python-based
som visas technology :::

varjedagi TV [more]
och tidningar

ar skapade i

system

levererade av

Secret Labs.

:: [mer info]

News
Selected news from the PythonWare ® universe :::

Mar 11: Press Release: Weather Media Server visar
vardefullt vader!

Mar 03: Grattis, Lalle!

Feb 10: Dagens Eko: Elbolagen nya storkunder fér SMHI
"Den avreglerade elmarknaden har lett till att
specialanpassade vaderprognoser blivit en
mangmiljonprodukt.”

Dec 05: Genombrottsorder pa Weather Media Generator
fran ledande nordiskt energiféretag!

http://www.pythonware.com/index.htm (1 of 2) [3/29/2003 12:44:44 AM]

http://www.pythonware.com/products/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/products/index.htm
http://www.pythonware.com/downloads/index.htm
http://www.pythonware.com/support/index.htm
http://www.pythonware.com/training/index.htm
http://www.pythonware.com/store/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/sv/index.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/media/news.htm
http://www.pythonware.com/media/releases/20030311-fortum.htm
http://www.pythonware.com/media/releases/20030311-fortum.htm
http://www.corren.se/archive/2003/3/3/64w290pnsz62g0.xml
http://www.sr.se/ekot/artikel.asp?artikel=182449
http://www.sr.se/ekot/artikel.asp?artikel=182449
http://www.pythonware.com/products/weather/index.htm

PYTHONWARE

Nov 25: Python Imaging Library 1.1.4 alpha 2

Feb O5: Press Release: Secret Labs utvecklar
avancerad applikation for radarbilder at

SMHI
Dec 20: Why not take PythonWorks 1.3 for a test drive?

http://www.pythonware.com/index.htm (2 of 2) [3/29/2003 12:44:44 AM]

http://effbot.org/zone/pil-changes-114.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/products/works/testdrive.htm

Library

pythonware.com

products ::: library ::: search ::: daily Python-URL!

Daily Python-URL
Products
Library :::
An Introduction to
Tkinter

The Python Imaging

Library
Downloads
Support
Training
Store
About Us

Search

Library

Welcome to the PythonWare ® library.

PvthonWorks™

. Using PythonWorks (PDF)
. Articles

Python

. Tutorial @

. Library Reference &

. Macintosh Library Modules &

. Language Reference &

. Extending and Embedding #

. Python/C API &

. Documenting Python &

. Installing Python Modules &

. Distributing Python Modules
. Global Module Index

Python Imaging Library
(PIL)
. Python Imaging Library Handbook for 1.1 (online)

. Python Imaging Library Handbook for 1.1.3 (PDF)
. Articles

Tkinter

. An Introduction to Tkinter (online)
« An Introduction to Tkinter (PDF)

http://www.pythonware.com/library/index.htm (1 of 2) [3/29/2003 12:44:45 AM]

http://www.pythonware.com/products/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/products/index.htm
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://www.pythonware.com/library/the-python-imaging-library.htm
http://www.pythonware.com/library/the-python-imaging-library.htm
http://www.pythonware.com/downloads/index.htm
http://www.pythonware.com/support/index.htm
http://www.pythonware.com/training/index.htm
http://www.pythonware.com/store/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/products/works/using-pythonworks.pdf
http://www.pythonware.com/products/works/articles/index.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/mac/mac.html
http://www.python.org/doc/current/mac/mac.html
http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/doc/doc.html
http://www.python.org/doc/current/doc/doc.html
http://www.python.org/doc/current/inst/inst.html
http://www.python.org/doc/current/inst/inst.html
http://www.python.org/doc/current/dist/dist.html
http://www.python.org/doc/current/dist/dist.html
http://www.python.org/doc/current/modindex.html
http://www.python.org/doc/current/modindex.html
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/products/pil/pil-handbook.pdf
http://www.pythonware.com/products/pil/articles/index.htm
http://www.pythonware.com/library/tkinter/an-introduction-to-tkinter.pdf

Library

http://www.pythonware.com/library/index.htm (2 of 2) [3/29/2003 12:44:45 AM]

Preface

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Preface

This is yet another snapshot of my continously growing Tkinter documentation.

If you like this book, you might be interested in hearing that O'Reilly & Associates % will
be publishing a Tkinter book (tentatively called Programming Tkinter in Python). This
book features lots of new material written by yours truly, giving you a more thorough
description of Tkinter (and many other things) than you can find anywhere else.

</F>
(last update: Dec 10, 1999)

Back Next

http://www.pythonware.com/library/tkinter/introduction/preface.htm [3/29/2003 12:44:46 AM]

http://www.ora.com/
http://www.ora.com/

Introducing Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

. Introducing Tkinter

The first few chapters in this book provide a brief introduction to Tkinter. After reading
this, you should have a fair grasp of the Tkinter fundamentals.

Table of Contents
1. What's Tkinter?

2. Hello, Tkinter

3. Hello, Again

4. Tkinter Classes

5. Widget Configuration
6. Widget Styling

7. Events and Bindings
8. Application Windows
9. Standard Dialogs

10. Dialog Windows

Back Next

http://www.pythonware.com/library/tkinter/introduction/introducing-tkinter.htm [3/29/2003 12:44:47 AM]

What's Tkinter?

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 1. What's Tkinter?

The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI
toolkit from Scriptics @ (formerly developed by Sun Labs).

Both Tk and Tkinter are available on most Unix platforms, as well as on Windows and
Macintosh systems. Starting with the 8.0 release, Tk offers native look and feel on all
platforms.

Tkinter consists of a number of modules. The Tk interface is located in a binary module
named _t ki nt er (thiswast ki nt er in earlier versions). This module contains the low-
level interface to Tk, and should never be used directly by application programmers. It is

usually a shared library (or DLL), but might in some cases be statically linked with the
Python interpreter.

In addition to the Tk interface module, Tkinter includes a number of Python modules.
The two most important modules are the Tki nt er module itself, and a module called
Tkconst ant s. The former automatically imports the latter, so to use Tkinter, all you
need to do is to import one module:

I mport Tkinter
Or, more often:

from Tkinter inport *

Back Next

http://www.pythonware.com/library/tkinter/introduction/whats-tkinter.htm [3/29/2003 12:44:48 AM]

http://www.scriptics.com/
http://www.scriptics.com/

Hello, Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 2. Hello, Tkinter

Table of Contents
Running the Example

Details

But enough talk. Time to look at some code instead.

As you know, every serious tutorial should start with a "hello world"-type example. In
this overview, we'll show you not only one such example, but two.

First, let's look at a pretty minimal version:
Example 2-1. Our First Tkinter Program

File: hellol. py
from Tkinter inport *
root = Tk()

w = Label (root, text="Hello, world!'")
w. pack()

r oot . mai nl oop()

Running the Example

To run the program, run the script as usual:
$ python hell ol. py
The following window appears.

Figure 2-1. Running the program

http://www.pythonware.com/library/tkinter/introduction/hello-tkinter.ntm (1 of 2) [3/29/2003 12:44:49 AM]

Hello, Tkinter

Hello, warld!

To stop the program, just close the window.

Back Next

http://www.pythonware.com/library/tkinter/introduction/hello-tkinter.ntm (2 of 2) [3/29/2003 12:44:49 AM]

Details

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Detalls

We start by importing the Tki nt er module. It contains all classes, functions and other
things needed to work with the Tk toolkit. In most cases, you can simply import
everything from Tki nt er into your module's namespace:

from T Tkinter inport *

To initialize Tkinter, we have to create a Tk root widget. This is an ordinary window, with
a title bar and other decoration provided by your window manager. You should only
create one root widget for each program, and it must be created before any other widgets.

root = Tk()
Next, we create a Label widget as a child to the root window:

w = Label (root, text="Hello, world!'")
w. pack()

A Label widget can display either text or an icon or other image. In this case, we use the
t ext option to specify which text to display. Next, we call the pack method on this
widget, which tells it to size itself to fit the given text, and make itself visible. But before
this happens, we have to enter the Tkinter event loop:

r oot . mai nl oop()

The program will stay in the event loop until we close the window. The event loop doesn't
only handle events from the user (such as mouse clicks and key presses) or the
windowing system (such as redraw events and window configuration messages), it also
handle operations queued by Tkinter itself. Among these operations are geometry
management (queued by the pack method) and display updates. This also means that
the application window will not appear before you enter the main loop.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x59-details.htm [3/29/2003 12:44:50 AM]

Hello, Again

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 3. Hello, Again

Table of Contents
Running the Example

Details
More on widget references
More on widget names

When you write larger programs, it is usually a good idea to wrap your code up in one or more classes. The
following example is adapted from the "hello world"” program in Matt Conway's A Tkinter Life Preserver

@,
Example 3-1. Our Second Tkinter Program

File: hello2. py
from Tkinter inport *
cl ass App:
def __init_ (self, master):

frame = Frane(nmaster)
frame. pack()

self.button = Button(frame, text="QUIT", fg="red",
sel f. button. pack(si de=LEFT)

comand=f r anme. qui t)

self.hi _there = Button(frame, text="Hello", conmand=self.say_hi)

sel f. hi _there. pack(si de=LEFT)

def say_hi(self):
print "hi there, everyone!"

root = Tk()

app = App(root)

r oot . mai nl oop()

Running the Example

When you run this example, the following window appears.

http://www.pythonware.com/library/tkinter/introduction/hello-again.htm (1 of 2) [3/29/2003 12:44:51 AM]

http://www.python.org/docs/tkinter
http://www.python.org/docs/tkinter

Hello, Again
Figure 3-1. Running the sample program (using Tk 8.0 on a Windows 95 box)

otk EEIEY
AUIT | Hello |

If you click the right button, the text "hi t here, everyone! "is printed to the console. If you click the

left button, the program stops.

Back Next

http://www.pythonware.com/library/tkinter/introduction/hello-again.htm (2 of 2) [3/29/2003 12:44:51 AM]

Details

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Detalls

This sample application is written as a class. The constructor (the i nit __ method) is called with
a parent widget (the mast er), to which it adds a number of child widgets. The constructor starts by
creating a Fr anme widget. A frame is a simple container, and is in this case only used to hold the
other two widgets.

cl ass App:
def __init__(self, nmaster):

frame = Frane(naster)
franme. pack()

The frame instance is stored in a local variable called f r ane. After creating the widget, we
immediately call the pack method to make the frame visible.

We then create two But t on widgets, as children to the frame.

self.button = Button(franme, text="QU T", fg="red", conmand=frane.quit)

sel f. button. pack(si de=LEFT)

self.hi _there = Button(frame, text="Hell 0", comrand=sel f.say hi)
sel f. hi _there. pack(si de=LEFT)

This time, we pass a number of options to the constructor, as keyword arguments. The first button is
labelled "QUIT", and is made red (f g is short for f or egr ound). The second is labelled "Hello". Both
buttons also take a command option. This option specifies a function, or (as in this case) a bound
method, which will be called when the button is clicked.

The button instances are stored in instance attributes. They are both packed, but this time with the
si de=LEFT argument. This means that they will be placed as far left as possible in the frame; the
first button is placed at the frame's left edge, and the second is placed just to the right of the first one
(at the left edge of the remaining space in the frame, that is). By default, widgets are packed relative
to their parent (which is mast er for the frame widget, and the frame itself for the buttons). If the
side is not given, it defaults to TOP.

The "hello" button callback is given next. It simply prints a message to the console everytime the
button is pressed:

def say_hi(self):
print "hi there, everyone!"

http://www.pythonware.com/library/tkinter/introduction/x96-details.htm (1 of 2) [3/29/2003 12:44:52 AM]

Details

Finally, we provide some script level code that creates a Tk root widget, and one instance of the App
class using the root widget as its parent:

root = Tk()

app = App(root)

r oot . mai nl oop()
The last call is to the mai nl oop method on the root widget. It enters the Tk event loop, in which the
application will stay until the qui t method is called (just click the QUIT button), or the window is
closed.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x96-details.htm (2 of 2) [3/29/2003 12:44:52 AM]

More on widget references

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

More on widget references

In the second example, the frame widget is stored in a local variable named f r ane, while
the button widgets are stored in two instance attributes. Isn't there a serious problem
hidden in here: what happens whenthe i nit__ function returns and the f r ane
variable goes out of scope?

Just relax; there's actually no need to keep a reference to the widget instance. Tkinter
automatically maintains a widget tree (via the mast er and chi | dr en attributes of each
widget instance), so a widget won't disappear when the application’s last reference goes
away; it must be explicitly destroyed before this happens (using the dest r oy method). But
If you wish to do something with the widget after it has been created, you better keep a
reference to the widget instance yourself.

Note that if you don't need to keep a reference to a widget, it might be tempting to create
and pack it on a single line:

Button(franme, text="Hello", command=sel f. hell o). pack(si de=LEFT)

Don't store the result from this operation; you'll only get disappointed when you try to use
that value (the pack method returns None). To be on the safe side, it might be better to
always separate construction from packing:

w = Button(frame, text="Hell 0", command=sel f. hell 0)
w. pack(si de=LEFT)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x131-more-on-widget-references.htm [3/29/2003 12:44:53 AM]

More on widget names

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

More on widget names

Another source of confusion, especially for those who have some experience of
programming Tk using Tcl, is Tkinter's notion of the widget name. In Tcl, you must
explicitly name each widget. For example, the following Tcl command creates a But t on
named "ok", as a child to a widget named "dialog" (which in turn is a child of the root

window, ".").
button . dial og. ok

The corresponding Tkinter call would look like:
ok = Button(dial og)

However, in the Tkinter case, ok and di al og are references to widget instances, not the
actual names of the widgets. Since Tk itself needs the names, Tkinter automatically
assigns a unique name to each new widget. In the above case, the dialog name is probably
something like ".1428748," and the button could be named ".1428748.1432920". If you
wish to get the full name of a Tkinter widget, simply use the st r function on the widget
Instance:

>>> print str(ok)
. 1428748. 1432920

(if you print something, Python automatically uses the st r function to find out what to
print. But obviously, an operation like "name = ok™ won't do the that, so make sure
always to explicitly use st r if you need the name).

If you really need to specify the name of a widget, you can use the nane option when you
create the widget. One (and most likely the only) reason for this is if you need to interface
with code written in Tcl.

In the following example, the resulting widget is named ". di al og. ok™ (or, if you forgot
to name the dialog, something like . 1428748. ok™"):

ok = Button(dial og, name="ok")

http://www.pythonware.com/library/tkinter/introduction/x147-more-on-widget-names.htm (1 of 2) [3/29/2003 12:44:54 AM]

More on widget names

To avoid conflicts with Tkinter's naming scheme, don't use names which only contain

digits. Also note that nane is a "creation only" option; you cannot change the name once
you've created the widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x147-more-on-widget-names.htm (2 of 2) [3/29/2003 12:44:54 AM]

Tkinter Classes

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 4. Tkinter Classes

Table of Contents
Widget classes

Mixins

Widget classes

Tkinter supports 15 core widgets:

Table 4-1. Tkinter Widget Classes

Widget Description
But t on A simple button, used to execute a command or other operation.
Canvas Structured graphics. This widget can be used to draw graphs and

plots, create graphics editors, and to implement custom widgets.

Checkbut t on |Represents a variable that can have two distinct values. Clicking the
button toggles between the values.

Entry A text entry field.

Fr ane A container widget. The frame can have a border and a background,
and is used to group other widgets when creating an application or
dialog layout.

Label Displays a text or an image.

Li st box Displays a list of alternatives. The listbox can be configured to get

radiobutton or checklist behavior.

Menu A menu pane. Used to implement pulldown and popup menus.

Menubut t on A menubutton. Used to implement pulldown menus.

Message Display a text. Similar to the label widget, but can automatically wrap
text to a given width or aspect ratio.

http://www.pythonware.com/library/tkinter/introduction/tkinter-classes.htm (1 of 2) [3/29/2003 12:44:55 AM]

Tkinter Classes

Radi obutt on |Represents one value of a variable that can have one of many values.
Clicking the button sets the variable to that value, and clears all other
radiobuttons associated with the same variable.

Scal e Allows you to set a numerical value by dragging a "slider".

Scrol | bar Standard scrollbars for use with canvas, entry, listbox, and text
widgets.

Text Formatted text display. Allows you to display and edit text with
various styles and attributes. Also supports embedded images and
windows.

Topl evel A container widget displayed as a separate, top-level window.

Also note that there's no widget class hierarchy in Tkinter; all widget classes are siblings
in the inheritance tree.

All these widgets provide the M sc and geometry management methods, the
configuration management methods, and additional methods defined by the widget itself.
In addition, the Topl evel class also provides the window manager interface. This
means that a typical widget class provides some 150 methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/tkinter-classes.htm (2 of 2) [3/29/2003 12:44:55 AM]

Mixins

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next
MiXinNns

The Tkinter module provides classes corresponding to the various widget types in Tk,
and a number of mixin and other helper classes (a mixin is a class designed to be
combined with other classes using multiple inheritance). When you use Tkinter, you
should never access the mixin classes directly.

Implementation mixins

The M sc class is used as a mixin by the root window and widget classes. It provides a

large number of Tk and window related services, which are thus available for all Tkinter
core widgets. This is done by delegation; the widget simply forwards the request to the
appropriate internal object.

The Wnclass is used as a mixin by the root window and Topl evel widget classes. It
provides window manager services, also by delegation.

Using delegation like this simplifies your application code: once you have a widget, you
can access all parts of Tkinter using methods on the widget instance.

Geometry mixins

The Gri d, Pack, and Pl ace classes are used as mixins by the widget classes. They
provide access to the various geometry managers, also via delegation.

Table 4-2. Geometry Mixins

Manager Description

Gid The grid geometry manager allows you to create table-like layouts, by
organizing the widgets in a 2-dimensional grid. To use this geometry
manager, use the gr i d method.

http://www.pythonware.com/library/tkinter/introduction/x275-mixins.htm (1 of 2) [3/29/2003 12:44:56 AM]

Mixins

Pack The pack geometry manager lets you create a layout by "packing" the
widgets into a parent widget, by treating them as rectangular blocks
placed in a frame. To use this geometry manager for a widget, use the
pack method on that widget to set things up.

Pl ace The place geometry manager lets you explicitly place a widget in a
given position. To use this geometry manager, use the pl ace
method.

Widget configuration management

The W dget class mixes the M sc class with the geometry mixins, and adds
configuration management through the cget and confi gur e methods, as well as
through a partial dictionary interface. The latter can be used to set and query individual
options, and is explained in further detail in the next chapter.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x275-mixins.htm (2 of 2) [3/29/2003 12:44:56 AM]

Widget Configuration

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 5. Widget Configuration

Table of Contents
Configuration Interface

Backwards Compatibility

To control the appearance of a widget, you usually use options rather than method calls.
Typical options include text and color, size, command callbacks, etc. To deal with
options, all core widgets implement the same configuration interface:

Configuration Interface

wi dget cl ass(master, option=value, ...) => w dget

Create an instance of this widget class, as a child to the given master, and using the
given options. All options have default values, so in the simplest case, you only
have to specify the master. You can even leave that out if you really want; Tkinter
then uses the most recently created root window as master. Note that the nane
option can only be set when the widget is created.

cget(option) => string

Return the current value of an option. Both the option name, and the returned
value, are strings. To get the nane option, use st r (W dget) instead.

configure(option=value, ...),config(option=value, ...)
Set one or more options (given as keyword arguments).

Note that some options have names that are reserved words in Python (cl ass,from...).
To use these as keyword arguments, simply append an underscore to the option name

(cl ass_,from, ...). Note that you cannot set the nane option using this method; it can
only be set when the widget is created.

http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm (1 of 2) [3/29/2003 12:44:57 AM]

Widget Configuration

For convenience, the widgets also implement a partial dictionary interface. The
__setitem__method mapstoconfigure,while getitem mapstocget.Asa
result, you can use the following syntax to set and query options:

val ue = wi dget [option]
wi dget [opti on] = val ue

Note that each assignment results in one call to Tk. If you wish to change multiple
options, it is usually a better idea to change them with a single call to confi g or
confi gur e (personally, I prefer to always change options in that fashion).
The following dictionary method also works for widgets:
keys() => list
Return a list of all options that can be set for this widget. The nane option is not
included in this list (it cannot be queried or modified through the dictionary

interface anyway, so this doesn't really matter).

Back Next

http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm (2 of 2) [3/29/2003 12:44:57 AM]

Backwards Compatibility

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Backwards Compatibility

Keyword arguments were introduced in Python 1.3. Before that, options were passed to the widget constructors and
conf i gur e methods using ordinary Python dictionaries. The source code could then look something like this:

self.button = Button(frane, {"text": "QUT", "fg": "red", "command": frame.quit})
sel f. button. pack({"side": LEFT})

The keyword argument syntax is of course much more elegant, and less error prone. However, for compatibility
with existing code, Tkinter still supports the older syntax. You shouldn't use this syntax in new programs, even if it
might be tempting in some cases. For example, if you create a custom widget which needs to pass configuration
options along to its parent class, you may come up with something like:

def __init__ (self, master, **kw):
Canvas. __init__ (self, master, kw) # kwis a dictionary

This works just fine with the current version of Tkinter, but it may not work with future versions. A more general
approach is to use the appl y function:

def __init_ (self, master, **kw):
apply(Canvas. __init__, (self, master), kw)

The appl y function takes a function (an unbound method, in this case), a tuple with arguments (which must
include sel f since we're calling an unbound method), and optionally, a dictionary which provides the keyword

arguments.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x386-backwards-compatibility.htm [3/29/2003 12:44:58 AM]

Widget Styling

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 6. Widget Styling

Table of Contents
Colors

Fonts

Text Formatting
Borders

Cursors

All Tkinter standard widgets provide a basic set of "styling" options, which allow you to
modify things like colors, fonts, and other visual aspects of each widget.

Colors

Most widgets allow you to specify the widget and text colors, using the backgr ound and
f or egr ound options. To specify a color, you can either use a color name, or explicitly
specify the red, green, and blue (RGB) color components.

Color Names

Tkinter includes a color database which maps color names to the corresponding RGB
values. This database includes common names like Red, G een, Bl ue, Yell ow and
Li ght Bl ue, but also more exotic things like Moccasi n, PeachPuf f, etc.

On an X window system, the color names are defined by the X server. You might be able
to locate a file named xr gb. t xt which contains a list of color names and the
corresponding RGB values. On Windows and Macintosh systems, the color name table is
built into Tk.

Under Windows, you can also use the Windows system colors (these can be changed by
the user via the control panel):

SystemAct i veBorder, SystemActiveCapti on,
Syst emAppWor kspace, SystenBackground, SystenButtonFace,

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (1 of 3) [3/29/2003 12:44:59 AM]

Widget Styling

Syst enButt onH ghl i ght, SystenButtonShadow,
SystenButtonText, SystentCaptionText, SystenD sabl edText,
Syst entHi ghl i ght, SystenHi ghli ght Text,

System nacti veBorder, System nactiveCaption,

System nacti veCapti onText, Systemvenu, SystemVenuText,
Systentscrol | bar, SystenW ndow, SystemN ndowFrane,

Syst emW ndowText .

On the Macintosh, the following system colors are available:
Syst enButt onFace, SystenButtonFranme, SystenButtonText,
SystentH ghlight, SystenH ghlightText, Systen\enu,
Syst emMenuActi ve, SysteniMenuActi veText,
Syst emvenuDi sabl ed, SystemVenuText, SystenW ndowBody.

Color names are case insensitive. Many (but not all) color names are also available with
or without spaces between the words. For example, "lightblue”, "light blue", and "Light
Blue" all specify the same color.

RGB Specifications

If you need to explicitly specify a color, you can use a string with the following format:
#RRGGBB

RR, GG, BB are hexadecimal representations of the red, green and blue values,
respectively. The following sample shows how you can convert a color 3-tuple to a Tk
color specification:

tk_ rgb = "#%02x%02x%02x" % (128, 192, 200)

Tk also supports the forms "#RGB" and "#RRRRGGEGEEBBBB" to specify each value with 16
and 65536 levels, respectively.

You can use the wi nf o_r gb widget method to translate a color string (either a name or
an RGB specification) to a 3-tuple:

rgb = widget.winfo_rgb("red")
red, green, blue = rgb[0]/256, rgb[1l]/256, rgb[2]/256

Note that wi nf o_r gb returns 16-bit RGB values, ranging from O to 65535. To map them

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (2 of 3) [3/29/2003 12:44:59 AM]

Widget Styling

into the more common 0-255 range, you must divide each value by 256 (or shift them 8
bits to the right).

Back Next

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (3 of 3) [3/29/2003 12:44:59 AM]

Fonts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Fonts

Widgets that allow you to display text in one way or another also allows you to specify
which font to use. All widgets provide reasonable default values, and you seldom have to
specify the font for simpler elements like labels and buttons.

Fonts are usually specifed using the f ont widget option. Tkinter supports a number of
different font descriptor types:

Font descriptors

. User-defined font names
. System fonts

X font descriptors

With Tk versions before 8.0, only X font descriptors are supported (see below).

Font descriptors

Starting with Tk 8.0, Tkinter supports platform independent font descriptors. You can
specify a font as tuple containing a family name, a height in points, and optionally a
string with one or more styles. Examples:

("Times", 10, "bold")
("Hel vetica", 10, "bold italic")
(" Synbol ", 8)

To get the default size and style, you can give the font name as a single string. If the
family name doesn't include spaces, you can also add size and styles to the string itself:

"Times 10 bol d"

"Hel vetica 10 bold italic"
" Synmbol 8"

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (1 of 5) [3/29/2003 12:45:01 AM]

Fonts

Here are some families available on most Windows platforms:

Ari al (corresponds to Helvetica), Couri er New/(Courier), Com ¢ Sans Ms,
Fi xedsys, M5 Sans Serif,Ms Serif,Synbol,System Ti nes New Roman
(Times), and Ver dana:

arial 14 points: I'd like to have an argu

courlier new 12 polnts: What? Pri
cotmic sans ms 8 points: Pack my box with fiven dozen jugs of
fixedsys 9 points: Here you see some Eni
ms sans Senf 11 points: Fack my box with frven dozen

ms serif 16 points: The quick brown fox jw
gy for 12 mowrra Peruos moug our, wordso Fog
system 10 points: Hello, Harry. Now there's the «
times new roman 16 points: That turn

verdana 10 points: The quick brown fox jumps

Note that if the family name contains spaces, you must use the tuple syntax described
above.

The available styles are nor mal , bol d,roman,italic,underline,andoverstrike.

Tk 8.0 automatically maps Cour i er, Hel veti ca, and Ti nes to their corresponding
native family names on all platforms. In addition, a font specification can never fail under
Tk 8.0; if Tk cannot come up with an exact match, it tries to find a similar font. If that
fails, Tk falls back to a platform-specific default font. Tk's idea of what is "similar
enough" probably doesn't correspond to your own view, so you shouldn't rely too much
on this feature.

Tk 4.2 under Windows supports this kind of font descriptors as well. There are several
restrictions, including that the family name must exist on the platform, and not all the
above style names exist (or rather, some of them have different names).

Font names

In addition, Tk 8.0 allows you to create named fonts and use their names when
specifying fonts to the widgets.

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (2 of 5) [3/29/2003 12:45:01 AM]

Fonts

The t kFont module provides a Font class which allows you to create font instances. You
can use such an instance everywhere Tkinter accepts a font specifier. You can also use a
font instance to get font metrics, including the size occupied by a given string written in
that font.

t kFont. Font (fam | y="Ti nes", size=10, wei ght =t kFont. BOLD)

t kFont. Font (fam | y="Hel vetica", size=10, wei ght =t kFont. BOLD,
sl ant =t kFont . | TALI C)

t kFont. Font (fam | y="Synbol ", si ze=8)

If you modify a named font (using the conf i g method), the changes are automatically
propagated to all widgets using the font.

The Font constructor supports the following style options (note that the constants are
defined in the t kFont module):

Table 6-1. Font Style Options

Option Type Description

famly string Font family.

si ze integer Font size in points. To give the size in pixels, use a
negative value.

wei ght constant Font thickness. Use one of NORVAL or BOLD.
Default is NORIVAL.

sl ant constant Font slant. Use one of NORMVAL or | TALI C. Default
IS NORIVAL.

underli ne flag Font underlining. If 1 (true), the font is underlined.
Default is O (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text

written with this font. Default is O (false).

System fonts

Tk also supports system specific font names. Under X, these are usually font aliases like
fixed, 6x10, etc.

Under Windows, these include ansi , ansi fi xed, devi ce, oenf i xed, syst em and

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (3 of 5) [3/29/2003 12:45:01 AM]

Fonts

systenfi xed:

angi; | didn't know antz had zid legs, Marcus
anzifixed: Another merciless sweep

device: We like dressing up, ve
oemf ixed: One day Ricky the magic p

system: Pretty strong meat there from Sam
systemfixed: Simon Zinc Trumpet Har

On the Macintosh, the system font names are appl i cati onand system

Note that the system fonts are full font names, not family names, and they cannot be
combined with size or style attributes. For portability reasons, avoid using these names
wherever possible.

X Font Descriptors

X Font Descriptors are strings having the following format (the asterisks represent fields
that are usually not relevant. For details, see the Tk documentation, or an X manual):

-*-fam |ly-weight-slant-*--*-size-*-*-*-*_char set
The font family is typically something like Ti nes, Hel veti ca, Couri er or Synbol .

The weight is either Bol d or Nor mal . Slant is either Rfor "roman" (normal), | for italic,
or Ofor oblique (in practice, this is just another word for italic).

Size is the height of the font in decipoints (that is, points multiplied by 10). There are
usually 72 points per inch, but some low-resolution displays may use larger "logical"
points to make sure that small fonts are still legible. The character set, finally, is usually
| SO8859- 1 (I1SO Latin 1), but may have other values for some fonts.

The following descriptor requests a 12-point boldface Times font, using the I1SO Latin 1
character set:

-*-Times-Bol d-R-*--*-120-*-*-*-*-1S08859- 1

If you don't care about the character set, or use a font like Synbol which has a special
character set, you can use a single asterisk as the last component:

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (4 of 5) [3/29/2003 12:45:01 AM]

Fonts

- % - Symbol - *-*-*- . *_g80- *

A typical X server supports at least Ti nes, Hel veti ca, Couri er, and a few more fonts,
in sizes like 8, 10, 12, 14, 18, and 24 points, and in normal, bold, and italic (Ti nmes) or
oblique (Hel vet i ca, Couri er) variants. Most servers also support freely scaleable
fonts. You can use programs like x| sf ont s and xf ont sel to check which fonts you
have access to on a given server.

This kind of font descriptors can also be used on Windows and Macintosh. Note that if

you use Tk 4.2, you should keep in mind that the font family must be one supported by
Windows (see above).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (5 of 5) [3/29/2003 12:45:01 AM]

Text Formatting

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Text Formatting

While text labels and buttons usually contain a single line of text, Tkinter also supports
multiple lines. To split the text across lines, simply insert newline characters (\ n) where
necessary.

By default, the lines are centered. You can change this by setting the j usti f y option to
LEFT or RI GHT. The default value is CENTER.

You can also use the wr apl engt h option to set a maximum width, and let the widget
wrap the text over multiple lines all by itself. Tkinter attempts to wrap on whitespace, but
if the widget is too narrow, it may break individual words across lines.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x611-text-formatting.htm [3/29/2003 12:45:04 AM]

Borders

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Borders

All Tkinter widgets have a border (though it's not visible by default for some widgets).
The border consists of an optional 3D relief, and a focus highlight region.

Relief

The relief settings control how to draw the widget border:

bor der wi dt h (or bd) is the width of the border, in pixels. Most widgets have a default
borderwidth of one or two pixels. There's hardly any reason to make the border wider
than that.

rel i ef controls how to draw the 3D border. It can be set to one of SUNKEN, RAI SED,
GROOVE, Rl DGE, and FLAT.

Focus Highlights

The highlight settings control how to indicate that the widget (or one of its children) has
keyboard focus. In most cases, the highlight region is a border outside the relief. The
following options control how this extra border is drawn:

The hi ghl i ght col or is used to draw the highlight region when the widget has
keyboard focus. It's usually black, or some other distinct contrast color.

The hi ghl i ght backgr ound is used to draw the highlight region when the widget
doesn't have focus. It's usually same as the widget background.

The hi ghl i ghtt hi ckness option is the width of the highlight region, in pixels. It is
usually one or two pixels for widgets that can take keyboard focus.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x622-borders.htm [3/29/2003 12:45:06 AM]

Cursors

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

cursors

The cur sor option control which mouse cursor to use when the mouse is moved over
the widget. If this option isn't set, the widget uses the same mouse pointer as its parent.

Note that some widgets, including the Text and Ent r y widgets, set this option by
default.

X # 7 & = #§f [¥ L+ 1L @ 4
O B & + =% + « &« L T 5 7
E G b F T B O > L S T
F B L 4 K% FH & % 2 + 7 A
- 4 WHHE A | e = = 1t 1 M
oy == fF &% @ 4+ [721 T T 8§
r 7 a1 & 1

Back Next

http://www.pythonware.com/library/tkinter/introduction/x647-cursors.htm [3/29/2003 12:45:07 AM]

Events and Bindings

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 7. Events and Bindings

As was mentioned earlier, a Tkinter application spends most of its time inside an event loop
(entered via the mai nl oop method). Events can come from various sources, including key
presses and mouse operations by the user, and redraw events from the window manager
(indirectly caused by the user, in many cases).

Tkinter provides a powerful mechanism to let you deal with events yourself. For each widget,
you can bi nd Python functions and methods to events.

wi dget . bi nd(event, handl er)

If an event matching the event description occurs in the widget, the given handler is called with
an object describing the event.

Here's a simple example:
Example 7-1. Capturing clicks in a window

File: bindl. py
from Tkinter inport *
root = Tk()

def cal | back(event):
print "clicked at", event.x, event.y

franme = Frane(root, w dth=100, hei ght=100)
frame. bi nd("<Button-1>", call back)
frame. pack()

root. mai nl oop()

In this example, we use the bi nd method of the frame widget to bind a callback function to an
event called <But t on- 1>. Run this program and click in the window that appears. Each time
you click, a message like "cl i cked at 44 63" is printed to the console window.

Events

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (1 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

Events are given as strings, using a special event syntax:
<nodi fier-type-detail >

The type field is the most important part of an event specifier. It specifies the kind of event that
we wish to bind, and can be user actions like But t on, and Key, or window manager events like
Ent er, Conf i gur e, and others. The modifier and detail fields are used to give additional
information, and can in many cases be left out. There are also various ways to simplify the event
string; for example, to match a keyboard key, you can leave out the angle brackets and just use
the key as is. Unless it is a space or an angle bracket, of course.

Instead of spending a few pages on discussing all the syntactic shortcuts, let's take a look on the
most common event formats:

Table 7-1. Event Formats

Event Description

<Button- 1> A mouse button is pressed over the widget. Button 1 is the leftmost
button, button 2 is the middle button (where available), and button 3 the
rightmost button. When you press down a mouse button over a widget,
Tkinter will automatically "grab" the mouse pointer, and mouse events
will then be sent to the current widget as long as the mouse button is held
down. The current position of the mouse pointer (relative to the widget)
is provided in the x and y members of the event object passed to the
callback.

You can use But t onPr ess instead of But t on, or even leave it out
completely: <But t on- 1>, <But t onPr ess- 1>, and <1> are all
synonyms. For clarity, | prefer the <But t on- 1> syntax.

<B1- Mbti on> The mouse is moved, with mouse button 1 being held down (use B2 for
the middle button, B3 for the right button). The current position of the
mouse pointer is provided in the x and y members of the event object
passed to the callback.

<But t onRel ease- |Button 1 was released. The current position of the mouse pointer is
1> provided in the x and y members of the event object passed to the
callback.

<Doubl e- But t on- |Button 1 was double clicked. You can use Doubl e or Tri pl e as prefixes.
1> Note that if you bind to both a single click (<But t on- 1>) and a double
click, both bindings will be called.

<Ent er > The mouse pointer entered the widget (this event doesn't mean that the
user pressed the Enter key!).

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (2 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

<Leave>
<Ret ur n>

<Key>

<Shi ft - Up>

<Confi gure>

The mouse pointer left the widget.

The user pressed the Enter key. You can bind to virtually all keys on the
keyboard. For an ordinary 102-key PC-style keyboard, the special keys
are Cancel (the Break key), BackSpace, Tab, Return(the Enter key),
Shift_L (any Shift key), Control_ L (any Control key), Alt_L (any Alt
key), Pause, Caps_ Lock, Escape, Prior (Page Up), Next (Page
Down), End, Home, Left, Up, Right, Down, Print, Insert, Delete,
F1, F2,F3, F4,F5,F6, F7, F8, F9, F10, F11, F12, Num_ Lock, and
Scroll _Lock.

The user pressed any key. The key is provided in the char member of the
event object passed to the callback (this is an empty string for special
keys).

The user typed an "a". Most printable characters can be used as is. The
exceptions are space (<space>) and less than (<l ess>). Note that 1 is a
keyboard binding, while <1> is a button binding.

The user pressed the Up arrow, while holding the Shift key pressed. You
can use prefixes like Alt, Shift, and Control.

The widget changed size (or location, on some platforms). The new size is
provided in the wi dt h and hei ght attributes of the event object passed
to the callback.

The Event Object

The event object is a standard Python object instance, with a number of attributes describing the

event.

Table 7-2. Event Attributes

Attribute
wi dget

X,y

X_root,
y_root

char

keysym
keycode

num

wi dt h, hei ght

Description

The widget which generated this event. This is a valid Tkinter widget
Instance, not a name. This attribute is set for all events.

The current mouse position, in pixels.

The current mouse position relative to the upper left corner of the screen,
in pixels.

The character code (keyboard events only), as a string.

The key symbol (keyboard events only).

The key code (keyboard events only)

The button number (mouse button events only)

The new size of the widget, in pixels (Configure events only).

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (3 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

type The event type.

For portability reasons, you should stick to char , hei ght ,w dt h, x,y,x_root,y_root, and
wi dget unless you know exactly what you're doing...

Instance and Class Bindings

The bi nd method we used in the above example creates an instance binding. This means that
the binding applies to a single widget only; if you create new frames, they will not inherit the
bindings.

But Tkinter also allows you to create bindings on the class and application level; in fact, you can
create bindings on four different levels:

. the widget instance, using bi nd.
. the widget's toplevel window (Toplevel or r oot), also using bi nd.

. the widget class, using bi nd_cl ass (this is used by Tkinter to provide standard
bindings).

. the whole application, using bi nd_al | .

For example, you can use bi nd_al | to create a binding for the F1 key, so you can provide help
everywhere in the application. But what happens if you create multiple bindings for the same
key, or provide overlapping bindings?

First, on each of these four levels, Tkinter chooses the "closest match” of the available bindings.
For example, if you create instance bindings for the <Key> and <Ret ur n> events, only the
second binding will be called if you press the Enter key.

However, if you add a <Ret ur n> binding to the toplevel widget, both bindings will be called.
Tkinter first calls the best binding on the instance level, then the best binding on the toplevel
window level, then the best binding on the class level (which is often a standard binding), and
finally the best available binding on the application level. So in an extreme case, a single event
may call four event handlers.

A common cause of confusion is when you try to use bindings to override the default behavior of
a standard widget. For example, assume you wish to disable the Enter key in the text widget, so
that the users cannot insert newlines into the text. Maybe the following will do the trick?

def ignore(event):
pass

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (4 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

text. bi nd("<Return>", ignore)
or, if you prefer one-liners:
text. bi nd("<Return>", |anbda e: None)
(the | anbda function used here takes one argument, and returns None)

Unfortunately, the newline is still inserted, since the above binding applies to the instance level
only, and the standard behavior is provided by a class level bindings.

You could use the bi nd_cl ass method to modify the bindings on the class level, but that would
change the behavior of all text widgets in the application. An easier solution is to prevent Tkinter
from propagating the event to other handlers; just return the string "br eak" from your event
handler:

def ignore(event):
return "break"
text. bi nd("<Return>", ignore)

or
text. bi nd("<Return>", |anbda e: "break")

By the way, if you really want to change the behavior of all text widgets in your application,
here's how to use the bi nd_cl ass method:

top. bind class("Text", "<Return>", |anbda e: None)

But there are a lot of reasons why you shouldn't do this. For example, it messes things up
completely the day you wish to extend your application with some cool little Ul component you
downloaded from the net. Better use your own Text widget specialization, and keep Tkinter's
default bindings intact:

cl ass MyText (Text):
def __init__(self, master, **kw):
apply(Text. __init__, (self, master), kw
sel f.bind("<Return>", |anbda e: "break")

Protocols

In addition to event bindings, Tkinter also supports a mechanism called protocol handlers.
Here, the term protocol refers to the interaction between the application and the window
manager. The most commonly used protocol is called WM _DELETE_W NDOW and is used to

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (5 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

define what happens when the user explicitly closes a window using the window manager.

You can use the pr ot ocol method to install a handler for this protocol (the widget must be a
root or Topl evel widget):

wi dget . prot ocol ("WM DELETE_W NDOW , handl er)

Once you have installed your own handler, Tkinter will no longer automatically close the
window. Instead, you could for example display a message box asking the user if the current data
should be saved, or in some cases, simply ignore the request. To close the window from this
handler, simply call the dest r oy method of the window:

Example 7-2. Capturing destroy events

File: protocol 1. py

from Tkinter inport *
I nport tkMessageBox

def cal |l back():
i f tkMessageBox. askokcancel ("Quit", "Do you really wish to quit?"):
root . destroy()

root = Tk()
root. protocol ("WM DELETE_W NDOW , cal |l back)

root. mai nl oop()

Note that even you don't register an handler for WWM_DELETE_W NDOWon a toplevel window, the
window itself will be destroyed as usual (in a controlled fashion, unlike X). However, as of
Python 1.5.2, Tkinter will not destroy the corresponding widget instance hierarchy, so itis a
good idea to always register a handler yourself:

top = Toplevel (...)

make sure w dget instances are del eted
t op. prot ocol ("WV DELETE W NDOW , top. destroy)

Future versions of Tkinter will most likely do this by default.

Other Protocols

Window manager protocols were originally part of the X window system (they are defined in a
document titled Inter-Client Communication Conventions Manual, or ICCCM). On that
platform, you can install handlers for other protocols as well, like WM TAKE FOCUS and

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (6 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

VWM SAVE YOURSELF. See the ICCCM documentation for details.

Back Next

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (7 of 7) [3/29/2003 12:45:09 AM]

Application Windows

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 8. Application Windows

Table of Contents
Base Windows

Menus
Toolbars
Status Bars

Base Windows

In the simple examples we've used this far, there's only one window on the screen; the
root window. This is automatically created when you call the Tk constructor, and is of
course very convenient for simple applications:

from Tkinter inport *
root = Tk()
create wi ndow contents as children to root...

root . mai nl oop()

If you need to create additional windows, you can use the Topl evel widget. It simply
creates a new window on the screen, a window that looks and behaves pretty much like
the original root window:

from Tkinter inport *

root = Tk()

create root w ndow contents...
top = Topl evel ()

create top w ndow contents...

http://www.pythonware.com/library/tkinter/introduction/application-windows.htm (1 of 2) [3/29/2003 12:45:10 AM]

Application Windows

root . mai nl oop()

There's no need to use pack to display the Topl evel , since it is automatically displayed
by the window manager (in fact, you'll get an error message if you try to use pack or any
other geometry manager with a Topl evel widget).

Back Next

http://www.pythonware.com/library/tkinter/introduction/application-windows.htm (2 of 2) [3/29/2003 12:45:10 AM]

Menus

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Menus

Tkinter provides a special widget type for menus. To create a menu, you create an
instance of the Menu class, and use add methods to add entries to it:

. add_command(| abel =stri ng, conmand=cal | back) adds an ordinary menu
entry.

. add_separ at or () adds an separator line. This is used to group menu entries.

. add _cascade(l abel =string, nenu=nmenu instance) adds asubmenu
(another Menu instance). This is either a pull-down menu or a fold-out menu,
depending on the parent.

Here's an example:
Example 8-1. Creating a small menu

File: nmenul. py
fromTkinter inport *

def cal |l back():
print "called the call back!"

root = Tk()

create a nmenu
menu = Menu(root)
root . confi g(menu=nenu)

filemenu = Menu(nenu)

nmenu. add_cascade(l abel ="Fil e", nmenu=fil enenu)

filemenu. add _command(| abel =" New', command=cal | back)
filemenu. add _command(| abel =" Open...", command=cal | back)
filemenu. add_separator ()

filemenu. add command(| abel ="Exit", command=cal | back)

http://www.pythonware.com/library/tkinter/introduction/x953-menus.htm (1 of 2) [3/29/2003 12:45:11 AM]

Menus

hel pnrenu = Menu(nmenu)
nmenu. add_cascade(| abel =" Hel p", nenu=hel pnenu)

hel pnmenu. add_conmand(| abel =" About...", command=cal | back)

mai nl oop()

In this example, we start out by creating a Menu instance, and we then use the conf i g
method to attach it to the root window. The contents of that menu will be used to create a
menubar at the top of the root window. You don't have to pack the menu, since it is
automatically displayed by Tkinter.

Next, we create a new Menu instance, using the menubar as the widget parent, and the
add_cascade method to make it a pulldown menu. We then call add_conmand to add

commands to the menu (note that all commands in this example use the same callback),
and add_separ at or to add a line between the file commands and the exit command.

Finally, we create a small help menu in the same fashion.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x953-menus.htm (2 of 2) [3/29/2003 12:45:11 AM]

Toolbars

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Toolbars

Many applications place a toolbar just under the menubar, which typically contains a
number of buttons for common functions like open file, print, undo, etc.

In the following example, we use a Fr anme widget as the toolbar, and pack a number of

ordinary buttons into it.
Example 8-2. Creating a simple toolbar

File: tool barl. py
from Tkinter inport *
root = Tk()

def call back():
print "called the call back!"

create a tool bar
t ool bar = Frane(root)

b = Button(tool bar, text="new', w dth=6, command=cal | back)
b. pack(si de=LEFT, padx=2, pady=2)

b = Button(tool bar, text="open", w dth=6, conmmand=cal | back)
b. pack(si de=LEFT, padx=2, pady=2)

t ool bar . pack(si de=TOP, fill =X)

mai nl oop()

The buttons are packed against the left side, and the toolbar itself is packed against the
topmost side, with the f i | | option set to X. As a result, the widget is resized if necssary,

to cover the full with of the parent widget.

Also note that I've used text labels rather than icons, to keep things simple. To display an
icon, you can use the Phot ol mage constructor to load a small image from disk, and use

http://www.pythonware.com/library/tkinter/introduction/x982-toolbars.htm (1 of 2) [3/29/2003 12:45:12 AM]

Toolbars

the i mage option to display it.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x982-toolbars.htm (2 of 2) [3/29/2003 12:45:12 AM]

Status Bars

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Status Bars

Finally, most applications sport a status bar at the bottom of each application window.
Implementing a status bar with Tkinter is trivial: you can simply use a suitably configured
Label widget, and reconfigure the t ext option now and then. Here's one way to do it:

status = Label (naster, text="", bd=1, relief=SUNKEN, anchor=W
st at us. pack(si de=BOTTOM fill=X)

If you wish to be fancy, you can use the following class instead. It wraps a label widget in
a convenience class, and provides set and cl ear methods to modify the contents.

Example 8-3. A Status Bar Class

File: tkSinpleStatusBar. py
cl ass St atusBar (Frane):

def __init__ (self, master):
Frame. init__(self, master)
sel f.label = Label (self, bd=1, relief=SUNKEN, anchor=W
sel f. | abel . pack(fill=X)

def set(self, format, *args):
sel f.l abel.config(text=format % args)
sel f. | abel . update_i dl et asks()

def clear(self):
sel f.l abel.config(text="")
sel f. | abel . update_i dl et asks()

The set method works like C's pri nt f function; it takes a format string, possibly
followed by a set of arguments (a drawback is that if you wish to print an arbitrary string,
you must do thatasset (" %", string)).Also note that this method calls the

updat e_i dl et asks method, to make sure pending draw operations (like the status bar
update) are carried out immediately.

http://www.pythonware.com/library/tkinter/introduction/x996-status-bars.htm (1 of 2) [3/29/2003 12:45:13 AM]

Status Bars

But the real trick here is that we've inherited from the Fr anme widget. At the cost of a
somewhat awkward call to the frame widget's constructor, we've created a new kind of
custom widget that can be treated as any other widget. You can create and display the
status bar using the usual widget syntax:

status = StatusBar(root)
st at us. pack(si de=BOTTOM fill =X

We could have inherited from the Label widget itself, and just extended it with set and
cl ear methods. This approach have a few drawbacks, though:

. It makes it harder to maintain the status bar's integrity. Some team members may
cheat, and use conf i g instead of set . That's not a big deal, until the day you
decide to do some extra processing in the set method. Or the day you decide to
use a Canvas widget to implement a fancier status bar.

. Itincreases the risk that your additional methods conflict with attributes or
methods used by Tkinter. While the Fr anme and Topl evel widgets have relatively
few methods, other widgets can have several dozens of widget specific attributes
and methods.

. Future versions of Tkinter may use factory functions rather than class constructors
for most widgets. However, it's more or less guaranteed that such versions will still
provide Fr ane and Topl evel classes. Better safe than sorry, in other words.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x996-status-bars.htm (2 of 2) [3/29/2003 12:45:13 AM]

Standard Dialogs

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 9. Standard Dialogs

Table of Contents
Message Boxes

Data Entry

Before we look at what to put in that application work area, let's take a look at another
important part of GUI programming: displaying dialogs and message boxes.

Starting with Tk 4.2, the Tk library provides a set of standard dialogs that can be used to
display message boxes, and to select files and colors. In addition, Tkinter provides some
simple dialogs allowing you to ask the user for integers, floating point values, and strings.
Where possible, these standard dialogs use platform-specific mechanisms, to get the
right look and feel.

Message Boxes

The tkMessageBox module provides an interface to the message dialogs.

The easiest way to use this module is to use one of the convenience functions: show nf o,
showwar ni ng, shower r or, askquesti on, askokcancel , askyesno, or
askretryi gnor e. They all have the same syntax:

t kMessageBox. function(title, nessage [, options]).Thetitl eargument
Is shown in the window title, and the message in the dialog body. You can use newline
characters ("\n") in the message to make it occupy multiple lines. The options can be
used to modify the look; they are explained later in this section.

The first group of standard dialogs is used to present information. You provide the title
and the message, the function displays these using an appropriate icon, and returns when
the user has pressed OK. The return value should be ignored.

Here's an example:

try:

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (1 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

fp = open(filenane)

except:
t kMessageBox. showwar ni ng(
"Qpen file",
"Cannot open this file\n(%)" %fil enane
)
return

Figure 9-1. showinfo, showwarning, showerror dialogs
ispam |

@ Eqg Information

“ispam |

& Egg WWarning

“ispam |

Q Egg Alen

The second group is used to ask questions. The askquest i on function returns the
strings "yes" or "no" (you can use options to modify the number and type of buttons
shown), while the others return a true value of the user gave a positive answer (ok, yes,
and r et ry, respectively).

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (2 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

I f tkMessageBox. askyesno("Print", "Print this report?"):
report.print()

Figure 9-2. askquestion dialog
Cispam |

@ Clyestion?

Figure 9-3. askokcancel, askyesno, askretryignore dialogs
Cispam ||

@ Froceed?

T |

& Try again?

| e

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (3 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

[Screenshots made on a Swedish version of Windows 95. Hope you don't mind...]

Message Box Options

If the standard message boxes are not appropriate, you can pick the closest alternative
(askquest i on, in most cases), and use options to change it to exactly suit your needs.
You can use the following options (note that nessage andti t | e are usually given as
arguments, not as options).

Table 9-1. Message Box Options

Option Type Description
def aul t constant Which button to make default: ABORT, RETRY,
IGNORE, OK, CANCEL, YES, or NO (the constants
are defined in the tkMessageBox module).
I con constant Which icon to display: ERROR, INFO, QUESTION,
or WARNING
nessage string The message to display (the second argument to the
convenience functions). May contain newlines.
par ent widget Which window to place the message box on top of.
When the message box is closed, the focus is
returned to the parent window.
title string Message box title (the first argument to the
convenience functions).
type constant Message box type; that is, which buttons to display:
ABORTRETRYIGNORE, OK, OKCANCEL,
RETRYCANCEL, YESNO, or YESNOCANCEL.
Back Next

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (4 of 4) [3/29/2003 12:45:17 AM]

Data Entry

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Data Entry

The tkSimpleDialog module provides an interface to the following simple dialogs.

Strings

The askstring function in the tkSimpleDialog module prompts the user for a string. You
specify the dialog title and the prompt string, and the function returns when the user
closes the dialog. The prompt string may include newline characters.

t kSi mpl eDi al og. askstring(title, pronpt [, options]).Asktheuserto
enter an string value. If the user pressed Enter, or clicked OK, the function returns the
string. If the user closed the dialog by pressing Escape, clicking Cancel, or explicitly via
the window manager, this function returns None.

Figure 9-4. askstring

Eqq label
GREEM

] Cancel |

The following options can be used with this function:

Table 9-2. askstring Options
Option Type Description

initialval ue |string Initial value, if any. Default is an empty string.

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (1 of 6) [3/29/2003 12:45:21 AM]

Data Entry

par ent widget Which window to place the dialog on top of. When
the dialog is closed, the focus is returned to the
parent window.

Numeric Values

The askinteger and askfloat functions is similar to askstring, but they only accept
integers and float values, respectively. You can also use the minvalue and maxvalue
options to limit the input range:

t kSi mpl eDi al og. aski nteger(title, pronpt [,options]).Asktheuserto
enter an integer value. If the entered value is not a valid integer or floating point value, a
message box is displayed, and the dialog is not closed. As with the askstring function, the
function returns None if the dialog box is cancelled.

t kSi npl eDi al og. askfl oat (title, pronpt [,options]).Same,butreturnsa
floating point value.

Figure 9-5. askinteger, askfloat

Eqgqg count

ak. Cancel |

Egg weight
[ir boz)

|0.029

k. Cancel |

The following options can be used with these functions:

Table 9-3. askinteger and askfloat options

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (2 of 6) [3/29/2003 12:45:21 AM]

Data Entry
Option Type Description
i nitialval ue |integer or float |Initial value, if any. Default is an empty string.

par ent widget Which window to place the dialog on top of. When
the dialog is closed, the focus is returned to the
parent window.

m nval ue integer or float | Minimum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

maxval ue integer or float Maximum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

File Names

The tkFileDialog module (included in the standard dialog kit described earlier) can be
used to get a filename from the user. The module provides two convenience functions,
one to get an existing filename so you can open it, and one to get a new filename, to save
things into.

t kFi | eDi al og. askopenfil ename([opti ons]). If the dialog is cancelled by the
user, the function returns None.

t kFi | eDi al og. asksaveasfil enane([options]).

Figure 9-6. askopenfilename, asksaveasfilename

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (3 of 6) [3/29/2003 12:45:21 AM]

Data Entry

Oppna
Leta i I _ 4 introduction -
W dialogl.py
W dialog2 py
W dialog3.py
Filnarnm: dialog®. Oppna I
Eilfarrnat: IaII filez [*.%] | Bybryt |
Spara som
Sparal I 4 inbroduchion - | 5 | BIEC
azkokcancel gif @ bind1 . py @ dialog3. qif
E’ azk.openfilename. gif @ buttan. htm @ dialog3. py
E’ azkquestion. gif @' colorchooszer. gif @ frarne. hitrm
E’ azkretmpcancel. gif @ dialog?.py @ gnd.htm
E’ azkpezno.gif @' dialog. gif @ gnd1.qif
E’ bg3. gif @ dialog. py @ grd1.py
| |
Filharnr: | Spara I
Filforrmat: All Filez [*.%] [Ayt |

The following options can be used with the askopenfilename and asksavefilename

functions:

Table 9-4. askopenfilename options

Option

Type

Description

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (4 of 6) [3/29/2003 12:45:21 AM]

Data Entry

def aul t ext ensi on |string An extension to add to the filename, if not
explicitly given by the user. The string should
include the leading dot (ignored by the open
dialog).

filetypes list Sequence of (label, pattern) tuples. The same
label may occur with several patterns. Use "*" as
the pattern to indicate all files.

initialdir string Initial directory.
initialfile string Initial file (ignored by the open dialog)
par ent widget Which window to place the message box on top

of. When the dialog is closed, the focus is
returned to the parent window.

title string Message box title.

Colors

The tkColorChooser module (included in the standard dialog kit described earlier) can be
used to specify an RGB color value.

t kCol or Chooser . askcol or([col or [, options]]).Theconvenience function
returns two values; the first is the color as a RGB triplet (a 3-tuple containing the red,
green and blue values as integers in the range 0-255), the second a Tk color string. To
preset a color when you display the dialog, you can pass a color (in either format) to the
function.

If the dialog is cancelled, the function returns (None, None)

Figure 9-7. askcolor (in Swedish)

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (5 of 6) [3/29/2003 12:45:21 AM]

Data Entry

e >

Muyans: [160 Riod:

 Matnad |0 Grdn

Efiriers Eqtia faraen: | FarglRen farg Ljussturka: 151 BI&

aF. I Byebrpt | Lagqg till egna farger

The following options can be used with the askcolor function:

Table 9-5. askcolor Options

Option Type Description

i nitial color |color Color to mark as selected when dialog is displayed
(given as an RGB triplet or a Tk color string). (the
first argument to the convenience function).

par ent widget Which window to place the message box on top of.
When the dialog is closed, the focus is returned to
the parent window.

title string Message box title.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (6 of 6) [3/29/2003 12:45:21 AM]

Dialog Windows

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 10. Dialog Windows

Table of Contents

Grid Layouts
Validating Data

While the standard dialogs described in the previous section may be sufficient for many simpler
applications, most larger applications require more complicated dialogs. For example, to set
configuration parameters for an application, you will probably want to let the user enter more than one
value or string in each dialog.

Basically, creating a dialog window is no different from creating an application window. Just use the
Topl evel widget, stuff the necessary entry fields, buttons, and other widgets into it, and let the user
take care of the rest. (By the way, don't use the Appl i cat i onW ndowclass for this purpose; it will only
confuse your users).

But if you implement dialogs in this way, you may end up getting both your users and yourself into
trouble. The standard dialogs all returned only when the user had finished her task and closed the
dialog; but if you just display another toplevel window, everything will run in parallel. If you're not
careful, the user may be able to display several copies of the same dialog, and both she and your
application will be hopelessly confused.

In many situations, it is more practical to handle dialogs in a synchronous fashion; create the dialog,
display it, wait for the user to close the dialog, and then resume execution of your application. The

wai t _w ndowmethod is exactly what we need; it enters a local event loop, and doesn't return until the
given window is destroyed (either via the dest r oy method, or explicitly via the window manager):

wi dget . wai t _wi ndow(wi ndow)

(Note that the method waits until the window given as an argument is destroyed; the only reason this is a
method is to avoid namespace pollution).

In the following example, the MyDi al og class creates a Topl evel widget, and adds some widgets to it.
The caller then uses wai t _w ndowto wait until the dialog is closed. If the user clicks OK, the entry
field's value is printed, and the dialog is then explicitly destroyed.

Example 10-1. Creating a simple dialog

File: dialogl. py
from Tki nter inport *

cl ass MyD al og:

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (1 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

def __init__(self, parent):
top = self.top = Topl evel (parent)
Label (top, text="Value").pack()

self.e = Entry(top)
sel f. e. pack(padx=5)

b = Button(top, text="OK", command=sel f. ok)
b. pack(pady=5)

def ok(self):
print "value is", self.e.get()

sel f.top. destroy()

root = Tk()
Button(root, text="Hello!"). pack()
root . updat e()

d = MyDi al og(root)

root.wai t _w ndow d.t op)

If you run this program, you can type something into the entry field, and then click OK, after which the
program terminates (note that we didn't call the mai nl oop method here; the local event loop handled
by wai t _wi ndowwas sufficient). But there are a few problems with this example:

. The root window is still active. You can click on the button in the root window also when the
dialog is displayed. If the dialog depends on the current application state, letting the users mess
around with the application itself may be disastrous. And just being able to display multiple
dialogs (or even multiple copies of one dialog) is a sure way to confuse your users.

. You have to explicitly click in the entry field to move the cursor into it, and also click on the OK
button. Pressning Enter in the entry field is not sufficient.

. There should be some controlled way to cancel the dialog (and as we learned earlier, we really
should handle the WM DELETE W NDOWprotocol too).

To address the first problem, Tkinter provides a method called gr ab_set , which makes sure that no
mouse or keyboard events are sent to the wrong window.

The second problem consists of several parts; first, we need to explicitly move the keyboard focus to the
dialog. This can be done with the f ocus_set method. Second, we need to bind the Enter key so it calls
the ok method. This is easy, just use the bi nd method on the Topl evel widget (and make sure to
modify the ok method to take an optional argument so it doesn't choke on the event object).

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (2 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

The third problem, finally, can be handled by adding an additional Cancel button which calls the
dest r oy method, and also use bi nd and pr ot ocol to do the same when the user presses Escape or
explicitly closes the window.

The following Di al og class provides all this, and a few additional tricks. To implement your own
dialogs, simply inherit from this class and override the body and appl y methods. The former should
create the dialog body, the latter is called when the user clicks OK.

Example 10-2. A dialog support class

File: tkSinpleD al og. py

from Tkinter inport *
i mport os

cl ass Di al og(Topl evel):
def __init__(self, parent, title = None):

Toplevel . __init__(self, parent)
sel f.transi ent (parent)

if title:
self.title(title)

sel f. parent par ent

sel f.result None

body = Frame(self)
self.initial _focus = self.body(body)
body. pack(padx=5, pady=5)

sel f. buttonbox()
sel f.grab_set ()

if not self.initial focus:
self.initial _focus = self

sel f. protocol ("WM DELETE_W NDOW , self.cancel)

sel f.geonetry("+%l+%l" % (parent.w nfo_root x() +50,
parent.w nfo_rooty()+50))

self.initial _focus.focus set()
sel f.wait_w ndow(sel f)

#
constructi on hooks

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (3 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

def body(self, master):
create dialog body. return w dget that should have
initial focus. this nethod should be overridden

pass

def buttonbox(self):
add standard button box. override if you don't want the
standard buttons

box = Frane(self)

w = Button(box, text="OK", w dth=10, comrand=sel f. ok, defaul t=ACTI VE)
w. pack(si de=LEFT, padx=5, pady=5)

w = Button(box, text="Cancel", w dth=10, conmand=sel f.cancel)

w. pack(si de=LEFT, padx=5, pady=5)

self.bind("& t; Return>", self.ok)
self.bind("& t;Escape>", self.cancel)

box. pack()

#
standard button senmantics

def ok(self, event=None):

if not self.validate():
self.initial _focus.focus_set() # put focus back
return

self.w thdraw)
sel f. update_idl et asks()

sel f. apply()
sel f. cancel ()
def cancel (self, event=None):

put focus back to the parent w ndow
sel f. parent.focus_set()
sel f.destroy()

#
cormmand hooks

def validate(self):
return 1 # override

def apply(self):

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (4 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

pass # override

The main trickery is done in the constructor; first, t r ansi ent is used to associate this window with a
parent window (usually the application window from which the dialog was launched). The dialog won't
show up as an icon in the window manager (it won't appear in the task bar under Windows, for
example), and if you iconify the parent window, the dialog will be hidden as well. Next, the constructor
creates the dialog body, and then calls gr ab_set to make the dialog modal, geonet r y to position the
dialog relative to the parent window, f ocus_set to move the keyboard focus to the appropriate widget
(usually the widget returned by the body method), and finally wai t _wi ndow.

Note that we use the pr ot ocol method to make sure an explicit close is treated as a cancel, and in the
but t onbox method, we bind the Enter key to OK, and Escape to Cancel. The def aul t =ACTI VE call
marks the OK button as a default button in a platform specific way.

Using this class is much easier than figuring out how it's implemented; just create the necessary widgets
in the body method, and extract the result and carry out whatever you wish to do in the appl y method.
Here's a simple example (we'll take a closer look at the gr i d method in a moment).

Example 10-3. Creating a simple dialog, revisited

File: dial og2. py

I mport tkSinpleD al og

cl ass MyDi al og(tkSi npl eDi al og. Di al 0g):
def body(self, master):

Label (master, text="First:").qgrid(row=0)
Label (master, text="Second:").grid(row=1)

self.el
sel f.e2

Entry(master)
Entry(mast er)

self.el.grid(row=0, colum=1)
sel f.e2.grid(row=1l, columm=1)
return self.el # initial focus

def apply(self):
first = string.atoi(self.el.get())
second = string.atoi (self.e2.get())
print first, second # or sonething

And here's the resulting dialog:

Figure 10-1. running the dialog2.py script

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (5 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

tk

First:

Second:

1] Cancel |

Note that the body method may optionally return a widget that should receive focus when the dialog is
displayed. If this is not relevant for your dialog, simply return None (or omit the return statement).

The above example did the actual processing in the appl y method (okay, a more realistic example
should probably to something with the result, rather than just printing it). But instead of doing the
processing in the appl y method, you can store the entered data in an instance attribute:

def apply(sel f):
first = int(self.el.get())
second = int(self.e2.get())
self.result = first, second

d = MyDi al og(root)
print d.result

Note that if the dialog is cancelled, the appl y method is never called, and the r esul t attribute is never
set. The Di al og constructor sets this attribute to None, so you can simply test the result before doing
any processing of it. If you wish to return data in other attributes, make sure to initialize them in the
body method (or simply setr esul t to1in the apply method, and test it before accessing the other
attributes).

Grid Layouts

While the pack manager was convenient to use when we designed application windows, it may not be
that easy to use for dialogs. A typical dialog may include a number of entry fields and check boxes, with
corresponding labels that should be properly aligned. Consider the following simple example:

Figure 10-2. Simple Dialog Layout

First: |<entry field=
mecond:|<entry field=
=checkbutton=

To implement this using the pack manager, we could create a frame to hold the label "first:", and the
corresponding entry field, and use si de=LEFT when packing them. Add a corresponding frame for the
next line, and pack the frames and the checkbutton into an outer frame using si de=TCOP. Unfortunately,
packing the labels in this fashion makes it impossible to get the entry fields lined up, and if we use

si de=RI GHT to pack the entry field instead, things break down if the entry fields have different width.

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (6 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

By carefully using wi dt h options, padding, si de and anchor packer options, etc., we can get
reasonable results with some effort. But there's a much easier way: use the gr i d manager instead.

This manager splits the master widget (typically a frame) into a 2-dimensional grid, or table. For each
widget, you only have to specify where in this grid it should appear, and the grid managers takes care of
the rest. The following body method shows how to get the above layout:

Example 10-4. Using the grid geometry maanager

File: dial og3. py
def body(self, master):

Label (master, text="First:").grid(row=0, sticky=W
Label (master, text="Second:").grid(row=1l, sticky=W

self.el
self.e2

Entry(master)
Entry(nmaster)

sel f.el.grid(row=0, colum=1)
sel f.e2.grid(row=1l, colum=1)

sel f.cb = Checkbutton(naster, text="Hardcopy")
sel f.cb.grid(row=2, columspan=2, sticky=W

For each widget that should be handled by the grid manager, you call the gr i d method with the r owand
col umm options, telling the manager where to put the widget. The topmost row, and the leftmost
column, is numbered O (this is also the default). Here, the checkbutton is placed beneath the label and
entry widgets, and the col unmspan option is used to make it occupy more than one cell. Here's the
result:

Figure 10-3. Using the grid manager

tk

First;

Second:

[~ Hardcopy

1] Cancel

If you look carefully, you'll notice a small difference between this dialog, and the dialog shown by the
di al og2. py script. Here, the labels are aligned to the left margin. If you compare the code, you'll find
that the only difference is an option called st i cky.

When its time to display the frame widget, the grid geometry manager loops over all widgets, calculating
a suitable width for each row, and a suitable height for each column. For any widget where the resulting
cell turns out to be larger than the widget, the widget is centered by default. The st i cky option is used

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (7 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

to modify this behavior. By setting it to one of E, W S, N, NW NE, SE, or SW you can align the widget to
any side or corner of the cell. But you can also use this option to stretch the widget if necessary; if you set
the option to E+W the widget will be stretched to occupy the full width of the cell. And if you set it to
E+WHN+S (or NWHSE, etc), the widget will be stretched in both directions. In practice, the st i cky option
replacesthefi |l | ,expand, and anchor options used by the pack manager.

The grid manager provides many other options allowing you to tune the look and behavior of the
resulting layout. These include padx and pady which are used to add extra padding to widget cells, and
many others. See the Grid Geometry Manager chapter for details.

Back Next

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (8 of 8) [3/29/2003 12:45:23 AM]

Validating Data

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Validating Data

What if the user types bogus data into the dialog? In our current example, the appl y
method will raise an exception if the contents of an entry field is not an integer. We could
of course handle thiswith atry/ except and a standard message box:

def appl y(self):
try:
first = int(self.el.get())
second = int(self.e2.get())
dosonet hi ng((first, second))
except Val ueError:
t kMessageBox. showwar ni ng(
“Bad i nput”,
"Il l egal val ues, please try again"

)

There's a problem with this solution: the ok method has already removed the dialog from
the screen when the appl y method is called, and it will destroy it as soon as we return.
This design is intentional; if we carry out some potentially lengthy processing in the

appl y method, it would be very confusing if the dialog wasn't removed before we
finished. The Di al og class already contain hooks for another solution: a separate

val i dat e method which is called before the dialog is removed.

In the following example, we simply moved the code from appl y toval i dat e, and
changed it to store the result in an instance attribute. This is then used in the appl y
method to carry out the work.

def validate(self):

try:
first=int(self.el.get())
second = int(self.e2.get())
self.result = first, second
return 1

except Val ueError:
t kMessageBox. showwar ni ng(

http://www.pythonware.com/library/tkinter/introduction/x1555-validating-data.htm (1 of 2) [3/29/2003 12:45:25 AM]

Validating Data

“"Bad i nput",
“I'll egal val ues, please try again"

)

return O

def apply(self):
dosonet hi ng(sel f.result)

Note that if we left the processing to the calling program (as shown above), we don't even
have to implement the appl y method.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1555-validating-data.htm (2 of 2) [3/29/2003 12:45:25 AM]

Tkinter Reference

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

11. TKinter Reference

The rest of the chapters describe all classes provided by Tkinter, in alphabetical order.

Table of Contents
11. The Bitmaplmage Class

12. The Button Widget

13. The Canvas Widget

14. The Canvas Arc Item

15. The Canvas Bitmap Item

16. The Canvas Image Item

17. The Canvas Line Item

18. The Canvas Oval Item

19. The Canvas Polygon Item
20. The Canvas Rectangle Item
21. The Canvas Text Item

22. The Canvas Window Item
23. The Checkbutton Widget

24. The DoubleVar Class

25. The Entry Widget

26. The Font Class

27. The Frame Widget

28. The Grid Geometry Manager
29. The IntVar Class

30. The Label Widget

31. The Listbox Widget

32. The Menu Widget

33. The Menubutton Widget

34. The Message Widget

35. The Pack Geometry Manager
36. The Photolmage Class

37. The Place Geometry Manager
38. The Radiobutton Widget

39. The Scale Widget

http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm (1 of 2) [3/29/2003 12:45:26 AM]

Tkinter Reference

40. The Scrollbar Widget

41. The StringVar Class

42. The Text Widget

43. The Toplevel Widget

44, Basic Widget Methods

45, Toplevel Window Methods

Back Next

http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm (2 of 2) [3/29/2003 12:45:26 AM]

The Bitmaplmage Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 11. The Bitmaplmage
Class

Table of Contents
When to use the Bitmaplmage Class

Patterns
Methods

Options

When to use the Bitmaplmage
Class

This class is used to display images (either grayscale or true color images) in labels,
buttons, canvases, and text widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/bitmapimage.htm [3/29/2003 12:45:27 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1583-patterns.htm [3/29/2003 12:45:27 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

configure(options),config(options)
Change one or more configuration options.
cget (option) => val ue
Return the value of the given configuration option.
w dth() => integer,height() => integer
Returns the width (height) of the image, in pixels.
type() => string
Returns the string "bitmap".

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1587-methods.htm [3/29/2003 12:45:28 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Bi t mapl mage class supports the following options.

Table 11-1. Bitmaplmage Options

Option Type Description

file string Read image data from the given file.

dat a string Read image data from a string. If the f i | e option is
given, this option is ignored.

wi dt h, integer The width (height) of the image memory. Note that

hei ght this is the requested size, not the actual size. To get
the actual size, use the corresponding methods.

f or mat string If several file handlers can handle the given file, this
option can be used to specify which handler to use.
If you haven't installed extra file handlers, there's
no need to use this option.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1615-options.htm [3/29/2003 12:45:29 AM]

The Button Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 12. The Button Widget

Table of Contents
When to use the Button Widget

Patterns
Methods
Helpers
Options

The But t on widget is a standard Tkinter widget used to implement various kinds of
buttons. Buttons can contain text or images, and you can associate a Python function or
method with each button. When the button is pressed, Tkinter automatically calls that
function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

When to use the Button Widget

Simply put, button widgets are used to let the user say "do this now!," where this is either
given by the text on the button, or implied by the icon displayed in the button. Buttons
are typically used in toolbars, in application windows, and to accept or dismiss data
entered into a dialog box.

For buttons suitable for data entry, see the Checkbut t on and Radi obut t on widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/button.htm [3/29/2003 12:45:30 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Plain buttons are pretty straightforward to use. Simply specify the button contents (text,
bitmap, or image) and a callback to call when the button is pressed:

b = Button(naster, text="CK", command=sel f. ok)

A button without a callback is pretty useless; it simply doesn't do anything when you press the
button. You might wish to use such buttons anyway when developing an application. In that
case, it is probably a good idea to disable the button to avoid confusing your beta testers:

b = Button(master, text="Help", state=Dl SABLED)

If you don't specify a size, the button is made just large enough to hold its contents. You can
use the padx and pady option to add some extra space between the contents and the button
border. You can also use the hei ght and wi dt h options to explicitly set the size. If you
display text in the button, these options define the size of the button in text units. If you
display bitmaps or images instead, they define the size in pixels (or other screen units). You
can actually specify the size in pixels even for text buttons, but it takes some magic. Here's
one way to do it (there are others):

f = Frame(master, height=32, w dt h=32)
f.pack _propagate(0) # don't shrink

b = Button(f, text="Sure!")

b. pack(fill=BOTH, expand=1)

Buttons can display multiple lines of text (but only in one font). You can use newlines or the
wr apl engt h option to make the button wrap text by itself. When wrapping text, use the
anchor,justi fy, and possibly padx options to make things look exactly as you wish. An
example:

b = Button(master, text=longtext, anchor=W justify=LEFT, padx=2)

To make an ordinary button look like it's held down, for example if you wish to implement a
toolbox of some kind, you can simply change the relief from RAISED to SUNKEN:

b. config(relief=SUNKEN)

http://www.pythonware.com/library/tkinter/introduction/x1683-patterns.htm (1 of 2) [3/29/2003 12:45:31 AM]

Patterns

You might wish to change the background as well. Note that a possibly better solution is to
use a Checkbut t on or Radi obut t on with the i ndi cat or on option set to false:

b = Checkbutton(master, image=bold, variabl e=var, indicatoron=0)

http://www.pythonware.com/library/tkinter/introduction/x1683-patterns.htm (2 of 2) [3/29/2003 12:45:31 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The But t on widget supports the standard Tkinter Widget interface, plus the following
methods:

fl ash()

Redraw the button several times, alternating between active and normal
appearance.

I nvoke()

Call the command associated with the button.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1708-methods.htm [3/29/2003 12:45:32 AM]

Helpers

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Helpers

The following methods are only relevant if you're implementing your own keyboard
bindings.

t kButt onDown(),t kButtonEnter(),tkButtonl nvoke(),tkButtonLeave(),
t kBut t onUp()

These can be used in customized event bindings. All these methods accept zero or
more dummy arguments.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1723-helpers.htm [3/29/2003 12:45:34 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The But t on widget supports the following options:

Table 12-1. Button Widget Options

Option
acti vebackground,
acti vef oreground

anchor

background (bg),
foreground (fQ)

bi t map

Type
color

constant

color

bitmap

Description

The color to use when the button is
activated.

Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SWW NW or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

The button color. The default is platform
specific.

The bitmap to display in the widget. If the
I mage option is given, this option is
ignored.

The following bitmaps are available on all
platforms: error,gray75, gray50,
gray25,grayl12, hourgl ass, i nfo,
guest head, quest i on, and war ni ng.

The following additional bitmaps are
available on the Macintosh only:

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (1 of 4) [3/29/2003 12:45:35 AM]

Options

bor derw dt h (bd)

comuand

cur sor

def aul t

di sabl edf or egr ound

f ont

int

callback

cursor

constant

color

font

docunent,stationery,edition,
application,accessory,fol der,

pf ol der,trash, fl oppy, randi sk,
cdrom pr ef erences, quer ydoc, st op,
not e, and caut i on.

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@anpl e. xbnd'".

The width of the button border. The default
Is platform specific, but is usually 1 or 2
pixels.

A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

The cursor to show when the mouse is
moved over the button.

If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

The color to use when the button is
disabled. The background is shown in the
backgr ound color.

The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (2 of 4) [3/29/2003 12:45:35 AM]

Options

hi ghl i ght backgr ound,
hi ghl i ght col or

hi ghl i ghtt hi ckness

| mage

justify

padx, pady

relief

state

t akef ocus

color

distance

image

constant

distance

constant

constant

flag

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

Controls the width of the focus highlight
border. Default is typically one or two
pixels.

The image to display in the widget. If
specified, this takes precedence over the
t ext and bi t map options.

Defines how to align multiple lines of text.
Use LEFT, Rl GHT, or CENTER.

Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

Border decoration. Usually, the button is
SUNKEN when pressed, and RAI SED
otherwise. Other possible values are
GROOVE, RI DGE, and FLAT.

The button state: NORVAL, ACTI VE or
DI SABLED. Default is NORMAL.

Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (3 of 4) [3/29/2003 12:45:35 AM]

Options

t ext

t extvari abl e

underl i ne

wi dth, hei ght

wr apl engt h

string

variable

int

distance

distance

The text to display in the button. The text
can contain newlines. If the bi t map or

I mage options are used, this option is
ignored.

Associates a Tkinter variable (usually a
St ri ngVar) to the button. If the variable is
changed, the button text is updated.

Which character to underline, in a text
label. Default is -1, which means that no
character is underlined.

The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (4 of 4) [3/29/2003 12:45:35 AM]

The Canvas Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 13. The Canvas Widget

Table of Contents
When to use the Canvas Widget

Concepts
Patterns

Methods
Options

The Canvas widget provides structured graphics facilities for Tkinter. This is a highly
versatile widget which are used to draw graphs and plots, create graphics editors, and
implement various kinds of custom widgets.

To display things on the canvas, you create one or more canvas items, which are placed in
a stack. By default, new items are drawn on top of items already on the canvas. Tkinter
provides lots of methods allowing you to manipulate the items in various ways. Among
other things, you can attach (bind) event callbacks to individual items.

When to use the Canvas Widget

The canvas is a general purpose widget, which is typically used to display and edit graphs
and other drawings.

Another common use for this widget is to implement various kinds of custom widgets.
For example, you can use a canvas as a completion bar, by drawing and updating a
rectangle object.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas.htm [3/29/2003 12:45:36 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts

To be added.

Items

The Canvas widget supports the following standard items:
. arc (arc, chord, or pieslice)
« bitmap (built-in or read from XBM file)
. image (a Bitmaplmage or Photolmage instance)
. line
. oval (acircle or an ellipse)
. polygon
. rectangle
. text
. window

Chords, pieslices, ovals, polygons, and rectangles are drawn as both an outline and an
interior, either of which can be made transparent (if you insist, you can make both
transparent).

Window items are used to place other Tkinter widgets on top of the canvas; for these
items, the Canvas widget simply acts like a geometry manager.

You can also write your own item types in C or C++ and plug them into Tkinter via
Python extension modules.

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (1 of 3) [3/29/2003 12:45:37 AM]

Concepts

Coordinate Systems

The Canvas widget uses two coordinate systems; the window coordinate system (with
(O, 0) in the upper left corner), and a canvas coordinate system in which the items are
drawn. By scrolling the canvas, you can specify which part of the canvas coordinate
system to show in the window.

The scr ol | regi on option is used to limit scrolling operations for the canvas. To set
this, you can usually use something like:

canvas. config(scroll regi on=canvas. bbox(ALL))

To convert from window coordinates to canvas coordinates, use the canvasx and
canvasy methods:

def cal | back(event):
canvas = event.w dget
X = canvas. canvasx(event. x)
y = canvas. canvasx(event.y)
print canvas.find_closest(x, V)

Item Specifiers

The Canvas widget allows you to identify items in several ways. Everywhere a method
expects an item specifier, you can use one of the following:

. Item handles

tags

. ALL
. CURRENT

Item handles are integer values that are used to identify a specific item on the canvas.
Tkinter automatically assigns a new handle to each new item created on the canvas. Item
handles can be passed to the various canvas methods either as integers or as strings.

Tags are symbolic names attached to items. Tags are ordinary strings, and they can

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (2 of 3) [3/29/2003 12:45:37 AM]

Concepts

contain anything except whitespace.

An item can have zero or more tags associated with it, and the same tag can be used for
more than one item. However, unlike the Text widget, the Canvas widget doesn't allow
you to create bindings or otherwise configure tags for which there are no existing items.
All such operations are ignored.

You can either specify the tags via an option to the item create method, set them via the
I t enconfi g method, or add them using the addt ag_w t ht ag method. Thet ags
option take either a single string, or a tuple of strings.

Item = canvas.create line(0, 0, 100, 100, tags="uno")
canvas.itenctonfig(item tags=("one", "two"))
canvas. addtag withtag("three", "one")

To get all tags associated with a specific item, use get t ags. To get all items having a
giventag,usefind_w t ht ag.

>>> print canvas. gettags(itemnm

(‘one', "two', 'three')
>>> print canvas.find_wi thtag("one")
(1,)

The Canvas widget also provides two predefined tags:
ALL (or "all") matches all items on the canvas.

CURRENT (or "current™) matches the item under the mouse pointer, if any. This can be
used inside mouse event bindings to refer to the item that trigged the callback.

Printing
To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (3 of 3) [3/29/2003 12:45:37 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2099-patterns.htm [3/29/2003 12:45:38 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The first group of methods are used to create and configure items on a canvas.
create_arc(bbox, options) =>1id

Create an arc canvas item. Returns the item handle.
create_bitmap(position, options) =>id

Create a bitmap canvas item. Returns the item handle.
create i mage(position, options) =>id

Create an image canvas item. Returns the item handle.
create |ine(coords, options) =>id

Create a line canvas item. Returns the item handle.
create_oval (bbox, options) =>id

Create an oval canvas item. Returns the item handle.
create_ pol ygon(coords, options) =>id

Create a polygon canvas item. Returns the item handle.
create_rectangl e(bbox, options) =>1id

Create a rectangle canvas item. Returns the item handle.
create_text(position, options) =>id

Create a text canvas item. Returns the item handle.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (1 of 9) [3/29/2003 12:45:39 AM]

Methods
create_w ndow position, options) =>id
Place a Tkinter widget on the canvas. Returns the item handle.

Note that widgets are drawn on top of the canvas (that is, the canvas acts like a
geometry manager). You cannot draw other canvas items on top of a widget.

del ete(i tens)

Delete all matching items. It is not an error to give an item specifier that doesn't
match any items.

I tencget (item option) => string

Get the current value for an option. If item refers to more than one items, this
method returns the option value for the first item found.

I tenconfig(item options),itenconfigure(item options)
Change one or more options for all matching items.
coords(item) => [|ist

Return the coordinates for the given item. If item refers to more than one items,
this method returns the coordinates for the first item found.

coords(item x0, yO, x1, yl1, ..., Xn, yn)

Change the coordinates for the given item. This method updates all matching
items.

bbox(itens) => tupl e,bbox() => tuple

Returns the bounding box for the given items. If the specifier is omitted, the
bounding box for all items are returned. Note that the bounding box is
approximate and may differ a few pixels from the real value.

canvasx(screenx) => float,canvasy(screeny) => fl| oat

Convert a window coordinate (for example, the x and y coordinates from the

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (2 of 9) [3/29/2003 12:45:39 AM]

Methods
structure passed to an event handler) to a canvas coordinate.

tag bind(item sequence, callback),tag bind(item sequence,
cal | back, "+"

Add an event binding to all matching items. Usually, the new binding replaces any
existing binding for the same event sequence. The second form can be used to add
the new callback to the existing binding.

Note that the new bindings are associated with the items, not the tag. For example,
iIf you attach bindings to all items having the novabl e tag, they will only be
attached to any existing items with that tag. If you create new items tagged as
novabl e, they will not get those bindings.

tag_unbi nd(item sequence)

Remove the binding, if any, for the given event sequence. This applies to all
matching items.

type(itenm) => string

Return the type of the given item: "arc", "bitmap", "image", "line", "oval",

"polygon”, "rectangle”, "text", or "window". If item refers to more than one items,
this method returns the type of the first item found.

lift(item,tkraise(item

Move the given item to the top of the canvas stack. If multiple items match, they
are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, usel i ft on
the widget instance instead.

| ower (i tem

Move the given item to the bottom of the canvas stack. If multiple items match,
they are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use | ower
on the widget instance instead.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (3 of 9) [3/29/2003 12:45:39 AM]

Methods

nove(item dx, dy)

Move all items dx canvas units to the right, and dy canvas units downwards. Both
coordinates can be negative.

scal e(item xscale, yscale, xoffset, yoffset)

Scale matching items according to the given scale factors. The coordinates for each
item are first moved by -offset, then multiplied with the scale factory, and then
moved back again. Note that this method modifies the item coordinates; you may
loose precision if you use this method several times on the same items.

Printing
postscri pt (options)

Generate a Postscript rendering of the canvas contents. Images and embedded
widgets are not included.

Table 13-1. Postscript Options

Option Type Description
col or map

col or node

file

f ont map

hei ght

pageanchor

pagehei ght

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (4 of 9) [3/29/2003 12:45:39 AM]

Methods

pagew dt h

pagex

pagey

rotate

Wi dt h

Searching for Items

The following methods are used to find certain groups of items, for later processing. Note
that for each f i nd method, there is a corresponding addt ag method. Instead of
processing the individual items returned by a f i nd method, you can often get better
performance by adding a temporary tag to a group of items, process all items with that
tag in one go, and then remove the tag.
find _above(item =>item
Returns the item just above the given item.
find all() => tuple
Return a tuple containing the identity of all items on the canvas, with the topmost
item last (that is, if you haven't change the order using |l i ft or| ower, the items
are returned in the order you created them). This is shortcut for
find_withtag(ALL).
find _below(iten) =>item

Returns the item just below the given item.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (5 of 9) [3/29/2003 12:45:39 AM]

Methods

find_closest(x, y) => item

Returns the item closest to the given position. Note that the position is given in
canvas coordinates, and that this method always succeeds if there's at least one
item in the canvas. To find items within a certain distance from a position, use
find_over | appi ng with a small rectangle centered on the position.

find _enclosed(x1l, yl, x2, y2) => tuple
Returns a tuple of all items completely enclosed by the rectangle (x1, y1, x2, y2).
find_overlappi ng(x1, yl, x2, y2) => tuple

Returns a tuple of all items that overlap the given rectangle, or that are completely
enclosed by it.

find withtag(item => tuple

Returns a tuple of all items having the given specifier.

Manipulating Tags
The following methods are used to manipulate the tags, rather than the items themselves.
addt ag_above(newtag, item
Add newtag to the item just above the given item.
addt ag_al | (newt ag)

Add newtag to all items on the canvas. This is shortcut for
addtag wi t ht ag(newt ag, ALL).

addt ag_bel owm(nemt ag, item
Add newtag to the item just below the given item.
addt ag_cl osest (newtag, X, VY)

Add newtag to the item closest to the given coordinate. Seefi nd_cl osest for

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (6 of 9) [3/29/2003 12:45:39 AM]

Methods

more information.
addt ag_encl osed(new ag, x1, yl, x2, y2)

Add newtag to all items enclosed by the given rectangle. See fi nd_encl osed for
more information.

addt ag_over | appi ng(new ag, x1, yl, x2, y2)

Add newtag to all items overlapping the given rectangle. See f i nd_over | appi ng
for more information.

addt ag_wi t ht ag(newt ag, tag)
Add newtag to all items having the given tag.
dtag(item tag)

Remove the given tag from all matching items. If the tag is omitted, all tags are
removed from the matching items. It is not an error to give a specifier that doesn't
match any items.

gettags(iten) => tuple

Return all tags associated with the item.

Special Methods for Text Items

The following methods can be used with text items, as well as with any extension item
type that supports a keyboard focus and an insertion cursor.

dchars(item index),dchars(item first, |ast)

For all matching items, delete the given character (or the characters in the given
range).

focus(item,focus() => item

Set (get) the keyboard focus. If item is an empty string, remove the focus from the
current item.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (7 of 9) [3/29/2003 12:45:39 AM]

Methods

lcursor(item index)
Move the insertion cursor.

I ndex(item 1index) => integer
Return the numerical index corresponding to the given index.

I nsert ()
FIXME

sel ect _adjust(item index)
FIXME

sel ect _clear ()
FIXME

select _from(item i ndex)
FIXME

sel ect _item))
FIXME

select _to(item index)

FIXME

Scrolling

The following methods are used to scroll the canvas in various ways. The scan methods
can be used to implement fast mouse pan/roam operations, while the xvi ewand yvi ew
methods are used with standard scrollbars.

scan_mar k(x, V)

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (8 of 9) [3/29/2003 12:45:39 AM]

Methods
Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.
scan_dragto(x, vy)

Scrolls the widget contents according to the given mouse coordinate. The contents
are moved 10 times the distance between the scanning anchor and the new
position.

xvi ew(MOVETO, offset),yview MOVETO, offset)

Adjust the canvas so that the given offset is at the left (top) edge of the canvas.
Offset 0.0 is the beginning of the scr ol | r egi on, 1.0 the end. These methods are
used by the Scr ol | bar bindings.

The MOVETOconstant is not defined in Python 1.5.2 and earlier. For compatibility,
use the string "moveto" instead.

xvi ewm(SCROLL, step, what),yview SCROLL, step, what)
Scroll the canvas horizontally (vertically) by the given amount. The what argument
can be either UNITS (lines) or PAGES. These methods are used by the Scr ol | bar
bindings.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use

the strings "scroll™, "units", and "pages" instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (9 of 9) [3/29/2003 12:45:39 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

Table 13-2. Canvas Options

hi ghl i ght col or

Option Type Description

background (bg) color

borderw dt h (bd) distance

cl oseenough

confi ne

cur sor cursor

hei ght distance

hi ghl i ght backgr ound, |color Controls how to draw the focus highlight

border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (1 of 3) [3/29/2003 12:45:40 AM]

Options

hi ghl i ght t hi ckness

I nsert background

I nsert borderw dth

i nsertofftine,
I nsertonti ne

I nsertw dth

relief

scrol |l regi on

sel ect backgr ound

sel ect borderw dt h

sel ect f oreground

distance

color

distance

time

distance

constant

4-tuple

color

distance

color

Controls the width of the focus highlight
border. Default is one or two pixels.

Note that the focus highlight border is
drawn on top of the canvas coordinate
systems; if you don't use scrollbars, a one
pixel border covers items drawn at canvas
coordinate (0O, 0).

Color used for the insertion cursor.

Borderwidth for the insertion cursor.

Controls cursor blinking.

Width of the insertion cursor.

Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAI SED,
GROOVE, and RI DGE.

Note that to show the border, you need to
change the bor der wi dt h from it's default
value of 0. Also note that the border is
drawn on top of the canvas coordinate
system.

The bounding box of the scrollable area. If
this option is not set, the scrolling is not
bounded.

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (2 of 3) [3/29/2003 12:45:40 AM]

Options

t akef ocus flag

wi dt h distance
xscrol | command callback
xscrol |'i ncrenment distance
yscrol | command callback
yscrol li ncrenent distance

Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the canvas accepts
focus only if it has any keyboard bindings
(default is off, in other words).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (3 of 3) [3/29/2003 12:45:40 AM]

The Canvas Arc Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 14. The Canvas Arc
ltem

Table of Contents
Methods

Options

An arc item is a section of oval, delimited by two angles (st art and ext ent). An arc
item can be drawn in one of three ways:

. pi esl i ce (lines are drawn from the perimeter to the oval's center)
. chor d (the ends are connected with a straight line)
. ar c (only the perimeter section is drawn)

xy = 20, 20, 300, 180

canvas. create_arc(xy, start=0, extent=270, fill="red")
canvas. create_arc(xy, start=270, extent=60, fill="bl ue")
canvas. create_arc(xy, start=330, extent=30, fill="green")

Pieslices and chords can be filled.

Figure 14-1. Pieslice Example

http://www.pythonware.com/library/tkinter/introduction/canvas-arc.htm (1 of 2) [3/29/2003 12:45:42 AM]

The Canvas Arc Item

canvasarc]. py

Methods

The following methods are used to create and configure ar c items:

create_arc(x0, y0, x1, yl, options...) =>id,create_arc(box,
options...) =>id

Create a arc item enclosed by the given rectangle. The st art and ext ent options
control which section to draw. If they are set to 0.0 and 360.0, a full oval is drawn
which touches the rectangle's four edges.

del ete(item

Delete an arc item.
coords(item x0, yO, x1, yl)

Change the enclosing rectangle for one or more arc items.
I tenconfigure(item options...)

Change the options for one or more arc items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-arc.htm (2 of 2) [3/29/2003 12:45:42 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The arc item supports the following options, via the cr eat e_ar ¢ method, and the
I tenctonfiganditenctget configuration methods.

Table 14-1. Canvas Arc Options

Option

style

start,

fill

ext ent

Type

constant

angle

color

Description

Specifies how to draw the arc item (see above).
Use one of PI ESLI CE, CHORD, or ARC. The default
is Pl ESLI CE.

These constants are not defined in Python 1.5.2
and earlier. For compatibility, use the strings
"pieslice”, "chord", and "arc" instead.

The arc is drawn from the start angle (measured
counter-clockwise from three o'clock) to the start
angle plus the extent. Both angles are given in
degrees, and can be negative.

By default, the arc starts at 0.0 degrees (three
o'clock), and extends 90.0 degrees counter-
clockwise (twelve o'clock).

The color to use for the arc's interior. If an empty
string is given, the interior is not drawn. Note that
arc's having the ar c style cannot be filled. Default
Is empty (transparent).

http://www.pythonware.com/library/tkinter/introduction/x2861-options.htm (1 of 2) [3/29/2003 12:45:43 AM]

Options

stipple bitmap

outline color

out | i nesti ppl e |bitmap

The name of a bitmap which is used as a stipple
brush when filling the arc's interior. Typical
values are "grayl12", "gray25", "gray50", or
"gray75". Default is a solid brush (no bitmap).

As of Tk 8.0p2, the stipple option is ignored on
the Windows platform. To draw stippled pieslices
or chords, you have to create corresponding
polygons.

The color to use for the arc's outline. If an empty
string is given, the outline is not drawn. Default is
"black".

The name of a bitmap which is used as a stipple
brush when drawing the arc's outline. Typical
values are "grayl2", "gray25", "gray50", or
"gray75". Default is a solid brush (no bitmap).

wi dt h distance The width of the arc's outline. Default is 1 pixel.

t ags tuple One or more tags to associate with this item. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2861-options.htm (2 of 2) [3/29/2003 12:45:43 AM]

The Canvas Bitmap Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 15. The Canvas Bitmap Item

Table of Contents

Bitmaps
Methods

Options
The bitmap item draws a bitmap on the canvas.

| tem = canvas. create_bi t map(100, 100, bitmp="info", foreground="gol d")

You can use either a builtin bitmap, such as "hourglass”, "info", "question”, or "warning", or load a
bitmap from an XBM file.

Figure 15-1. Bitmap Example

canvazhitmapl_py

For more flexible image support, use cr eat e_i mage instead (with a Tkinter Bi t mapl mage instance,
or an instance of the corresponding Python Imaging Library class).

Bitmaps

The following bitmaps are available on all platforms: "error", "gray75", "gray50", "gray25", "grayl12",

http://www.pythonware.com/library/tkinter/introduction/canvas-bitmap.htm (1 of 2) [3/29/2003 12:45:44 AM]

The Canvas Bitmap Item

"hourglass”, "info", "questhead", "question™, and "warning".

Ol

The following additional bitmaps are available on the Macintosh only: "document”, "stationery",

"edition”, "application”, "accessory", "folder", "pfolder”, "trash”, "floppy", "ramdisk", "cdrom",

"preferences”, "querydoc”, "stop"”, "note", and "caution”.

You can also load the bitmap from an XBM file. Just prefix the filename with an at-sign, for example
"@sample.xbm".

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-bitmap.htm (2 of 2) [3/29/2003 12:45:44 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The following methods are used to create and configure bitmap items:
create_bitmap(x0, yO, options...) =>1id

Create a bitmap item placed relative to the given position.
delete(item

Delete a bitmap item.
coords(item x0, yO0)

Move one or more bitmap items.
| tenconfigure(item options...)

Change the options for one or more bitmap items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3017-methods.htm [3/29/2003 12:45:45 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The bitmap item supports the following options, via the cr eat e_bi t map method, and
thei tentonfiganditencget configuration methods.

Table 15-1. Canvas Bitmap Options

Option Type Description

bi t map bitmap The name of the bitmap.

anchor constant Specifies which part of the bitmap that should be
placed at the given position. Use one of N, NE, E, SE,
S, SWW NW or CENTER. Default is CENTER.

f or egr ound color The color to use for the bitmap's foreground pixels
(that is, non-zero pixels). If an empty string is
given, the foreground pixels are not drawn. Default
Is "black".

backgr ound color The color to use for the bitmap's background pixels
(that is, zero pixels). If an empty string is given, the
background pixels are not drawn. Default is empty
(transparent).

t ags tuple One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3042-options.htm [3/29/2003 12:45:46 AM]

The Canvas Image Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 16. The Canvas Image
Item

Table of Contents
Methods

Options
The image item draws an image on the canvas.

phot o = Phot ol mage(fil e="sanple.gif")
Item = canvas. create_i nage(10, 10, anchor=NW i mage=phot 0)

Methods

The following methods are used to create and configure image items:
create i mage(x0, y0O, options...) =>1id

Create a image item placed relative to the given position. Note that the image itself
Is given by the image option.

[FIXME: add note on image ownership]
del ete(itemn

Delete an image item.

coords

coords(item x0, yO).Moveone or more image items.

Iitemconfigure

http://www.pythonware.com/library/tkinter/introduction/canvas-image.htm (1 of 2) [3/29/2003 12:45:47 AM]

The Canvas Image Item

I tenctonfigure(item options...).Changethe optionsfor one or more image (or
other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-image.htm (2 of 2) [3/29/2003 12:45:47 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The image item supports the following options, via the create_image method, and the
itemconfig and itemcget configuration methods.

Table 16-1. Canvas Image Options

Option Type Description

I mage image The image object (a Tkinter Photolmage or
Bitmaplmage instance, or instances of the
corresponding Python Imaging Library classes).

anchor constant Specifies which part of the image that should be
placed at the given position. Use one of N, NE, E,
SE, S, SW, W, NW, or CENTER. Default is
CENTER.

t ags tuple One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3145-options.htm [3/29/2003 12:45:48 AM]

The Canvas Line Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 17. The Canvas Line
ltem

Table of Contents

Methods

Options

Methods

create_|ine(x0, yO, x1, y1l, ..., Xxn, yn, options...) =>1id

Create a line item.
del ete(item
Delete a line item.
coords(item x0O, yO, x1, yl1, ..., Xn, yn)
Change the coordinates for one or more line items.
I tenconfigure(item options...)
Change the options for one or more line items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-line.htm [3/29/2003 12:45:48 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The line item supports the following options, via the cr eat e_| i ne method, and the
I tenctonfiganditenctget configuration methods.

Table 17-1. Canvas Line Options

Option

wi dt h

fill

stipple

arr ow

arrowshape

Type

distance

color

bitmap

constant

3-tuple

Description

The width of the line. Default is 1 pixel.

The color to use for the line. Default is "black".

The name of a bitmap which is used as a stipple
brush when drawing the line. Typical values are
"grayl2", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

If set to a value other than NONE, the line is drawn
as an arrow. The option value defines where to
draw the arrow head: FI RST, LAST, or BOTH.
Default is NONE.

The FI RST and LAST constants are not defined in
Python 1.5.2 and earlier. For compatibility, use the
strings "first" and "last" instead.

Controls the shape of the arrow. Default is (8, 10,
3).

http://www.pythonware.com/library/tkinter/introduction/x3228-options.htm (1 of 2) [3/29/2003 12:45:49 AM]

Options

capstyl e

joinstyle

snoot h

spl i nest eps

t ags

constant

const

flag

int

tags

For wide lines, this option controls how to draw the
line ends. Use one of BUTT, PRQJECTI NG ROUND.
Default is BUTT.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "butt",
"projecting”, and "round" instead.

For wide lines, this option controls how to draw the
joins between edges. Use one of BEVEL, M TER, or
ROUND. Default is ROUND.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "bevel”,
"miter"”, and "round" instead.

If non-zero, the given coordinates are interpreted as
b-spline vertices.

The number of steps to use when smoothing this
line. Default is 12.

One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3228-options.htm (2 of 2) [3/29/2003 12:45:49 AM]

The Canvas Oval Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 18. The Canvas Oval
ltem

Table of Contents
Methods

Options

Methods

create_oval (x0, yO, options...) =>1id

Create a oval item at the given position, using the given options. Note that the oval
string itself is given by the oval option.

del ete(item
Delete an oval item.
coords(item x0, yO0)
Move one or more oval items.
I tenconfigure(item options...)
Change the options for one or more oval (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-oval.htm [3/29/2003 12:45:50 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The oval item supports the following options, via the cr eat e_oval method, and the
I tenctonfiganditenctget configuration methods.

Table 18-1. Canvas Oval Options

Option Type

fill color

stipple bitmap

outline color

wi dt h distance

t ags tuple

Description

The color to use for the interior. If an empty string
Is given, the interior is not drawn. Default is empty
(transparent).

The name of a bitmap which is used as a stipple
brush when filling the oval's interior. Typical values
are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

As of Tk 8.0, the stipple option is ignored on the
Windows platform. To draw stippled ovals, you
have to create corresponding polygons.

The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is "black".

The width of the outline. Default is 1 pixel.

One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3387-options.htm [3/29/2003 12:45:51 AM]

The Canvas Polygon Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 19. The Canvas Polygon
Item

Table of Contents
Methods

Options

Methods

The following methods are used to create and configure polygon items:

create_pol ygon(xy, options...) => id,create_pol ygon(x0, yO, x1,
yl, x2, y2, ..., Xn, yn, options...) =>id

Create a polygon item. You must specify at least 3 vertices when you create a new
polygon.

delete(item
Delete a polygonitem.
coords(item x0, yO, x1, yl, x2, y2, ..., Xn, yn)

Change the coordinates for one or more polygon items. Note that the coordinates
must be given as separate arguments; you cannot use a sequence as with
creat e_pol ygon.

I tenconfigure(item options...)
Change the options for one or more polygon items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-polygon.htm [3/29/2003 12:45:52 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The polygon item supports the following options, via the cr eat e_pol ygon method, and
thei tentonfiganditencget configuration methods.

Table 19-1. Canvas Polygon Options
Option Type Description

fill None The color to use for the polygon interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the polygon's interior. Typical
values are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

outline None The color to use for the polygon outline. If an empty
string is given, the outline is not drawn. Default is
"black”.

wi dt h distance The width of the polygon's outline. Default is 1
pixel.

snoot h None If non-zero, the given coordinates are interpreted as

b-spline vertices.

spl i nesteps |None The number of steps to use when smoothing the
polygon outline. Default is 12.

http://www.pythonware.com/library/tkinter/introduction/x3485-options.htm (1 of 2) [3/29/2003 12:45:53 AM]

Options

t ags tuple One or more tags to associate with the polygon. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3485-options.htm (2 of 2) [3/29/2003 12:45:53 AM]

The Canvas Rectangle Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 20. The Canvas
Rectangle Item

Table of Contents
Methods

Options

Methods

The following methods are used to create and configure rectangle items:
create_rectangl e(x0, y0, x1, yl1l, options...) =>id

Create a rectangle item between the given coordinates. The rectangle item is
created with the given options.

del ete(item
Delete a rectangle item.
coords(item x0, yO, x1, yl)

Change the coordinates for one or more rectangle items. The item argument can
match one or more rectangle items, rectangles, or any other item taking exactly
four coordinates.

| tenconfigure(item options...)
Change the options for one or more rectangle items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-rectangle.htm [3/29/2003 12:45:55 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The rectangle item supports the following options, via the cr eat e_r ect angl e method,
and thei tentonfi gandit encget configuration methods.

Table 20-1. Canvas Rectangle Options
Option Type Description

fill None The color to use for the rectangle interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

outline None The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is "black™.

stipple None The name of a bitmap which is used as a stipple
brush when filling the rectangle’s interior. Typical

values are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

t ags None One or more tags to associate with the rectangle. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

wi dt h distance The width of the rectangle's outline. Default is 1
pixel.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3596-options.htm [3/29/2003 12:45:56 AM]

The Canvas Text Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 21. The Canvas Text
ltem

Table of Contents
Methods

Options

Methods

The following methods are used to create and configure text items:
create_text(x0, yO, options...) =>1id

Create a text item at the given position, using the given options. Note that the text
string itself is given by the t ext option.

delete(item
Delete a text item.
coords(item x0, yO)
Move one or more text items.
I tenconfigure(item options...)
Change the options for one or more text (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-text.htm [3/29/2003 12:45:57 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The text item supports the following options, via the cr eat e_t ext method, and the
I tenctonfiganditenctget configuration methods.

Table 21-1. Canvas Text Options

Option Type Description

anchor constant Specifies which part of the text (the text's bounding
box, more exactly) that should be placed at the
given position. Use one of N, NE, E, SE, S, SWW NW
or CENTER. Default is CENTER.

fill color The color to use for the text. If an empty string is
given, the text is not drawn. Default is empty
(transparent).

f ont font

justify constant

stipple bitmap

t ags tuple One or more tags to associate with the text. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

t ext string The text string.

wi dt h distance

http://www.pythonware.com/library/tkinter/introduction/x3691-options.htm (1 of 2) [3/29/2003 12:45:57 AM]

Options

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3691-options.htm (2 of 2) [3/29/2003 12:45:57 AM]

The Canvas Window Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 22. The Canvas Window
ltem

Table of Contents
Methods

Options

Methods

The following methods are used to create and configure window items:
create_w ndow x0, y0O, options...) =>id

Embed a window at the given position, using the given options. Note that the
widget to use is given by the wi ndow option.

delete(item
Delete a window item.
coords(item x0, yO)
Move one or more window items.
I tenconfigure(item options...)
Change the options for one or more window (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-window.htm [3/29/2003 12:45:58 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The window item supports the following options, via the cr eat e_w ndowmethod, and
thei tentonfiganditencget configuration methods.

Table 22-1. Canvas Window Options

Option Type Description

wi ndow window The widget to embed in the canvas.

anchor constant Specifies which part of the window that should be
placed at the given position. Use one of N, NE, E, SE,
S, SWW NW or CENTER. Default is CENTER.

hei ght , distance The height and width of the window. If omitted, the

wi dt h height and width defaults to the actual window size.

t ags tuple One or more tags to associate with the window. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3815-options.htm [3/29/2003 12:45:59 AM]

The Checkbutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 23. The Checkbutton
Widget

Table of Contents
When to use the Checkbutton Widget

Patterns
Methods

Options

The Checkbut t on widget is a standard Tkinter widgets used to implement on-off
selections. Checkbuttons can contain text or images, and you can associate a Python
function or method with each button. When the button is pressed, Tkinter automatically
calls that function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

Each Checkbutton widget should be associated with a variable.

When to use the Checkbutton
Widget

The checkbutton widget is choose between two distinct values (usually switching
something on or off). Groups of checkbuttons can be used to implement "many-of-many"
selections.

To handle "one-of-many" choices, use Radi obut t on and Li st box widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/checkbutton.htm [3/29/2003 12:46:00 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

(Also see the But t on patterns).

To use a Checkbut t on, you must create a Tkinter variable:

var = IntVar ()
c = Checkbutton(master, text="Expand", vari abl e=var)

By default, the variable is set to 1 if the button is selected, and O otherwise. You can change
these values using the onval ue and of f val ue options. The variable doesn't have to be an
integer variable:

var = StringVar ()

c = Checkbutton(
master, text="Col or imge", variabl e=var,
onval ue="R@E", offval ue="L"

)

If you need to keep track of both the variable and the widget, you can simplify your code
somewhat by attaching the variable to the widget reference object.

v = IntVar()
c = Checkbutton(master, text="Don't show this again", variabl e=v)
c.var = v

If your Tkinter code is already placed in a class (as it should be), it is probably cleaner to store
the variable in an attribute, and use a bound method as callback:

def __init__ (self, master):
self.var = IntVar()
¢ = Checkbutton(master, text="Enable Tab",
vari abl e=sel f.var, command=sel f. ch)
c. pack()

def cb(self, event):
print "variable is", self.var.get()

http://www.pythonware.com/library/tkinter/introduction/x3897-patterns.htm (1 of 2) [3/29/2003 12:46:01 AM]

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3897-patterns.htm (2 of 2) [3/29/2003 12:46:01 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Checkbutton widgets support the standard Tkinter Widget interface, plus the
following methods:

desel ect ()
Deselect the button.
flash()

Redraw the button several times, alternating between active and normal
appearance.

I nvoke()

Call the command associated with the button.
sel ect ()

Select the button.
toggl e()

Toggle the selection state.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3913-methods.htm [3/29/2003 12:46:02 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Checkbut t on widgets support the following options:

Table 23-1. Checkbutton Options

Option

acti vebackground,
acti vef oreground

anchor

backgr ound,
f or egr ound

bi t map

Type

color

constant

color

bitmap

Description

The color to use when the button is
activated.

Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SWW NW or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

The button color. The default is platform
specific.

The bitmap to display in the widget. If the
I mage option is given, this option is
ignored.

The following bitmaps are available on all
platforms: “error"”, "gray75", "gray50",
"gray25", "grayl2", "hourglass", "info",

"questhead”, "question”, and "warning".

& 17

The following additional bitmaps are

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (1 of 5) [3/29/2003 12:46:03 AM]

Options

borderw dt h (bd)

conmmand

cur sor

def aul t

di sabl edf or egr ound

f ont

int

callback

cursor

int

color

font

available on the Macintosh only:
"document”, "stationery", "edition",
"application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk",

“cdrom", "preferences", "querydoc”, "stop",
"note", and "caution".

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@sample.xbm™.

The width of the button border. The default
is platform specific.

A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

The cursor to show when the mouse is
moved over the button.

If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

The color to use when the button is
disabled. The background is shown in the
backgr ound color.

The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (2 of 5) [3/29/2003 12:46:03 AM]

Options

hi ghl i ght backgr ound,
hi ghl i ght col or

hi ghl i ghtt hi ckness

| mage

I ndi cat or on

justify

of f val ue, onval ue

padx, paxy

relief

color

distance

image

bool

constant

value

distance

constant

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

Controls the width of the focus highlight
border. Default is typically one or two
pixels.

The image to display in the widget. If
specified, this takes precedence over the
t ext and bi t map options.

Controls if the indicator should be drawn or
not. This is on by default.

Setting this option to false means that the
relief will be used as the indicator. If the
button is selected, it is drawn as SUNKEN
instead of RAI SED.

Defines how to align multiple lines of text.
Use LEFT, Rl GHT, or CENTER.

The values corresponding to a non-checked
or checked button, respectively. Defaults
are O and 1.

Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

Border decoration. This is usually FLAT for
checkbuttons, unless they use the border as
indicator (via the i ndi cat or on option).

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (3 of 5) [3/29/2003 12:46:03 AM]

Options

sel ect col or

sel ecti nmage

state

t akef ocus

t ext

t extvari abl e

underli ne

vari abl e

color

image

constant

flag

string

variable

int

variable

Color to use for the selector.

Graphic image to use for the selector.

The button state: NORVAL, ACTI VE or
DI SABLED. Default is NORIAL.

Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

The text to display in the button. The text
can contain newlines. If the bi t map or

I mage options are used, this option is
ignored.

Associates a Tkinter variable (usually a
St ri ngVar) to the button. If the variable is
changed, the button text is updated.

Also see the var i abl e option.

Default is -1 (don't underline).

Associates a Tkinter variable to the button.
When the button is pressed, the variable is
toggled between of f val ue and onval ue.
Explicit changes to the variable are
automatically reflected by the buttons.

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (4 of 5) [3/29/2003 12:46:03 AM]

Options

wi dt h, hei ght distance The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

wr apl engt h distance Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (5 of 5) [3/29/2003 12:46:03 AM]

The DoubleVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 24. The DoubleVar
Class

Table of Contents
When to use the DoubleVar Class

Patterns
Methods

When to use the DoubleVar
Class

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/doublevar.htm [3/29/2003 12:46:04 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4260-patterns.htm [3/29/2003 12:46:08 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

get() => float,set(fl oat)
FIXME
trace(node, call back),trace_vari abl e(node, call back)
FIXME
trace_vdel et e(node, call back nane)
FIXME
trace vinfo() => |ist
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4263-methods.htm [3/29/2003 12:46:10 AM]

The Entry Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 25. The Entry Widget

Table of Contents
When to use the Entry Widget

Concepts
Patterns

Methods
Options

The Entry widget is a standard Tkinter widget used to enter or display a single line of
text.

When to use the Entry Widget

The entry widget is used to enter text strings. This widget allows the user to enter one line
of text, in a single font.

To enter multiple lines of text, use the t ext widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/entry.htm [3/29/2003 12:46:11 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts

Indexes

The Entry widget allows you to specify character positions in a number of ways:

Numerical indexes

. ANCHOR

. END

| NSERT

Mouse coordinates

Numerical indexes work just like Python list indexes. The characters in the string are
numbered from O and upwards. You specify ranges just like you slice lists in Python; for
example, (0, 5) corresponds to the first five characters in the entry widget.

ANCHOR (or "anchor™) corresponds to the start of the selection, if any. You can use the
select_from method to change this from the program.

END (or "end") corresponds to the position just after the last character in the entry
widget. The range (O, END) corresponds to all characters in the widget.

INSERT (or "insert") corresponds to the current position of the text cursor. You can use
the icursor method to change this from the program.

Finally, you can use the mouse position for the index, using the following syntax:
" @/du % X

where x is given in pixels relative to the left edge of the entry widget.

http://www.pythonware.com/library/tkinter/introduction/x4300-concepts.htm (1 of 2) [3/29/2003 12:46:11 AM]

Concepts

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4300-concepts.htm (2 of 2) [3/29/2003 12:46:11 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4334-patterns.htm [3/29/2003 12:46:13 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Ent r y widget support the standard Tkinter Widget interface, plus the following
methods:

I nsert (i ndex, text)

Insert text at the given index. Use insert(INSERT, text) to insert text at the cursor,
insert(END, text) to append text to the widget.

del et e(i ndex),delete(from to)

Delete the character at index, or within the given range. Use delete(O, END) to
delete all text in the widget.

I cursor (i ndex)

Move the insertion cursor to the given index. This also sets the | NSERT index.
get() => string

Get the current contents of the entry field.
I ndex(i ndex) => index

Return the numerical position corresponding to the given index.

Selection Methods

sel ecti on_adj ust (i ndex), sel ect _adj ust (i ndex)

Adjust the selection to include also the given character. If index is already selected,
do nothing.

sel ection_clear(),select _clear()

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (1 of 3) [3/29/2003 12:46:14 AM]

Methods

Clear the selection.

sel ection_fron(index),sel ect fron(index)
Starts a new selection. This also sets the ANCHOR index.

sel ection_present() => flag,select present() => flag
Returns true (non-zero) if some part of the text is selected.

sel ection_range(start, end),select _range(start, end)

Explicitly set the selection. Start must be smaller than end. Use
sel ection_range(0, END) to selectall text in the widget.

sel ection_to(index),select _to(index)

Select all text between ANCHOR and the given index.

Scrolling Methods

These methods are used to scroll the entry widget in various ways. The scan methods
can be used to implement fast mouse panning operations (they are bound to the middle
mouse button, if available), while the xvi ewmethod is used with a standard scrollbar
widget.
scan_mar k(x)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dr agt o(x)

Scroll the widget contents sideways according to the given mouse coordinate. The
text is moved 10 times the distance between the scanning anchor and the new
position.

xvi ew i ndex)
Make sure the given index is visible. The widget is scrolled if necessary.

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (2 of 3) [3/29/2003 12:46:14 AM]

Methods

xvi ew_novet o(fraction),xview scroll (nunber, what)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (3 of 3) [3/29/2003 12:46:14 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Ent r y widget support the following options:

Table 25-1. Entry Options

Option Type
background (bg) color
borderw dt h (bd) distance
cursor cursor
exportsel ection flag

f ont font
foreground (fQ) color

hi ghl i ght backgr ound, |color
hi ghl i ght col or

Description

Widget background.

Border width.

Widget cursor. The default is a text
insertion cursor (typically an "'l beam"
cursor, e.g. xt er m.

If true, selected text is automatically
exported to the clipboard. Default is true.

Widget font. The default is system specific.

Text color.

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (1 of 3) [3/29/2003 12:46:15 AM]

Options

hi ghl i ght t hi ckness

I nsert background

I nsertborderw dth

I nsertofftime,
I nsertonti me

I nsertw dth

justify

relief

sel ect backgr ound

sel ect borderw dt h

sel ect f oreground

show

distance

color

color

int

int

const

const

color

int

color

character

Controls the width of the focus highlight
border. Default is typically one or two
pixels.

Color used for the insertion cursor.

Controls cursor blinking.

Width of the insertion cursor.

Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAI SED,
GROOVE, and RI DGE.

Selection background color. The default is
system and display specific.

Selection border width. The default is
system specific.

Selection text color. The default is system
and display specific.

Controls how to display the contents of the
widget. If non-empty, the widget displays a
string of characters instead of the actual
contents. To get a password entry widget,
use "*".

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (2 of 3) [3/29/2003 12:46:15 AM]

Options

state

t akef ocus

textvari abl e

w dt h

xscrol | conmmand

const

flag

variable

int

callback

One of NORVAL or DI SABLED. Default is
NORMAL. Note that if you set this to

DI SABLED, callstoi nsert ordel et e are
ignored.

Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the canvas accepts
focus only if it has any keyboard bindings
(default is on, in other words).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (3 of 3) [3/29/2003 12:46:15 AM]

The Font Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 26. The Font Class

Table of Contents
Patterns

Methods
Functions

Options

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/font.htm [3/29/2003 12:46:16 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

copy() => font object
Return a distinct copy of the current font.
actual () => dictionary,actual (option) => val ue

Return actual font attributes. If no option is given, returns all actual font attribtues
as a dictionary.

cget(option) => string
Get configured font attribute.
config() => dictionary,configure() => dictionary
Get full set of configured font attributes as a dictionary.
config(options),configure(options...)
Modify one or more font attributes.
neasure(text) => integer
Return text width.
metrics() => dictionary,netrics(options...) => val ue

Return one or more font metrics. If no arguments are given, all metrics are
returned as a dictionary.

For best performance, make sure that this font is in use before calling this method.
If necessary, you can create a dummy widget using the font.

http://www.pythonware.com/library/tkinter/introduction/x4671-methods.htm (1 of 2) [3/29/2003 12:46:17 AM]

Methods

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4671-methods.htm (2 of 2) [3/29/2003 12:46:17 AM]

Functions

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Functions

famlies() => list
Get a list of available font families.
nanes() => |i st
Get a list of the names of names of all user-defined fonts.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4718-functions.htm [3/29/2003 12:46:18 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The constructor and the conf i g method supports the following options.

Table 26-1. Font Options

Option Type

f ont font
famly string

si ze integer
wei ght constant
sl ant constant
underli ne flag

Description

Font specifier. This can be a font name, a system
font name, or a (family, size, style)-tuple.

Font family.

Font size in points. To give the size in pixels, use a
negative value.

Font thickness. Use one of NORMAL or BOLD.
Default is NORMAL.

Note that these constants are defined in the
t kFont module.

Font slant. Use one of NORMAL or | TALI C. Default
iIs NORMVAL.

Note that these constants are defined in the
t kFont module.

Font underlining. If 1 (true), the font is underlined.
Default is O (false).

http://www.pythonware.com/library/tkinter/introduction/x4731-options.htm (1 of 2) [3/29/2003 12:46:19 AM]

Options

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is O (false).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4731-options.htm (2 of 2) [3/29/2003 12:46:19 AM]

The Frame Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 27. The Frame Widget

Table of Contents
When to use the Frame Widget

Patterns
Methods

Options

A frame is rectangular region on the screen. The frame widget is mainly used as a
geometry master for other widgets, or to provide padding between other widgets.

When to use the Frame Widget

Frame widgets are used to group other widgets into complex layouts. They are also used
for padding, and as a base class when implementing compound widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/frame.htm [3/29/2003 12:46:20 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

The frame widget can be used as a place holder for video overlays and other external
processes.

To use a frame widget in this fashion, set the background color to an empty string (this
prevents updates, and leaves the color map alone), pack it as usual, and use the
wi ndow_i d method to get the window handle corresponding to the frame.

franme = Frame(w dt h=768, hei ght =576, bg="", col ormap="new")
franme. pack()
vi deo. attach_wi ndow(frame. wi ndow_i d())

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4822-patterns.htm [3/29/2003 12:46:21 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

Except for the standard widget interface (conf i g, etc), the Fr ane widget has no
methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4828-methods.htm [3/29/2003 12:46:22 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Fr ame widget supports the following options:

Table 27-1. Frame Options

Option

hei ght, w dth

background (bg)

col or map

Type

distance

color

window

Description

Frame size.

The background color to use in this frame.
This defaults to the application background
color. To prevent updates, set the color to
an empty string.

Some displays support only 256 colors
(some use even less). Such displays usually
provide a color map to specify which 256
colors to use. This option allows you to
specify which color map to use for this
frame, and its child widgets.

By default, a new frame uses the same color
map as its parent. Using this option, you
can reuse the color map of another window
instead (this window must be on the same
screen and have the same visual
characteristics). You can also use the value
"new" to allocate a new color map for this
frame.

You cannot change this option once you've
created the frame.

http://www.pythonware.com/library/tkinter/introduction/x4833-options.htm (1 of 2) [3/29/2003 12:46:23 AM]

Options

cursor cursor
relief constant
borderw dt h (bd) distance
t akef ocus flag

hi ghl i ght backgr ound, |color
hi ghl i ght col or

hi ghl i ghtt hi ckness |distance

The cursor to show when the mouse pointer
Is placed over the button widget. Default is a
system specific arrow cursor.

Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAI SED,
GROOVE, and Rl DGE.

Note that to show the border, you need to
change the bor der wi dt h from it's default
value of 0.

Border width. Defaults to O (no border).

Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the frame accepts
focus only if it has any keyboard bindings
(default is off, in other words).

Controls how to draw the focus highlight
border. When any child to the frame has
focus, the border is drawn in the

hi ghl i ght col or color. Otherwise, it is
drawn in the hi ghl i ght backgr ound
color. The defaults are system specific.

Controls the width of the focus highlight
border. Default is O (no border).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4833-options.htm (2 of 2) [3/29/2003 12:46:23 AM]

The Grid Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 28. The Grid Geometry
Manager

Table of Contents
When to use the Grid Manager

Patterns
Methods

Options

The Gri d geometry manager puts the widgets in a 2-dimensional table. The master
widget is split into a number of rows and columns, and each "cell" in the resulting table
can hold a widget.

When to use the Grid Manager

The grid manager is the most flexible of the geometry managers in Tkinter. If you don't
want to learn how and when to use all three managers, you should at least make sure to
learn this one.

The grid manager is especially convenient to use when designing dialog boxes. If you're
using the packer for that purpose today, you'll be surprised how much easier it is to use
the grid manager instead. Instead of using lots of extra frames to get the packing to work,
you can in most cases simply pour all the widgets into a single container widget (I tend to
use two; one for the dialog body, and one for the button box at the bottom), and use the
grid manager to get them all where you want them.

Consider the following example:

<label 1=|<entry 2=

zlabel 1=|<entry 2=

<image=

zcheckbuttons <hutton 1=|<button 2=

http://www.pythonware.com/library/tkinter/introduction/grid.htm (1 of 2) [3/29/2003 12:46:24 AM]

The Grid Geometry Manager

Creating this layout using the pack manager is possible, but it takes a number of extra

frame widgets, and a lot of work to make things look good. If you use the grid manager
instead, you only need one call per widget to get everything laid out properly (see next
section for the code needed to create this layout).

Warning

Never mix grid and pack in the same master window. Tkinter will happily spend the
rest of your lifetime trying to negotiate a solution that both managers are happy with.
Instead of waiting, Kkill the application, and take another look at your code. A common
mistake is to use the wrong parent for some of the widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/grid.htm (2 of 2) [3/29/2003 12:46:24 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Using the grid manager is easy. Just create the widgets, and use the gr i d method to tell
the manager in which row and column to place them. You don't have to specify the size of
the grid beforehand; the manager automatically determines that from the widgets in it.

Label (master, text="First").grid(row=0)
Label (master, text="Second").grid(row=1)

el = Entry(naster)
e2 = Entry(naster)

el.grid(row=0, colum=1)
e2.grid(row=1, colum=1)

Note that the column number defaults to O if not given.
Running the above example produces the following window:

Figure 28-1. Figure: simple grid example

Firzt: I

Second:

Empty rows and columns are ignored. The result would have been the same if you had
placed the widgets in row 10 and 20 instead.

Note that the widgets are centered in their cells. You can use the st i cky option to
change this; this option takes one or more values from the set N, S, E, W To align the
labels to the left border, you could use W(west):

Label (master, text="First").grid(row=0, sticky=W
Label (master, text="Second").grid(row=1l, sticky=W

el = Entry(naster)

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (1 of 3) [3/29/2003 12:46:26 AM]

Patterns

e2 = Entry(master)

el.grid(row=0, colum=1)
e2.grid(row=1l, colum=1)

Figure 28-2. Figure: using the sticky option

tk H[=] E3
Firat: I

Secnnd]

You can also have the widgets span more than one cell. The col utTmspan option is used
to let a widget span more than one column, and the r ows pan option lets it span more
than one row. The following code creates the layout shown in the previous section:

| abel 1. gri d(sticky=E)
| abel 2. gri d(sticky=E)

entryl.grid(row=0, colum=1)
entry2.grid(row=1l, colum=1)

checkbutton. grid(col umspan=2, sticky=W

I mage. grid(row=0, colum=2, columspan=2, rowspan=2,
sti cky=WHE+N+S, padx=5, pady=5)

buttonl. grid(row=2, colum=2)
button2. grid(row=2, colum=3)

There are plenty of things to note in this example. First, no position is specified for the
label widgets. In this case, the column defaults to O, and the row to the first unused row
in the grid. Next, the entry widgets are positioned as usual, but the checkbutton widget is
placed on the next empty row (row 2, in this case), and is configured to span two
columns. The resulting cell will be as wide as the label and entry columns combined. The
Image widget is configured to span both columns and rows at the same time. The
buttons, finally, is packed each in a single cell:

Figure 28-3. Figure: using column and row spans

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (2 of 3) [3/29/2003 12:46:26 AM]

Patterns

tk

Height:

Width:

Zoam out

[T Preserve aspect £00m in

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (3 of 3) [3/29/2003 12:46:26 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
Widget Methods

The following methods are available on widgets managed by the grid manager:

grid(option=value, ...),grid configure(option=value, ...)
Place the widget in a grid as described by the options (see below).

grid forget()

Remove the widget. The widget is not destroyed, and can be displayed again by
gr i d or any other manager.

grid_info() => dictionary
Return a dictionary containing the current options.
grid _renove()

Remove the widget. The widget is not destroyed, and can be displayed again by
gr i d or any other manager.

Manager Methods

The following methods are available on widgets that are used as grid managers (that is,
the geometry masters for widgets managed by the grid manager).

col ummconfi gure(col um, option=value, ...),rowonfigure(row,
opti on=val ue, ...)

Set options for the given column (or row).

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (1 of 3) [3/29/2003 12:46:27 AM]

Methods

To change this for a given widget, you have to call this method on the widget's
parent.

Table 28-1. Grid Manager Options
Option Type Description

m nsi ze integer Defines the minimum size for the column (row).
Note that if a column or row is completely empty, it
will not be displayed, even if this option is set.

pad integer Padding to add to the size of the largest widget in
the column (row) when setting the size of the whole
column.

wei ght integer A relative weight used to distribute additional space

between columns (rows). A column with the weight
2 will grow twice as fast as a column with weight 1.
The default is O, which means that the column will
not grow at all.

grid_location(x, y) => tuple

Returns the grid cell under (or closest to) the given pixel coordinate. The resultis a
2-tuple: (column, row).

grid _propagate(fl ag)
Enables or disables geometry propagation. When enabled, the grid manager
attempts to change the size of the geometry master when a child widget changes
size. Propagation is always enabled by default.

grid_size() => tuple

Returns the current grid size. This is defined as indexes of the first empty column
and row in the grid, in that order. The result is a 2-tuple: (column, row).

grid_slaves() => |ist

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (2 of 3) [3/29/2003 12:46:27 AM]

Methods

Returns a list of the "slave™ widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (3 of 3) [3/29/2003 12:46:27 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The following options can be used with the gri d and gri d_conf i gur e methods:

Table 28-2. Grid Manager Options

Option Type

col umm integer
col untmspan integer
in (in) widget

| padx, i pady |distance

padx, pady distance

r ow integer

Description

Insert the widget at this column. Column numbers
start with O. If omitted, defaults to O.

If given, indicates that the widget cell should span
more than one column.

Place widget inside to the given widget. You can
only place a widget inside its parent, or in any
decendant of its parent. If this option is not given, it
defaults to the parent.

Note thati n is a reserved word in Python. To use it
as a keyword option, append an underscore (i n_).

Optional internal padding. Works like padx and
pady, but the padding is added inside the widget
borders. Default is O.

Optional padding to place around the widget in a
cell. Default is O.

Insert the widget at this row. Row numbers start
with O. If omitted, defaults to the first empty row in
the grid.

http://www.pythonware.com/library/tkinter/introduction/x5086-options.htm (1 of 2) [3/29/2003 12:46:29 AM]

Options

rowspan

sticky

integer

constant

If given, indicates that the widget cell should span
more than one row.

Defines how to expand the widget if the resulting
cell is larger than the widget itself. This can be any
combination of the constants S, N, E, and W or NW
NE, SW and SE. For example, W(west) means that
the widget should be aligned to the left cell border.
WHE means that the widget should be stretched
horizontally to fill the whole cell. WFE+N+S means
that the widget should be expanded in both
directions. Default is to center the widget in the cell.

http://www.pythonware.com/library/tkinter/introduction/x5086-options.htm (2 of 2) [3/29/2003 12:46:29 AM]

The IntVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 29. The IntVar Class

Table of Contents
When to use the IntVar Class

Patterns
Methods

When to use the IntVar Class

FIXME

http://www.pythonware.com/library/tkinter/introduction/intvar.htm [3/29/2003 12:46:31 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5192-patterns.htm [3/29/2003 12:46:32 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

get() => integer,set(integer)
FIXME
trace(node, call back),trace_vari abl e(node, call back)
FIXME
trace_vdel et e(node, call back nane)
FIXME
trace vinfo() => |ist
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5195-methods.htm [3/29/2003 12:46:32 AM]

The Label Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 30. The Label Widget

Table of Contents
When to use the Label Widget

Patterns
Methods

Options

The Label widget is a standard Tkinter widget used to display a text or image on the
screen. The button can only display text in a single font, but the text may span more than
one line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut.

When to use the Label Widget

Labels are used to display texts and images. The label widget uses double buffering, so
you can update the contents at any time, without annoying flicker.

To display data that the user can manipulate in place, it's probably easier to use the
Canvas widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/label.htm [3/29/2003 12:46:33 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

To use a label, you just have to specify what to display in it (this can be text, a bitmap, or
an image):

w = Label (master, text="Hello, world!'")

If you don't specify a size, the label is made just large enough to hold its contents. You
can also use the hei ght and wi dt h options to explicitly set the size. If you display text in
the label, these options define the size of the label in text units. If you display bitmaps or
Images instead, they define the size in pixels (or other screen units). See the But t on

description for an example how to specify the size in pixels also for text labels.

You can specify which color to use for the label with the f or egr ound (or f g) and
backgr ound (or bg) options. You can also choose which font to use in the label (the
following example uses Tk 8.0 font descriptors). Use colors and fonts sparingly; unless
you have a good reason to do otherwise, you should stick to the default values.

Label (master, text="Rouge", fg="red")

W
w = Label (master, text="Helvetica", font=("Helvetica", 16))

Labels can display multiple lines of text. You can use newlines or use the wr apl engt h

option to make the label wrap text by itself. When wrapping text, you might wish to use

the anchor andj usti f y options to make things look exactly as you wish. An example:
w = Label (master, text=longtext, anchor=W justify=LEFT)

You can associate a variable with the label. When the contents of the variable changes,
the label is automatically updated:

v = StringVar ()
Label (master, textvariabl e=v). pack()
v.set ("New Text!")

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5232-patterns.htm [3/29/2003 12:46:34 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Label widget supports the standard Tkinter Widget interface. There are no
additional methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5254-methods.htm [3/29/2003 12:46:35 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The following options can be used for the Label widget.

Table 30-1. Label Options

Option

t ext

bi t map

Type

string

bitmap

Description

The text to display in the label. The text can contain

newlines. If the bi t map or i nage options are used,

this option is ignored.

The bitmap to display in the widget. If the i mage
option is given, this option is ignored.

The following bitmaps are available on all
platforms: "error”, "gray75", "gray50", "gray25",
"grayl2", "hourglass”, "info", "questhead",
"question”, and "warning".

OF

i

The following additional bitmaps are available on

the Macintosh only: "document”, "stationery",

"edition”, "application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk”, "cdrom",

u, "StOp", "nOte", and

"preferences”, "querydoc
"caution”.

You can also load the bitmap from an XBM file.
Just prefix the filename with an at-sign, for
example "@sample.xbm™.

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (1 of 3) [3/29/2003 12:46:36 AM]

Options

| mage

wi dt h,
hei ght

relief

borderw dt h
(bd)

backgr ound

(bg),
f or eground

(fo)
f ont

justify

anchor

iImage

int

constant

dimension

color

font

constant

constant

The image to display in the widget. If specified, this
takes precedence over thet ext and bi t map
options.

The size of the label. If the label displays text, the
size is given in text units. If the label displays an
image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the
label contents.

Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAI SED, GROOVE, and
Rl DGE.

Note that to show the border, you need to change
the bor der wi dt h from it's default value of O.

The width of the label border. The default is O (no
border).

The label color (the foreground value is used for
text and bitmap labels only). The default is platform
specific.

The font to use in the label. The label can only
contain text in a single font.

Defines how to align multiple lines of text. Use
LEFT, RI GHT, or CENTER.

Controls where in the label the text (or image)
should be located. Use one of N, NE, E, SE, S, SWW
NW or CENTER. Default is CENTER.

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (2 of 3) [3/29/2003 12:46:36 AM]

Options

wr apl engt h distance

t ext vari abl e \variable

Determines when a label's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

Associates a Tkinter variable (usually a
St ri ngVar) to the label. If the variable is changed,
the label text is updated.

underl i ne int Default is -1.

cur sor cursor The cursor to show when the mouse is moved over
the label.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (3 of 3) [3/29/2003 12:46:36 AM]

The Listbox Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 31. The Listbox Widget

Table of Contents
When to use the Listbox Widget

Patterns
Methods

Options

The Li st box widget is a standard Tkinter widget used to display a list of alternatives.
The listbox can only contain text items, and all items must have the same font and color.
Depending on the widget configuration, the user can choose one or more alternatives
from the list.

When to use the Listbox Widget

Listboxes are used to select from a group of textual items. Depending on how the listbox
Is configured, the user can select one or many items from that list.

Back Next

http://www.pythonware.com/library/tkinter/introduction/listbox.htm [3/29/2003 12:46:37 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

When you first create the listbox, it is empty. The first thing to do is usually to insert one
or more lines of text. The i nsert method takes an index and a string to insert. The index
is usually an item number (O for the first item in the list), but you can also use some
special indexes, including ACTI VE, which refers to the "active" item (set when you click
on an item, or by the arrow keys), and END, which is used to append items to the list.

| i stbox = Listbox(naster)
listbox.insert(END, "a list entry")

for itemin ["one", "two", "three", "four"]:
| i stbox.insert(END, item

To remove items from the list, use the del et e method. The most common operation is
to delete all items in the list (something you often need to do when updating the list).

i st box. del ete(0, END)
i stbox.insert(END, new tem

You can also delete individual items. In the following example, a separate button is used
to delete the ACTI VE item from a list.

| b = Li stbox(nmaster)
b = Button(master, text="Delete",
command=l anbda | b=l b: | b. del et e(ANCHCR))

The listbox offers four different selection modes through the sel ect node option. These
are SI NGLE (just a single choice), BROASE (same, but the selection can be moved using
the mouse), MULTI PLE (multiple item can be choosen, by clicking at them one at a time),
or EXTENDED (multiple ranges of items can be chosen, using the Shift and Control
keyboard modifiers). The default is BROASE. Use MULTI PLE to get "checklist™ behavior,
and EXTENDED when the user would usually pick only one item, but sometimes would
like to select one or more ranges of items.

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (1 of 4) [3/29/2003 12:46:38 AM]

Patterns

| b = Li stbox(sel ect node=EXTENDED)

To query the selection, use cur sel ect i on method. It returns a list of item indexes, but
a bug in Tkinter 1.101 (Python 1.5.1) and earlier versions causes this list to be returned as
a list of strings, instead of integers. This will most likely be fixed in later versions of
Tkinter, so you should make sure that your code is written to handle either case. Here's
one way to do that:

itens = list.cursel ection()
try:

Itens = map(int, itens)
except Val ueError: pass

In versions before Python 1.5, use st ri ng. at oi ofi nt.
Use the get method to get the list item corresponding to a given index.

You can also use a listbox to represent arbitrary Python objects. In the next example, we
assume that the input data is represented as a list of tuples, where the first item in each
tuple is the string to display in the list. For example, you could display a dictionary by
using the i t enrs method to get such a list.

self.l b.delete(0, END) # clear
for key, value in data:

self.lb.insert(END, key)
self.data = data

When querying the list, simply fetch the items indexed by the selection list:

itens = self.|b.curselection()
try:
Itens = map(string.atoi, itens)
except Val ueError: pass
Itenrs = map(l anbda i,d=self.data: d[i], itens)

Unfortunately, the listbox doesn't provide a conmand option allowing you to track
changes to the selection. The standard solution is to bind a double-click event to the same
callback as the OK (or Select, or whatever) button. This allows the user to either select an
alternative as usual, and click OK to carry out the operation, or to select and carry out the
operation in one go by double-clicking on an alternative. This solution works best in
BROWSE and EXTENDED modes.

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (2 of 4) [3/29/2003 12:46:38 AM]

Patterns

| b. bi nd(" <Doubl e-Button-1>", self. ok)

If you wish to track arbitrary changes to the selection, you can either rebind the whole
bunch of selection related events (see the Tk manual pages for a complete list of Listbox
event bindings), or, much easier, poll the list using a timer:

def __init__ (self, master):
self.list = Listbox(sel ect node=EXTENDED)
self.list.pack()
sel f.current = None
self.poll () # start polling the |ist

def poll (self):
now = self.list.curselection()
If now!= self.current:
sel f.list_has_changed(now)
sel f.current = now
sel f.after (250, self.poll)

By default, the selection is exported via the X selection mechanism (or the clipboard, on
Windows). If you have more than one listbox on the screen, this really messes things up
for the poor user. If she selects something in one listbox, and then selects something in
another, the original selection disappears. It is usually a good idea to disable this
mechanism in such cases. In the following example, three listboxes are used in the same
dialog:

bl = Listbox(exportsel ecti on=0)
for itemin famlies:
bl.insert(END, itemnm

b2 = Li stbox(exportsel ecti on=0)
for itemin fonts:
b2.1insert (END, itemn

b3 = Listbox(exportsel ecti on=0)
for itemin styles:
b3.insert(END, item

The listbox itself doesn't include a scrollbar. Attaching a scrollbar is pretty
straightforward. Simply set the xscr ol | command and yscr ol | conmmand options of the
listbox to the set method of the corresponding scrollbar, and the conmand options of
the scrollbars to the corresponding xvi ewand yvi ewmethods in the listbox. Also
remember to pack the scrollbars before the listbox. In the following example, only a

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (3 of 4) [3/29/2003 12:46:38 AM]

Patterns

vertical scrollbar is used. For more examples, see pattern section in the Scr ol | bar

description.

frame = Frame(master)
scroll bar = Scroll bar(frame, orient=VERTI CAL)

| i stbox = Listbox(frame, yscroll command=scroll bar. set)

scrol | bar. confi g(command=li st box. yvi ew)
scrol | bar. pack(side=RI GHT, fill=Y)
| i st box. pack(si de=LEFT, fill=BOTH, expand=1)

With some more trickery, you can use a single vertical scrollbar to scroll several lists in
parallel. This assumes that all lists have the same number of items. Also note how the

widgets are packed in the following example.

def __init_ (self, master):
scrol Il bar = Scrol |l bar(master, orient=VERTI CAL)

self.bl = Listbox(master, yscroll command=scroll bar. set)
sel f.b2 = Listbox(master, yscroll command=scroll bar. set)

scrol | bar. confi g(command=sel f. yvi ew)

scrol | bar. pack(si de=RlI GHT, fill=Y)

sel f.bl. pack(side=LEFT, fill=BOTH, expand=1)
sel f. b2. pack(si de=LEFT, fill=BOTH, expand=1)

def yview(self, *args):
appl y(sel f.bl.yview, args)
appl y(sel f.b2.yview, args)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (4 of 4) [3/29/2003 12:46:38 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Li st box widget supports the standard Tkinter Widget interface, plus the following
methods:

activate(i ndex)

Activate the given index (it will be marked with an underline). The active item can
be refered to using the ACTI VE index.

bbox(i ndex) => tuple or None

Get the bounding box of the given item text. The bounding box is returned as a 4-
tuple giving (xoffset, yoffset, width, height). If the item is not visible, this method
returns None.

curselection() => list

Get a list of the currently selected alternatives. The list contains the indexes of the
selected alternatives (beginning with O for the first alternative in the list). In
Python 1.5.2 and earlier, the list contains strings instead of integers. Since this may
change in future versions, you should make sure your code can handle either case.
See the patterns section for a suggested solution.

del ete(i ndex),delete(first, |ast)
Delete one or more items. Use del et e(0, END) to delete all items in the list.
get (i ndex) => string,get(first, last) => |ist

Get one or more items from the list. This function returns the string corresponding
to the given index (or the strings in the given index range). Use get (0, END) to
get a list of all items in the list. Use ACTI VE to get the active (underlined) item.

I ndex(i ndex) => integer

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (1 of 4) [3/29/2003 12:46:39 AM]

Methods

Return the numerical index (O to size()-1) corresponding to the given index. This is
typically ACTI VE, but can also be ANCHOR, or a string having the form "@x,y"
where x and y are widget-relative pixel coordinates.

I nsert (i ndex, itens)

Insert one or more items at given index (this works as for Python lists; index O is
before the first item). Use END to append items to the list. Use ACTI VE to insert
items before the the active (underlined) item.

nearest(y) => string

Return the index nearest to the given coordinate (a widget-relative pixel
coordinate).

see(i ndex)
Make sure the given list index is visible. You can use an integer index, or END.
size() => integer

Return the number of items in the list. The valid index range goes from O to size()-
1.

Selection Methods

The following methods are used to manipulate the listbox selection.
sel ect _adj ust (i ndex)

Extend the selection to include the given index.
sel ect _anchor (i ndex)

Set the selection anchor to the given index. The anchor can be refered to using the
ANCHCR index.

sel ect _clear()

Clear the selection.

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (2 of 4) [3/29/2003 12:46:39 AM]

Methods

sel ect i ncl udes(index) => fl ag
Returns true (non-zero) if the given item is selected.
sel ect _set (i ndex),select _set(first, |ast)

Add one or more items to the selection.

Scrolling Methods

These methods are used to scroll the listbox widget in various ways. The scan methods
can be used to implement fast mouse scrolling operations (they are bound to the middle
mouse button, if available), while the yvi ewmethod is used with a standard scrollbar
widget.
scan_mark(x, Vy)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x, V)

Scroll the widget contents according to the given mouse coordinate. The text is
moved 10 times the distance between the scanning anchor and the new position.

xview) => tuple,yviewm() => tuple

Determine which part of the full list that is visible in the horizontal (vertical)
direction. This is given as the offset and size of the visible part, given in relation to
the full size of the list (1.0 is the full list). These methods are used by the

Scrol | bar bindings.

xvi ew(col um), yvi ew(i ndex)
Adjust the list so that the given character column (list item) is at the left (top) edge
of the listbox. To make sure that a given item is visible, use the see method

instead.

xvi ewm(MOVETQO, offset),yvi ew(MIWVETO, offset)

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (3 of 4) [3/29/2003 12:46:39 AM]

Methods

Adjust the list so that the given offset is at the left (top) edge of the listbox. Offset
0.0 is the beginning of the list, 1.0 the end. These methods are used by the
Scrol | bar bindings when the user drags the scrollbar slider.

The MOVETOconstant is not defined in Python 1.5.2 and earlier. For compatibility,
use the string "moveto” instead.

xvi ewm(SCROLL, step, what),yviewm SCROLL, step, what)

Scroll the list horizontally (vertically) by the given amount. The what argument can
be either UNI TS (lines) or PAGES. These methods are used by the Scr ol | bar
bindings when the user clicks on a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use
the strings "scroll™, "units", and "pages" instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (4 of 4) [3/29/2003 12:46:39 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Li st box widget supports the following options:

Table 31-1. Listbox Options

Option

background (bg),
foreground (fQ)

cur sor

exportsel ection

f ont

relief

borderw dt h (bd)

sel ect backgr ound,

sel ect f oreground

Type

color

cursor

bool

font

constant

distance

color

Description

The listbox color. The default is platform
specific.

The cursor to show when the mouse is placed
over the listbox.

If set, the list selection is automatically
exported via the X selection mechanism. The
default is on. If you have more than one list in
the same dialog, it is probably best to disable
this mechanism.

The font to use in the listbox. The listbox can
only contain text in a single font.

Border decoration. The default is SUNKEN.
Other possible values are FLAT, RAI SED,
GROOVE, and Rl DGE.

The width of the listbox border. The default is
platform specific, but is usually 1 or 2 pixels.

Selection color settings.

http://www.pythonware.com/library/tkinter/introduction/x5675-options.htm (1 of 2) [3/29/2003 12:46:40 AM]

Options

sel ect bor der wi dt h dimension

sel ect node constant
setgrid bool

t akef ocus bool

wi dt h, hei ght distance
xscrol | conmand, command

yscrol | command

Selection border width. The selection is always
raised.

Selection mode. One of SI NGLE, BROASE,
MULTI PLE, or EXTENDED. Default is BROASE.
Use MULTI PLE to get checklist behavior,
EXTENDED if the user usually selects one item,
but sometimes would like to select one or more
ranges of items. See the patterns section for
more information.

Indicates that the user can use the Tab key to
move to this widget. Default is an empty string,
which means that the listbox accepts focus only
if it has any keyboard bindings (default is on,

in other words).

The size of the listbox, in text units.

Used to connect a listbox to a scrollbar. These
options should be set to the set methods of
the corresponding scrollbars.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5675-options.htm (2 of 2) [3/29/2003 12:46:40 AM]

The Menu Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 32. The Menu Widget

Table of Contents
When to use the Menu Widget

Patterns
Methods

Options

The Menu widget is used to implement toplevel, pulldown, and popup menus.

When to use the Menu Widget

This widget is used to display all kinds of menus used by an application. Since this widget
uses native code where possible, you shouldn't try to fake menus using buttons and other
Tkinter widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/menu.htm [3/29/2003 12:46:41 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Toplevel menus are displayed just under the title bar of the root or any other toplevel
windows (or on Macintosh, along the upper edge of the screen). To create a toplevel

menu, create a new Menu instance, and use add methods to add commands and other

menu entries to it.
Example 32-1. Creating a toplevel menu

menu- exanpl e- 2. py
from Tkinter inport *
root = Tk()

def hello():
print "hello!"

create a toplevel nenu

menubar = Menu(root)

menubar . add_command(| abel ="Hel | o! ", command=hel | 0)
menubar . add_command(| abel =" Qui t!", comrand=root. quit)

di splay the nenu
root . confi g(nmenu=nenubar)

mai nl oop()

Pulldown menus (and other submenus) are created in a similar fashion. The main

difference is that they are attached to a parent menu (using add_cascade) , instead of a

toplevel window.

Example 32-2. Creating toplevel and pulldown menus

menu- exanpl e- 3. py

from Tkinter inport *

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (1 of 4) [3/29/2003 12:46:42 AM]

Patterns

root = Tk()

def hello():
print "hello!"

menubar = Menu(root)

create a pulldown nenu, and add it to the nenu bar
filemenu = Menu(nenubar, tearoff=0)

filemenu. add _command(| abel =" Open", command=hel | 0)
filemenu. add _command(| abel =" Save", command=hel | 0)

fil emenu. add_separat or ()
filemenu. add command(| abel ="Exit", command=root. quit)
menubar . add_cascade(l abel ="Fil e", nmenu=fil emenu)

create nore pul | down nenus

edi t menu = Menu(nmenubar, tearoff=0)

edi t menu. add_command(| abel =" Cut", command=hel | 0)
edi t renu. add_conmand(| abel =" Copy", conmmand=hel | 0)
edi t menu. add_command(| abel =" Past e", command=hel | 0)
menubar . add_cascade(| abel ="Edi t", nenu=editnenu)

hel pmenu = Menu(nmenubar, tearoff=0)
hel pmenu. add_conmand(| abel =" About ", command=hel | 0)
menubar . add_cascade(| abel =" Hel p", nmenu=hel pnenu)

display the nenu
r oot . confi g(menu=nenubar)

mai nl oop()

Finally, a popup menu is created in the same way, but is explicitly displayed, using the
post method:

Example 32-3. Creating and displaying a popup menu

menu- exanpl e- 4. py
from Tkinter inport *
root = Tk()

def hello():
print "hello!"

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (2 of 4) [3/29/2003 12:46:42 AM]

Patterns

create a popup nenu

menu = Menu(root, tearoff=0)

nmenu. add_command(| abel =" Undo", command=hel | 0)
nmenu. add_command(| abel =" Redo", command=hel | 0)

create a canvas
frame = Frane(root, w dth=512, hei ght=512)
frame. pack()

def popup(event):
menu. post (event.x _root, event.y root)

attach popup to canvas
franme. bi nd("<Button-3>", popup)

mai nl oop()

You can use the post conmand callback to update (or even create) the menu everytime it
is displayed.

Example 32-4. Updating a menu on the fly

menu- exanpl e- 5. py
from Tkinter inport *
counter = 0

def update():
gl obal counter
counter = counter + 1
menu. entryconfi g(0, |abel=str(counter))

root = Tk()
nmenubar = Menu(root)

menu = Menu(nenubar, tearoff=0, postcomand=updat e)
menu. add_conmmand(| abel =str (counter))
menu. add_command(| abel ="Exit", conmand=root. quit)

menubar . add_cascade(| abel =" Test", nmenu=nenu)

root . confi g(menu=nenubar)

http:/iwww.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (3 of 4) [3/29/2003 12:46:42 AM]

Patterns

mai nl oop()

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (4 of 4) [3/29/2003 12:46:42 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Menu widget supports the standard Tkinter Widget interface (with the exception of
the geometry manager methods), plus the following methods:

add(type, options...)

Add (append) an entry of the given type to the menu. The type argument can be

one of "command", "cascade" (submenu), "checkbutton", "radiobutton", or
"separator". The options are as defined in the following table:

Table 32-1. Menu Item Options
Option Type Description
acti vebackgr ound |color

acti vef oreground |color

accel erator string
backgr ound color

bi t map bitmap
col ummbr eak flag
conmand callback
f ont font

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (1 of 3) [3/29/2003 12:46:43 AM]

Methods

f or egr ound color

hi demar gi n flag

I mage image

I ndi cat or on flag

| abel string

menu widget

of f val ue value

onval ue value

sel ect col or color

sel ecti mage image

state constant

underli ne integer

val ue value

vari abl e variable
add cascade(options...),add _checkbutton(options...),
add_command(options...),add _radi obutton(options...),

add_separator(options...)
Convenience functions, used to add items of the given type.

I nsert (i ndex, type,
I nsert _checkbutton(i ndex,

options...),insert_cascade(index, options...),
options...),insert_command(i ndex,

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (2 of 3) [3/29/2003 12:46:43 AM]

Methods

options...),insert_radi obutton(index, options...),
I nsert _separator(index, options...)

Same as add and friends, but inserts the new item at the given index.
entryconfig(index, options...),entryconfigure(index, options...)

Reconfigure the given menu entry. Only the given options are changed; the rest are
left as is.

I ndex(i ndex) => integer
Convert an index (of any kind) to an integer index.
del et e(i ndex),del ete(start, stop)

Delete one or more menu entries.

Displaying Menus
I nvoke(i ndex)
Invoke the given entry (just like if the user had clicked on it).

post (X,)

Display the menu at the given position. The position should be given in pixels,
relative to the root window.

unpost ()
Remove a posted menu.
yposi tion(index) => integer

Return the vertical offset for the given entry. This can be used to position a popup
menu so that a given entry is under the the mouse when the menu appears.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (3 of 3) [3/29/2003 12:46:43 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

Table 32-2. Menu Options

Option Type Description

acti vebackground |color

act i veborderwi dt h |distance

activeforeground [color

background (bg) color

borderw dt h (bd) distance

cur sor cursor The cursor to show when the mouse pointer is
placed over the button widget. Default is a
system specific arrow cursor.

di sabl edf or egr ound |color

f ont font

foreground (fQ) color

post conmand callback If given, this callback is called whenever

Tkinter is about to display this menu. If you
have dynamic menus, use this callback to
update their contents.

http://www.pythonware.com/library/tkinter/introduction/x6118-options.htm (1 of 2) [3/29/2003 12:46:45 AM]

Options

relief

sel ect col or

t akef ocus

t ear of f

t ear of f command

title

type

constant

color

flag

flag

callback

string

constant

Border decoration. The default is RAlI SED.
Other possible values are FLAT, SUNKEN,
GROOVE, and RI DGE.

Indicates that the user can use the Tab key to
move to this widget. Default is an empty
string, which means that the menu accepts
focus only if it has any keyboard bindings
(default is on, in other words).

If set, menu entry O will be a "tearoff entry",
which is usually a dashed separator line. If the
user selects this entry, Tkinter creates a small
Topl evel with a copy of this menu.

This is on by default, so if you're writing code
for Windows and Macintosh, you may want to
explicitly set this option to false to make sure
the menus looks as people expect them to.

If given, this callback is called when this menu
Is teared off (that is, if the t ear of f option is
set, and the user clicks on the "tearoff entry".)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6118-options.htm (2 of 2) [3/29/2003 12:46:45 AM]

The Menubutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 33. The Menubutton
Widget

Table of Contents
When to use the Menubutton Widget

Patterns
Methods

Options

The Menubut t on widget displays popup or pulldown menu when activated.

This widget is not documented in this version of this document. You will probably not
miss it...

When to use the Menubutton
Widget

This widget is used to implement various kinds of menus. In earlier versions of Tkinter, it
was used to implement toplevel menus, but this is now done with the Menu widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/menubutton.htm [3/29/2003 12:46:46 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6292-patterns.htm [3/29/2003 12:46:47 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6295-methods.htm [3/29/2003 12:46:48 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6298-options.htm [3/29/2003 12:46:49 AM]

The Message Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 34. The Message
Widget

Table of Contents
When to use the Message Widget

Patterns
Methods

Options

When to use the Message
Widget

The message widget is used to display multiple lines of text. It's very similar to a plain
Label , but can adjust its width to maintain a given aspect ratio.

Back Next

http://www.pythonware.com/library/tkinter/introduction/message.htm [3/29/2003 12:46:50 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME: To be added

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6308-patterns.htm [3/29/2003 12:46:50 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Message widget supports the standard Tkinter Widget interface. There are no
additional methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6311-methods.htm [3/29/2003 12:46:51 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Message widget support the following options:

Table 34-1. Message Options

Option

anchor

aspect

background (bg)

cur sor

f ont

foreground (fQ)

hi ghl i ght backgr ound,
hi ghl i ght col or

hi ghl i ghtt hi ckness

Type

constant

value

color

cursor

font

color

color

distance

Description

The cursor to show when the mouse pointer
Is placed over the message widget. Default
IS a system specific arrow cursor.

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

Controls the width of the focus highlight
border. Default is O (no border).

http://www.pythonware.com/library/tkinter/introduction/x6315-options.htm (1 of 2) [3/29/2003 12:46:52 AM]

Options

justify constant

padx, pady distance

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAI SED,
GROOVE, and RI DGE.
Note that to show the border, you need to
change the bor der wi dt h from it's default
value of 0.

bor derw dt h (bd) distance Border width. The default is O (no border).

t akef ocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the message
accepts focus only if it has any keyboard
bindings (default is off, in other words).

t ext string

textvariabl e variable

wi dt h distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6315-options.htm (2 of 2) [3/29/2003 12:46:52 AM]

The Pack Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 35. The Pack Geometry
Manager

Table of Contents
When to use the Pack Manager

Patterns
Methods

Options

The Pack geometry manager packs widgets in rows or columns. You can use options like
fill,expand, andsi de to control this geometry manager.

When to use the Pack Manager

To be added.

Warning

Don't mix grid and pack in the same master window. Tkinter will happily spend the rest
of your lifetime trying to negotiate a solution that both managers are happy with.
Instead of waiting, kill the application, and take another look at your code. A common
mistake is to use the wrong parent for some of the widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/pack.htm [3/29/2003 12:46:55 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6484-patterns.htm [3/29/2003 12:46:56 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
Widget Methods

The following methods are available on widgets managed by the pack manager:

pack(opti on=val ue, ...),pack _configure(option=value, ...)
Pack the widget as described by the options (see below).

pack forget()

Remove the widget. The widget is not destroyed, and can be displayed again by
pack or any other manager.

pack info() => dictionary

Return a dictionary containing the current options.

Manager Methods

The following methods are available on widgets that are used as pack managers (that is,
the geometry masters for widgets managed by the pack manager).

pack propagat e(val ue)
Enable or disable geometry propagation.
pack sl aves() => I|i st

Returns a list of the "slave™ widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6487-methods.htm [3/29/2003 12:46:57 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The following options can be used with the pack and pack_conf i gur e methods:

Table 35-1. Pack Manager Options

Option

si de

fill

expand

Type

constant

constant

flag

Description

Specifies which side to pack the widget against. To
pack widgets vertically, use TOP (default). To pack
widgets horizontally, use LEFT.

You can also pack widgets along the BOTTOMand

RI GHT edges. You can mix sides in a single
geometry manager, but the results may not be what
you expect. While you can create pretty complicated
layouts by nesting Fr anme widgets, you may prefer
using the gr i d geometry manager for all non-
trivial layouts.

Specifies whether the widget should occupy all the
space given to it by the master. If NONE (default),
keep the widget's original size. If X (horizontally), Y
(vertically), or BOTH, fill the given space along that
direction.

To make a widget fill the entire master widget, set
fill to BOTHand expand to a non-zero value.

Specifies whether the widgets should be expanded
to fill any extra space in the geometry master. If
zero (default), the widget is not expanded.

http://www.pythonware.com/library/tkinter/introduction/x6527-options.htm (1 of 2) [3/29/2003 12:46:58 AM]

Options

in (in)) widget Pack widget inside the given widget. You can only
pack a widget inside its parent, or in any decendant
of its parent. This option should usually be left out,
in which case the widget is packed inside its parent.

Note thati n is a reserved word in Python. To use it
as a keyword option, append an underscore (i n_).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6527-options.htm (2 of 2) [3/29/2003 12:46:58 AM]

The Photolmage Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 36. The Photolmage
Class

Table of Contents
When to use the Photolmage Class

Patterns
Methods

Options

When to use the Photolmage
Class

This class is used to display images (either grayscale or true color images) in labels,
buttons, canvases, and text widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/photoimage.htm [3/29/2003 12:46:59 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6602-patterns.htm [3/29/2003 12:47:00 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

configure(options),config(options)
Change one or more configuration options.
cget (option) => string
Return the value of the given configuration option.
w dth() => integer,height() => integer
Returns the width (height) of the image, in pixels.
type() => string
Returns the string "photo™.
get(x, y) => string
Fetch the pixel at the given position (where (0, O) is in the upper left corner).

As of Python 1.5.2, this method returns a string containing one or three pixel
components. Here's how to convert this string to either an integer or a 3-tuple of

integers:
optionval ue = imget(x, y)
if type(value) == type(""):
try:
val ue = int(val ue)

except Val ueError:
value = tuple(map(int, string.split(value)))

put (data), put (data, bbox)

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (1 of 3) [3/29/2003 12:47:01 AM]

Methods

Write pixel data to the image.
read()

Not supported in 1.5.2 or earlier.
wite(fil enane, options)

Save the contents of the Photolmage to a file using the given format. The following
options can be used:

Table 36-1. Photolmage Write Options

Option Type Description

f or mat string Specifies the format handler to use when
writing this image. This is typically "gif" or
"ppm".

from coords tuple Save only a part of the image. If a 2-tuple is

given, wr i t e saves the rectangle between that
position, and the lower right corner of the
image. If a 4-tuple is given, it specifies which
rectangle to save.

bl ank()

Clears the image. The size is left as it is, but the contents are made completely
transparent.

copy() => phot oi nrage obj ect
Duplicate the current Phot ol mnage instance.
zoonm(xscal e, yscal e),zoon{(scal e)

Resize the image to (xscale*width, yscale*height) pixels, using nearest neighbor
resampling. In other words, each pixel in the source image will be expanded to
xscale*yscale pixels. If only one scale is given, it is used for both directions.

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (2 of 3) [3/29/2003 12:47:01 AM]

Methods

subsanpl e(xscal e, yscal e), subsanpl e(scal e)

Resize the image to (xscale/width, yscale/height) pixels, using nearest neighbor
resampling. If only one scale is given, it is used for both directions.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (3 of 3) [3/29/2003 12:47:01 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Phot ol nage class supports the following options.

Table 36-2. Photolmage Options

Option

file

dat a

wi dt h,
hei ght

f or mat

Type

string

string

integer

string

Description

Read image data from the given file. The file can
contain GIF, PGM (grayscale), or PPM (truecolor)
data. Transparent regions in the GIF file are made
transparent.

To handle other file formats, use the corresponding
class in the Python Imaging Library.

Read image data from a string. In the current
version of Tk, this only works for base64-encoded
GIF files. If the f i | e option is given, this option is
ignored.

The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get
the actual size, use the corresponding methods.

If several file handlers can handle the given file, this
option can be used to specify which handler to use.
If you haven't installed extra file handlers, there's
no need to use this option.

http://www.pythonware.com/library/tkinter/introduction/x6716-options.htm (1 of 2) [3/29/2003 12:47:02 AM]

Options

ganma

pal ette

float

integer or string

The image gamma. To get fully accurate colors, this
should be set to a combination of the gamma values
for the image and display. Default is 1.0 (no gamma
correction).

Specifies the number of palette entries to use when
displaying this image. You can either use a single
integer to display the image as a grayscale image
with that number of grayscale levels, or a string
with three numbers separated by slashes, to display
the image as a color image with that number of red,
green, and blue values. The default is system
specific.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6716-options.htm (2 of 2) [3/29/2003 12:47:02 AM]

The Place Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 37. The Place Geometry
Manager

Table of Contents
When to use the Place Manager

Patterns
Methods

Options

The Pl ace geometry manager is the simplest of the three general geometry managers
provided in Tkinter. It allows you explicitly set the position and size of a window, either
in absolute terms, or relative to another window.

You can access the place manager through the pl ace method which is available for all
standard widgets.

When to use the Place Manager

It is usually not a good idea to use pl ace for ordinary window and dialog layouts; its
simply to much work to get things working as they should. Use the pack orgri d
managers for such purposes.

However, pl ace has its uses in more specialized cases. Most importantly, it can be used
by compound widget containers to implement various custom geometry managers.
Another use is to position control buttons in dialogs.

Back Next

http://www.pythonware.com/library/tkinter/introduction/place.htm [3/29/2003 12:47:03 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Let's look at some usage patterns. The following command centers a widget in its parent:
w. pl ace(rel x=0.5, rely=0.5, anchor=CENTER)

Here's another variant. It packs a Label widget in a frame widget, and then places a But t on
in the upper right corner of the frame. The button will overlap the label.

pane = Frane(nmaster)
Label (pane, text="Pane Title"). pack()
b = Button(pane, w dth=12, height=12,
i mge=l aunch_i con, command=sel f.| aunch)
b. pl ace(rel x=1, x=-2, y=2, anchor =NE)

The following excerpt from a Not epad widget implementation displays a notepad page
(implemented as a Fr ane) in the notepad body frame. It first loops over the available pages,
calling pl ace_f or get for each one of them. Note that it's not an error to "unplace" a widget
that it's not placed in the first case:

for win self.__pages:
w. pl ace_forget ()
sel f. __pages[index].place(in_=self._ body, x=bd, y=bd)
You can combine the absolute and relative options. In such cases, the relative option is applied
first, and the absolute value is then added to that position. In the following example, the widget
w is almost completely covers its parent, except for a 5 pixel border around the widget.

w. pl ace(x=5, y=5, relw dth=1, rel height=1, w dth=-10, hei ght=-10)

You can also place a widget outside another widget. For example, why not place two widgets on
top of each other:

wW2. place(in_=wl, rel x=0.5, y=-2, anchor=S, bordernode="outside")

Note the use of r el x and anchor options to center the widgets vertically. You could also use
(relx=0, anchor=SW) to get left alignment, or (relx=1, anchor=SE) to get right alignment.

http://www.pythonware.com/library/tkinter/introduction/x6799-patterns.htm (1 of 2) [3/29/2003 12:47:04 AM]

Patterns

By the way, why not combine this way to use the packer with the launch button example shown
earlier. The following example places two buttons in the upper right corner of the pane:

bl = DrawnButton(pane, (12, 12), l|aunch_icon, comrand=sel f.| aunch)

bl. pl ace(rel x=1, x=-2, y=2, anchor=NE)
b2 = DrawnButton(pane, (12, 12), info_icon, conmand=self.info)
b2. pl ace(i n_=bl, x=-2, anchor=NE, bordernode="outsi de")

Finally, let's look at a piece of code from an imaginary Spl i t W ndow container widget. The
following piece of code splits frame into two subframes called f1 and f2.

f1 = Frane(franme, bd=1, relief=SUNKEN)

f2 = Franme(franme, bd=1, relief=SUNKEN)

split = 0.5

fl.place(rely=0, rel height=split, relw dth=1)
f2.place(rely=split, relheight=1.0-split, relw dth=1)

To change the split point, set split to something suitable, and call the pl ace method again. If
you haven't changed an option, you don't have to specify it again.

f1.place(rel height=split)
f2.place(rely=split, relheight=1.0-split)

You could add a small frame to use as a dragging handle, and add suitable bindings to it, e.qg:
f3 = Franme(frame, bd=2, relief=RAl SED, w dth=8, hei ght=38)
f3.place(rel x=0.9, rely=split, anchor=E)
f3. bi nd("<Bl1- Motion>", self.adjust)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6799-patterns.htm (2 of 2) [3/29/2003 12:47:04 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

pl ace(opti on=val ue, ...),place_configure(option=value, ...)
Place the widget as described by the options (see below).
pl ace forget ()

Remove the widget. The widget is not destroyed, and can be displayed again by
pl ace or any other manager.

place_info() => dictionary
Return a dictionary containing the current options.
pl ace_sl aves() => |i st

Returns a list of the "slave™ widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6836-methods.htm [3/29/2003 12:47:05 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The following options can be used with the pl ace and pl ace_conf i gur e methods:

Table 37-1. Place Manager Options

Option

anchor

bor der node

in (in)

relw dth,
r el hei ght

Type

constant

constant

widget

float

Description

Specifies which part of the widget that should be
placed at the given position. Valid values are N, NE,
E, SE, SWW NW or CENTER. Default is NW(the
upper left corner, that is).

If I NSI DE, the size and position are relative to the
reference widget's inner size, excluding any border.
If QUTSI DE, it's relative to the outer size, including
the border. Default is | NSI DE.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "inside"
and "outside" instead.

Place widget relative to the given widget. You can
only place a widget relative to its parent, or to any
decendant of its parent. If this option is not given, it
defaults to the parent. Note thati n is a reserved
word in Python. To use it as a keyword option,
append an underscore (i n_).

Size, relative to the reference widget.

http://www.pythonware.com/library/tkinter/introduction/x6863-options.htm (1 of 2) [3/29/2003 12:47:06 AM]

Options

rel x, rely float Position, relative to the reference widget (usually
the parent, unless otherwise specified by the i n
option). 0.0 is the left (upper) edge, 1.0 is the right
(lower) edge.

wi dt h, integer Size, in pixels. If omitted, it defaults to the widget's

hei ght "natural” size.

X, Yy integer Absolute position, in pixels. If omitted, defaults to
0.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6863-options.htm (2 of 2) [3/29/2003 12:47:06 AM]

The Radiobutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 38. The Radiobutton
Widget

Table of Contents
When to use the Radiobutton Widget

Patterns
Methods

Options

The Radi obut t on is a standard Tkinter widget used to implement one-of-many
selections. Radiobuttons can contain text or images, and you can associate a Python
function or method with each button. When the button is pressed, Tkinter automatically
calls that function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

Each group of Radi obut t on widgets should be associated with single variable. Each
button then represents a single value for that variable.

When to use the Radiobutton
Widget

The radiobutton widget is used to implement one-of-many selections. It's almost always
used in groups, where all group members use the same variable.

Back Next

http://www.pythonware.com/library/tkinter/introduction/radiobutton.htm [3/29/2003 12:47:07 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

The Radi obut t on widget is very similar to the check button. To get a proper radio behavior,
make sure to have all buttons in a group point to the same variable, and use the val ue option to
specify what value each button represents:

v = IntVar()
Radi obutton(master, text="One", vari abl e=v, val ue=1). pack(anchor=W
Radi obutt on(master, text="Two", vari abl e=v, val ue=2). pack(anchor=W

If you need to get notified when the value changes, attach a command callback to each button.

To create a large number of buttons, use a loop:

MODES = [
(" Monochrome", "1"),
("Grayscale", "L"),
("True color", "RG&"),
("Col or separation”, "CWMK"),

]

v = StringVar ()
v.set("L") # initialize

for text, node in MODES:
b = Radi obutton(naster, text=text,
vari abl e=v, val ue=node)
b. pack(anchor =W

Figure 38-1. Standard radiobuttons

% Monachrome
™ Grayscale
™ True color

& Color separation

http://www.pythonware.com/library/tkinter/introduction/x6969-patterns.htm (1 of 2) [3/29/2003 12:47:08 AM]

Patterns

To turn the above example into a "button box" rather than a set of radio buttons, set the
i ndi cat or on option to 0. In this case, there's no separate radio button indicator, and the
selected button is drawn as SUNKEN instead of RAI SED:

Figure 38-2. Using indicatoron=0

I M onochrome

Grayscale

True colar

Color zeparation

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6969-patterns.htm (2 of 2) [3/29/2003 12:47:08 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Radi obut t on widget supports the standard Tkinter Widget interface, plus the
following methods:

desel ect ()
Deselect the button.

flash()

Redraw the button several times, alternating between active and normal
appearance.

I nvoke()

Call the command associated with the button.
sel ect ()

Select the button.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6990-methods.htm [3/29/2003 12:47:09 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Radi obut t on widget supports the following options:

Table 38-1. Radiobutton Options

Option

acti vebackground,
acti vef oreground

anchor

background (bg),
foreground (fQ)

bi t map

Type

color

constant

color

bitmap

Description

The color to use when the button is
activated.

Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SWW NW or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

The button color. The default is platform
specific.

The bitmap to display in the widget. If the
I mage option is given, this option is
ignored.

The following bitmaps are available on all
platforms: “error"”, "gray75", "gray50",
"gray25", "grayl2", "hourglass", "info",

"questhead”, "question”, and "warning".

&

T3 ¢

The following additional bitmaps are

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (1 of 5) [3/29/2003 12:47:10 AM]

Options

borderw dt h (bd)

conmmand

cur sor

def aul t

di sabl edf or egr ound

f ont

int

callback

cursor

int

color

font

available on the Macintosh only:
"document”, "stationery", "edition",
"application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk",

“cdrom", "preferences", "querydoc”, "stop",
"note", and "caution".

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@sample.xbm™.

The width of the button border. The default
is platform specific, but is usually 1 or 2
pixels.

A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

The cursor to show when the mouse is
moved over the button.

If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

The color to use when the button is
disabled. The background is shown in the
backgr ound color.

The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (2 of 5) [3/29/2003 12:47:10 AM]

Options

hi ghl i ght backgr ound, |color

hi ghl i ght col or

hi ghl i ghtt hi ckness

| mage

I ndi cat or on

justify

padx, paxy

relief

sel ect col or

distance

image

bool

constant

distance

constant

color

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

Controls the width of the focus highlight
border. Default is typically one or two
pixels.

The image to display in the widget. If
specified, this takes precedence over the
t ext and bi t map options.

Controls if the indicator should be drawn or
not. For check and radio buttons, this is on
by default. Setting this option to false
means that the relief will be used as the
indicator. If the button is selected, it is
drawn as SUNKEN instead of RAI SED. For a
menu button, this is off by default. Setting it
to true draws a small indicator to the right.
This is used by the Opt i onMenu widget.

Defines how to align multiple lines of text.
Use LEFT, Rl GHT, or CENTER,

Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

Border decoration. Usually, the button is
SUNKEN when pressed, and RAI SED
otherwise. Other possible values are
GROOVE, RI DGE, and FLAT.

Color to use for the selector.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (3 of 5) [3/29/2003 12:47:10 AM]

Options

sel ecti mage

state

t akef ocus

t ext

textvari abl e

underli ne
val ue
vari abl e

wi dt h, hei ght

image

constant

flag

string

variable

int

None

variable

distance

Graphic image to use for the selector.

The button state: NORVAL, ACTI VE or
DI SABLED. Default is NORIMAL.

Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

The text to display in the button. The text
can contain newlines. If the bi t map or

I mage options are used, this option is
ignored.

Associates a Tkinter variable (usually a
St ri ngVar) to the button. If the variable is
changed, the button text is updated.

Default is -1.

The value to assign to the associated
variable when the button is pressed.

Associates a Tkinter variable to the button.
When the button is pressed, the variable is
set to val ue. Explicit changes to the
variable are automatically reflected by the
buttons.

The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (4 of 5) [3/29/2003 12:47:10 AM]

Options

wr apl engt h distance Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (5 of 5) [3/29/2003 12:47:10 AM]

The Scale Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 39. The Scale Widget

Table of Contents
When to use the Scale Widget

Patterns
Methods

Options

When to use the Scale Widget

To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/scale.htm [3/29/2003 12:47:11 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7305-patterns.htm [3/29/2003 12:47:12 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

get() => integer or float

Get the current scale value. Tkinter returns an integer if possible, otherwise a
floating point value.

set (val ue)
Set the scale value.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7308-methods.htm [3/29/2003 12:47:13 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

Table 39-1. Scale Options

Option Type Description

acti vebackground color

background (bg) color

bi gi ncr enent value

command callback

cur sor cursor The cursor to show when the mouse pointer
is placed over the scale widget. Default is a
system specific arrow cursor.

digits value

f ont font

foreground (fQ) color

from(from) value

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (1 of 3) [3/29/2003 12:47:14 AM]

Options

hi ghl i ght backgr ound, |color Controls how to draw the focus highlight
hi ghl i ght col or border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the
hi ghl i ght backgr ound color. The
defaults are system specific.

hi ghl'i ghtt hi ckness |distance Controls the width of the focus highlight
border. Default is O (no border).

| abel string

| engt h distance

ori ent constant

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAI SED,
GROOVE, and RI DGE.

bor derw dt h (bd) distance The width of the button border. The default
is platform specific, but is usually 1 or 2
pixels.

r epeat del ay time

repeati nt erval time

resol ution value

showal ue flag

sliderlength distance

sliderrelief constant

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (2 of 3) [3/29/2003 12:47:14 AM]

Options

State constant

t akef ocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the scale accepts
focus only if it has any keyboard bindings
(default is off, in other words).

tickinterval time

to value

t roughcol or color

vari abl e variable

wi dt h distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (3 of 3) [3/29/2003 12:47:14 AM]

The Scrollbar Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 40. The Scrollbar
Widget

Table of Contents
When to use the Scrollbar Widget

Patterns
Methods

Options

When to use the Scrollbar
Widget

This widget is used to implement scrolled listboxes, canvases, and text fields.

Back Next

http://www.pythonware.com/library/tkinter/introduction/scrollbar.htm [3/29/2003 12:47:15 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

The Scr ol | bar widget is almost always used in conjunction with a Li st box, Canvas,
or Text widget. Horizontal scrollbars can also be used with the Ent r y widget.

To connect a vertical scrollbar to such a widget, you have to do two things:
1. Set the widget's yscr ol | comrand callbacks to the set method of the scrollbar.
2. Set the scrollbar's command to the yvi ewmethod of the widget.

Example 40-1. Connecting a scrollbar to a listbox

scroll bar-exanpl e- 1. py
from Tkinter inport *
root = Tk()

scroll bar = Scroll bar(root)
scrol I bar. pack(side=RI GHT, fill=Y)

i stbox = Listbox(root, yscrollcommand=scroll bar. set)
for i in range(1000):
i stbox.insert(END, str(i))
| i st box. pack(si de=LEFT, fill=BOTH)
scrol | bar. confi g(command=Ili st box. yvi ew)

mai nl oop()
When the widget view is modified, the widget notifies the scrollbar by calling the set
method. And when the user manipulates the scrollbar, the widget's yvi ewmethod is

called with the appropriate arguments.

Adding a horizontal scrollbar is as simple. Just use the xscr ol | command option, and
the xvi ewmethod.

http://www.pythonware.com/library/tkinter/introduction/x7583-patterns.htm (1 of 2) [3/29/2003 12:47:16 AM]

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7583-patterns.htm (2 of 2) [3/29/2003 12:47:16 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

get() => 1o, hi

Returns the relative offset for the upper (leftmost) and lower (rightmost) end of

the scrollbar slider. Offset 0.0 means that the slider is in its topmost (or leftmost)

position, and offset 1.0 means that it is in its bottommost (or rightmost) position.
set(lo, hi)

Moves the slider to a new position.

del ta(deltax, deltay) => fl oat

Returns a floating point number that should be added to the current slider offsets
in order to move the slider the given number of pixels. This is typically used by the
mouse bindings to figure out how to move the slider when the user is dragging it
around.

fraction(x, y)

Returns a floating point value which gives the offset corresponding to the given
mouse position.

I dentify(x, y) => string

Returns a string describing what's under the mouse pointer. This is typically one of
"arr owl" (top/left arrow), "t r ough1", "sl i der ™, "t r ough2" or "ar r ow2"
(bottom/right).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7610-methods.htm [3/29/2003 12:47:17 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

The Scr ol | bar widget supports the following options.
Note that most options are ignored on Windows and Macintosh, where the scrollbar is
drawn via the native Ul toolkit. For best results, use only the conmand and or i ent

options in your programs.

Table 40-1. Scrollbar Options

Option Type Description

ori ent constant Defines how to draw the scrollbar. Use one
of HORI ZONTAL or VERTI CAL. Default is
VERTI CAL.

conmand callback Used to update the associated widget. This

Is typically the xvi ewor yvi ewmethod of
the scrolled widget.

If the user drags the scrollbar slider, the
command is called as cal | back(MOVETQ,
of f set), where offset 0.0 means that the
slider is in its topmost (or leftmost)
position, and offset 1.0 means that it is in its
bottommost (or rightmost) position.

If the user clicks the arrow buttons, or clicks
in the trough, the command is called as

cal | back(SCROLL, step, what).The
second argument is either "- 1" or "1"
depending on the direction, and the third
argument is UNI TS to scroll lines (or other
units relevant for the scrolled widget), or
PAGES to scroll full pages.

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (1 of 3) [3/29/2003 12:47:18 AM]

Options

acti vebackground color
activerelief constant
background (bg) color
cursor cursor

el enent borderw dt h distance

hi ghl i ght backgr ound, |color
hi ghl i ght col or

hi ghl i ghtt hi ckness |distance

j unp constant

These constants are not defined in Python
1.5.2 and earlier. For compatibility, use the

strings "novet 0", "scrol | *, "uni t s", and
"pages"instead.

The cursor to show when the mouse pointer
is placed over the scrollbar widget. Default
IS a system specific arrow cursor.

Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

Controls the width of the focus highlight
border. Default is O (no border).

Note that this option is ignored under
Windows.

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (2 of 3) [3/29/2003 12:47:18 AM]

Options

relief constant Border decoration. The default is SUNKEN.
Other possible values are FLAT, RAI SED,
GROOVE, and RI DGE.
Note that this option is ignored under
Windows.

borderw dt h (bd) distance Border width. The default is O (no border).
Note that this option is ignored under
Windows.

r epeat del ay time

repeati nterval time

t akef ocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the scrollbar
accepts focus only if it has any keyboard
bindings (default is off, in other words).

t roughcol or color

wi dt h distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (3 of 3) [3/29/2003 12:47:18 AM]

The StringVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 41. The StringVar Class

Table of Contents
When to use the StringVar Class

Patterns
Methods

When to use the StringVar Class

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/stringvar.htm [3/29/2003 12:47:19 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7846-patterns.htm [3/29/2003 12:47:20 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

get() => string,set(string)
FIXME
trace(node, call back),trace_vari abl e(node, call back)
FIXME
trace_vdel et e(node, call back nane)
FIXME
trace vinfo() => |ist
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7849-methods.htm [3/29/2003 12:47:21 AM]

The Text Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 42. The Text Widget

Table of Contents
When to use the Text Widget

Concepts
Patterns

Methods
Options

The Text widget provides formatted text display. It allows you to display and edit text
with various styles and attributes. The widget also supports embedded images and
windows.

When to use the Text Widget

The text widget is used to display text documents, containing either plain text or
formatted text (using different fonts, embedded images, and other embellishments). The
text widget can also be used as a text editor.

Back Next

http://www.pythonware.com/library/tkinter/introduction/text.nhtm [3/29/2003 12:47:22 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts

The text widget stores and displays lines of text.

The text body can consist of characters, marks, and embedded windows or images.
Different regions can be displayed in different styles, and you can also attach event
bindings to regions.

By default, you can edit the text widget's contents using the standard keyboard and
mouse bindings. To disable editing, set the st at e option to DI SABLED (but if you do
that, you'll also disable the i nsert and del et e methods).

Indexes

Indexes are used to point to positions within the text handled by the text widget. Like
Python sequence indexes, text widget indexes correspond to positions between the actual
characters.

Tkinter provides a number of different index types:
« line/column ("line.column™)
. lineend ("line.end™)
« | NSERT
« CURRENT
. END
. user-defined marks
. user-defined tags ("tag.first", "tag.last")

. selection (SEL_FI RST, SEL_LAST)

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (1 of 9) [3/29/2003 12:47:23 AM]

Concepts

. window coordinate ("@x,y")
. embedded object name (window, images)

.« expressions

Lines and columns

line/column indexes are the basic index type. They are given as strings consisting of a
line number and column number, separated by a period. Line numbers start at 1, while
column numbers start at O, like Python sequence indexes. You can construct indexes
using the following syntax:

"0d. %d" % (line, colum)

It is not an error to specify line numbers beyond the last line, or column numbers beyond
the last column on a line. Such numbers correspond to the line beyond the last, or the
newline character ending a line.

Note that line/column indexes may look like floating point values, but it's seldom
possible to treat them as such (consider position 1.25 vs. 1.3, for example). | sometimes
use 1. O instead of "1.0" to save a few keystrokes when referring to the first character in
the buffer, but that's about it.

You can use the i ndex method to convert all other kinds of indexes to the corresponding
line/column index string.

Line endings

A line end index is given as a string consisting of a line number directly followed by the
text". end". A line end index correspond to the newline character ending a line.

Named indexes
| NSERT (or "insert™) corresponds to the insertion cursor.

CURRENT (or "current™) corresponds to the character closest to the mouse pointer.
However, it is only updated if you move the mouse without holding down any buttons (if
you do, it will not be updated until you release the button).

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (2 of 9) [3/29/2003 12:47:23 AM]

Concepts

END (or "end") corresponds to the position just after the last character in the buffer.

User-defined marks are named positions in the text. | NSERT and CURRENT are
predefined marks, but you can also create your own marks. See below for more
information.

User-defined tags represent special event bindings and styles that can be assigned to
ranges of text. For more information on tags, see below.

You can refer to the beginning of a tag range using the syntax "tag. fi r st " (just before
the first character in the text using that tag), and "tag. | ast " (just after the last character
using that tag).

"Os.first" % tagnane
"Us.last" % tagnane

If the tag isn't in use, Tkinter raises a Tcl Er r or exception.

The selection is a special tag named SEL (or "sel") that corresponds to the current
selection. You can use the constants SEL_FI RST and SEL_LAST to refer to the selection.
If there's no selection, Tkinter raises a Tcl Er r or exception.

Coordinates

You can also use window coordinates as indexes. For example, in an event binding, you
can find the character closest to the mouse pointer using the following syntax:

"@4d, %d" % (event.x, event.y)

Embedded objects

Embedded object name can be used to refer to windows and images embedded in the text
widget. To refer to a window, simply use the corresponding Tkinter widget instance as an
index. To refer to an embedded image, use the corresponding Tkinter Phot ol mage or

Bi t mapl mage object.

Expressions

Expressions can be used to modify any kind of index. Expressions are formed by taking
the string representation of an index (use st r if the index isn't already a string), and

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (3 of 9) [3/29/2003 12:47:23 AM]

Concepts

appending one or more modifiers from the following list:

. "+ count char s" moves the index forward. The index will move over newlines, but
not beyond the END index.

. "- count char s" moves the index backwards. The index will move over newlines,
but not beyond index "1.0".

. "+countlines"and"- countl i nes" moves the index full lines forward (or
backwards). If possible, the index is kept in the same column, but if the new line is
too short, the index is moved to the end of that line.

. "l nest art " moves the index to the first position on the line.

. "l i neend" the index to the last position on the line (the newline, that is).

. "wordst art " and "wor dend" moves the index to the beginning (end) of the
current word. Words are sequences of letters, digits, and underline, or single non-
space characters.

The keywords can be abbreviated and spaces can be omitted as long as the result is not
ambigous. For example, "+ 5 char s" can be shortened to "+5c".

For compatibility with implementations where the constants are not ordinary strings,
you may wish to use st r or formatting operations to create the expression string. For
example, here's how to remove the character just before the insertion cursor:

def backspace(event):
event . w dget. del ete(" %s-1c" % | NSERT, | NSERT)

Marks

Marks are (usually) invisible objects embedded in the text managed by the widget. Marks
are positioned between character cells, and moves along with the text.

. user-defined marks
. | NSERT

. CURRENT

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (4 of 9) [3/29/2003 12:47:23 AM]

Concepts

You can use any number of user-defined marks in a text widget. Mark names are
ordinary strings, and they can contain anything except whitespace (for convenience, you
should avoid names that can be confused with indexes, especially names containing
periods). To create or move a mark, use the mar k_set method.

Two marks are predefined by Tkinter, and have special meaning:

| NSERT (or "insert") is a special mark that is used to represent the insertion cursor.
Tkinter draws the cursor at this mark's position, so it isn't entirely invisible.

CURRENT (or "current™) is a special mark that represents the character closest to the
mouse pointer. However, it is only updated if you move the mouse without holding down
any buttons (if you do, it will not be updated until you release the button).

Special marks can be manipulated as other user-defined marks, but they cannot be
deleted.

If you insert or delete text before a mark, the mark is moved along with the other text. To
remove a mark, you must use the mar k_unset method. Deleting text around a mark
doesn't remove the mark itself.

If you insert text at a mark, it may be moved to the end of that text or left where it was,
depending on the mark's gravity setting (LEFT or Rl GHT; default is RI GHT). You can use
the mar k_gr avi t y method to change the gravity setting for a given mark.

In the following example, the "sentinel” mark is used to keep track of the original
position for the insertion cursor.

text.mark_set ("sentinel", | NSERT)
text.mark_gravity("sentinel", LEFT)

You can now let the user enter text at the insertion cursor, and use
text.get("sentinel", |NSERT) topick up the result.

Tags
Tags are used to associated a display style and/or event callbacks with ranges of text.

. user-defined tags

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (5 of 9) [3/29/2003 12:47:23 AM]

Concepts

. SEL

You can define any number of user-defined tags. Any text range can have multiple tags,
and the same tag can be used for many different ranges. Unlike the Canvas widget, tags
defined for the text widget are not tightly bound to text ranges; the information
associated with a tag is kept also if there is no text in the widget using it.

Tag names are ordinary strings, and they can contain anything except whitespace.

SEL (or "sel") is a special tag which corresponds to the current selection, if any. There
should be at most one range using the selection tag.

The following options are used with t ag_conf i g to specify the visual style for text using
a certain tag.

Table 42-1. Text Tag Options
Option Type Description

backgr ound color The background color to use for text having this tag.

Note that the bg alias cannot be used with tags; it is
interpreted as bgst i ppl e rather than
backgr ound.

bgsti ppl e (or |bitmap The name of a bitmap which is used as a stipple

bg) brush when drawing the background. Typical
values are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

borderw dt h |distance The width of the text border. The default is O (no
border).

Note that the bd alias cannot be used with tags.

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (6 of 9) [3/29/2003 12:47:23 AM]

Concepts

fgstippl e (or |bitmap
fg)

f ont font

f or egr ound color

justify constant
| mar gi nl distance
| mar gi n2 distance
of f set distance

overstrike flag

relief constant

The name of a bitmap which is used as a stipple
brush when drawing the text. Typical values are
"grayl2", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

The font to use for text having this tag.

The color to use for text having this tag.

Note that the f g alias cannot be used with tags; it is
interpreted as f gst i ppl e rather than
f or egr ound.

Controls text justification (the first character on a
line determines how to justify the whole line). Use
one of LEFT, Rl GHT, or CENTER. Default is LEFT.

The left margin to use for the first line in a block of
text having this tag. Default is O (no left margin).

The left margin to use for every line but the first in
a block of text having this tag. Default is O (no left
margin).

Controls if the text should be offset from the
baseline. Use a positive value for superscripts, a
negative value for subscripts. Default is O (no
offset).

If non-zero, the text widget draws a line over the
text that has this tag. For best results, you should
use overstrike fonts instead.

The border style to use for text having this tag. Use
one of SUNKEN, RAI SED, GROOVE, RI DGE, or FLAT.
Default is FLAT (no border).

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (7 of 9) [3/29/2003 12:47:23 AM]

Concepts

rmargin distance The right margin to use for blocks of text having
this tag. Default is O (no right margin).

spaci ngl distance Spacing to use above the first line in a block of text
having this tag. Default is O (no extra spacing).

spaci ng2 distance Spacing to use between the lines in a block of text
having this tag. Default is O (no extra spacing).

spaci ng3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is O (no extra spacing).

t abs string

underli ne flag If non-zero, the text widget underlines the text that
has this tag. For example, you can get the standard
hyperlink look with (foreground="blue",
underline=1). For best results, you should use
underlined fonts instead.

wWr ap constant The word wrap mode to use for text having this tag.

Use one of NONE, CHAR, or WORD.

If you attach multiple tags to a range of text, style options from the most recently created
tag override options from earlier tags. In the following example, the resulting text is blue
on a yellow background.

text.tag config("n", background="yellow', foreground="red")
text.tag config("a", foreground="Dblue")
text.insert(contents, ("n", "a"))

Note that it doesn't matter in which order you attach tags to a range; it's the tag creation
order that counts.

You can change the tag priority using thet ag_rai seandtag_| ower. Ifyou add a
text.tag | ower("a") tothe above example, the text becomes red.

The t ag_bi nd method allows you to add event bindings to text having a particular tag.

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (8 of 9) [3/29/2003 12:47:23 AM]

Concepts

Tags can generate mouse and keyboard events, plus <Ent er > and <Leave> events. For
example, the following code snippet creates a tag to use for any hypertext links in the

text:
text.tag config("a", foreground="Dblue", underline=1)
text.tag bind("a", "<Enter>", show hand cursor)
text.tag bind("a", "<Leave>", show arrow cursor)
text.tag bind("a", "<Button-1>", click)
text.config(cursor="arrow")
text.insert(INSERT, "click here!", "a")

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (9 of 9) [3/29/2003 12:47:23 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns

When you create a new text widget, it has no contents. To insert text into the widget, use the
I nsert method and insert text at the | NSERT or END indexes:

text.insert(END, "hello, ")
text.insert(END, "world")

You can use an optional third argument to the i nsert method to attach one or more tags to
the newly inserted text:

text.insert(END, "this is a ")
text.insert(END, "link", ("a", "href"+href))

To insert embedded objects, use the w ndow cr eat e ori nage_cr eat e methods:

button = Button(text, text="Cick", command=cli ck)
t ext . w ndow _creat e(| NSERT, w ndow=butt on)

To delete text, use the del et e method. Here's how to delete all text from the widget (this
also deletes embedded windows and images, but not marks):

text.del ete(1l.0, END)

To delete a single character (or an embedded window or image), you can use del et e with
only one argument:

t ext . del et e(| NSERT)
t ext. del ete(button)

To make the widget read-only, you can change the st at e option from NORMAL to
DI SABLED:

t ext.config(state=NORVAL)
text.del ete(1l.0, END)
text.insert(END, text)

t ext. confi g(stat e=Dl SABLED)

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (1 of 3) [3/29/2003 12:47:24 AM]

Patterns

Note that you must change the state back to NORVAL before you can modify the widget
contents from within the program. Otherwise, calls toi nsert and del et e will be silently
ignored.
To fetch the text contents of the widget, use the get method:

contents = text.get(1.0, END)
FIXME: add material on the dump method, and how to use it on 1.5.2 and earlier
Here's a simple way to keep track of changes to the text widget:

| mport nud5

def getsignature(contents):
return nd5. nd5(contents). di gest()

text.insert(END, contents) # original contents
si gnature = getsignature(contents)

contents = text.get (1.0, END)
I f signature != getsignature(contents):
print "contents have changed!"

FIXME: modify to handle ending linefeed added by text widget

The i ndex method converts an index given in any of the supported formats to a
line/column index. Use this if you need to store an "absolute™ index.

I ndex = text.index(index)

However, if you need to keep track of positions in the text even after other text is inserted or
deleted, you should use marks instead.

text. mark_set ("here", index)
text. mark_unset ("here")

The following function converts any kind of index to a (line, column)-tuple. Note that you
can directly compare positions represented by such tuples.

def getindex(text, index):
return tuple(map(int, string.split(text.index(index), ".")))

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (2 of 3) [3/29/2003 12:47:24 AM]

Patterns

I f getindex(text, INSERT) < getindex(text, "sentinel"):
text.mark_set (I NSERT, "sentinel")

The following example shows how to enumerate all regions in the text that has a given tag.

ranges = text.tag ranges(tag)
for i in range(0, len(ranges), 2):
start = ranges|i]
stop = ranges[i +1]
print tag, repr(text.get(start, stop))

The sear ch method allows you to search for text. You can search for an exact match
(default), or use a Tcl-style regular expression (call with the r egexp option set to true).

text.insert(END, "hello, world")

start = 1.0
whil e 1:
pos = text.search("o", start, stopi ndex=END)
i f not pos:
br eak
print pos

start = pos + "+1c"

Given an empty text widget, the above example prints 1. 4 and 1. 8 before it stops. If you
omit the st opi ndex option, the search wraps around if it reaches the end of the text.

To search backwards, set the backwar ds option to true (to find all occurences, start at END,
set st opi ndex to 1.0 to avoid wrapping, and use "-1c" to move the start position).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (3 of 3) [3/29/2003 12:47:24 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

The Text widget supports the standard Tkinter Widget interface, plus the following
methods:

i nsert(index, text),insert(index, text, tags)

Insert text at the given position (typically | NSERT or END). If you provide one or
more tags, they are attached to the new text.

If you insert text on a mark, the mark is moved according to its gravity setting.
del et e(i ndex),del ete(start, stop)

Delete the character (or embedded object) at the given position, or all text in the
given range. Any marks within the range are moved to the beginning of the range.

get (i ndex),get(start, stop)
Return the character at the given position, or all text in the given range.
dunp(i ndex, options...),dunp(start, stop, options...)

Return a list of widget contents at the given position, or for all text in the given
range. This includes tags, marks, and embedded objects. Not implemented in
Python 1.5.2 and earlier.

see(i ndex),yvi ewmi ndex)

If necessary, scroll the text widget to make sure the text at the given position is
visible. The see method scrolls the widget only if the given position isn't visible at
all, while yvi ewalways scrolls the widget to move the given position to the top of
the window.

I ndex(i ndex)

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (1 of 12) [3/29/2003 12:47:26 AM]

Methods

Return the "line.column” index corresponding to the given index.
conpar e(i ndexl1l, op, index2)
Compare the two positions, and return true if the condition held. The op argument

is One of ll<ll, ll<=ll, ll==II’ Il>=ll’ ll>|l’ Or Il!=ll (Pythonls II<>II Syntax iS not
supported).

Methods for Marks

The following methods are used to manipulate builtin as well as user-defined marks.
mar k_set (mar k, i ndex)
Move the mark to the given position. If the mark doesn't exist, it is created (with
gravity set to Rl GHT). You also use this method to move the predefined | NSERT
and CURRENT marks.

mar k_unset (mar k)

Remove the given mark from the widget. You cannot remove the builtin | NSERT
and CURRENT marks.

I ndex(mar k)

Return the line/column position corresponding to the given mark (or any other
index specifier; see above).

mar k_gravi ty(mar k)
Return the current gravity setting for the given mark (LEFT or Rl GHT).
mark_gravity(mrk, gravity)
Sets the gravity for the given mark. The gravity setting controls how to move the
mark if text is inserted exactly on the mark. If LEFT, the mark is not moved if text
Is inserted at the mark (that is, the text is inserted just after the mark). If Rl GHT,

the mark is moved to the right end of the text (that is, the text is inserted just
before the mark). The default gravity setting is Rl GHT.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (2 of 12) [3/29/2003 12:47:26 AM]

Methods

mar k_namnes()

Return a tuple containing the names of all marks used in the widget. This includes
the | NSERT and CURRENT marks (but not END, which is a special index, not a

mark).

Methods for Embedded Windows

The Text widget allows you to embed windows into the widget. Embedded windows
occupy a single character position, and moves with the text flow.

wi ndow creat e(i ndex, options...)

Insert a widget at the given position. You can either create the widget (which
should be a child of the text widget itself) first, and insert it using the w ndow
option, or provide a callback which is called when the window is first displayed.

Table 42-2. Text Window Options
Option Type Description

align constant Defines how to align the window on the line. Use
one of TOP, CENTER, BOTTOM or BASELI NE. The
last alignment means that the bottom of the
window is aligned with the text baseline - that is,
the same alignment that is used for all text on the
line).

Create callback This callback is called when the window is first
displayed by the text widget. It should create the
window (as a child to the text widget), and return
the resulting widget instance.

padx, pady distance Adds horizontal (vertical) padding between the
window and the surrounding text. Default is O (no

padding).

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (3 of 12) [3/29/2003 12:47:26 AM]

Methods

stretch flag If zero (or OFF), the window will be left as is also if
the line is higher than the window. If non-zero (or
ON), the window is stretched to cover the full line
(in this case, the alignment is ignored).

wi ndow widget Gives the widget instance to insert into the text.

I ndex(w ndow)

Return the line/column position corresponding to the given window (or any other
index specifier; see above).

del et e(w ndow)
Remove the given window from the text widget, and destroy it.
wi ndow_cget (i ndex, option)

Return the current value of the given option. If there's no window on the given
position, this method raises a Tcl Er r or exception.

wi ndow_confi g(i ndex, options...),w ndow _configure(index,
options...)

Modifies one or more options. If there's no window on the given position, this
method raises a Tcl Er r or exception.

wi ndow_nanes()
Return a tuple containing all windows embedded in the text widget. In 1.5.2 and
earlier, this method returns the names of the widgets, rather than the widget
instances. This will most likely be fixed in future versions.
Here's how to convert the names to a list of widget instances in a portable fashion:
w ndows = text.w ndow namnes()
try:

w ndows = map(text. nanet ow dget, w ndows)
except Tcl Error: pass

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (4 of 12) [3/29/2003 12:47:26 AM]

Methods

Methods for Embedded Images

The Text widget allows you to embed images into the widget. Embedded images occupy
a single character position, and moves with the text flow.

Note that the image interface is not available in early version of Tkinter (it's not
implemented by Tk versions before 8.0). For such platforms, you can display images by
embedding Label widgets instead.

iImage_create

| mage_create(index, options...).Insertanimage atthe given position. The
Image is given by the i nage option, and must be a Tkinter Phot ol nage or
Bi t mapl mage instance (or an instance of the corresponding PIL classes).

This method doesn't work with Tk versions before 8.0.

Table 42-3. Text Image Options
Option Type Description

align constant Defines how to align the image on the line. Use one
of TOP, CENTER, BOTTOM or BASELI NE. The last
alignment means that the bottom of the image is
aligned with the text baseline -- that is, the same
alignment that is used for all text on the line).

I mage image Gives the image instance to insert into the text.

name string Gives the name to use when referring to this image
in the text widget. The default is the name of the
Image object (which is usually generated by
Tkinter).

padx, pady distance Adds horizontal (vertical) padding between the
image and the surrounding text. Default is O (no
padding).

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (5 of 12) [3/29/2003 12:47:26 AM]

Methods

index

I ndex (i mage) . Return the line/column position corresponding to the given image (or
any other index specifier; see above).

delete
del et e(i mage) . Remove the given image from the text widget, and destroy it.
image_cget

| mage_cget (i ndex, option). Return the current value of the given option. If there's
no image on the given position, this method raises a Tcl Er r or exception. Not
implemented in Python 1.5.2 and earlier.

iImage_config
I mge_config(index, options...),inage_configure(index,

opti ons. . .).Maodifies one or more options. If there's no image on the given position,
this method raises a Tcl Er r or exception. Not implemented in Python 1.5.2 and earlier.

Image_names

| mage_nanes() . Return a tuple containing the names of all images embedded in the
text widget. Tkinter doesn't provide a way to get the corresponding Phot ol nage or

Bi t mapl mage objects, but you can keep track of those yourself using a dictionary (using
str (i mage) as the key).

This method is not implemented in Python 1.5.2 and earlier.

Methods for Tags

The following methods are used to manipulate tags and tag ranges.

tag add

tag add(tag, index),tag add(tag, start, top).Addtagto thecharacter at

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (6 of 12) [3/29/2003 12:47:26 AM]

Methods

the given position, or to the given range.

tag_remove

tag renove(tag, index),tag renove(tag, start, stop).Remove thetag
from the character at the given position, or from the given range. The information
associated with the tag is not removed (not even if you use tag_remove(1.0, END)).

tag_ delete

tag del ete(tag),tag_del ete(tags...).Remove the given tags from the widget.
All style and binding information associated with the tags are also removed.

tag_config

tag config(tag, options...),tag _configure(tag, options...).Setstyle
options for the given tag. If the tag doesn't exist, it is created.

Note that the style options are associated with tags, not text ranges. Any text having a
given tag will be rendered according to its style options, even if it didn't exist when the
binding was created. If a text range has several tags associated with it, the Text widget
combines the style options for all tags. Tags towards the top of the tag stack (created
later, or raised usingt ag_r ai se) have precedence.

tag_cget
tag _cget(tag, option).Getthe currentvalue for the given option.

tag bind

tag bind(tag, sequence, func),tag bind(tag, sequence, func, "+").
Add an event binding to the given tag. Tag bindings can use mouse- and keyboard-related
events, plus <Ent er > and <Leave>. If the tag doesn't exist, it is created. Usually, the
new binding replaces any existing binding for the same event sequence. The second form
can be used to add the new callback to the existing binding.

Note that the new bindings are associated with tags, not text ranges. Any text having the
tag will fire events, even if it didn't exist when the binding was created. To remove
bindings, usetag_renove ortag_unbi nd.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (7 of 12) [3/29/2003 12:47:26 AM]

Methods

tag unbind

tag_unbi nd(tag, sequence).Remove the binding, if any, for the given tag and
event sequence combination.

tag_names

t ag_nanes() . Return a tuple containing all tags used in the widget. This includes the
SEL selection tag.

t ag_nanes(i ndex) . Return a tuple containing all tags used by the character at the
given position.

tag_nextrange

tag nextrange(tag, index),tag _nextrange(tag, start, stop).Findthe
next occurence of the given tag, starting at the given index. If two indexes are given,
search only from st art to st op. Note that this method looks for the start of a range, so
iIf you happen to start on a character that has the given tag, this method will return that
range only if that character is the first in the range. Otherwise, the current range is
skipped.

tag_prevrange

tag _prevrange(tag, index),tag prevrange(tag, start, stop).Findthe
next occurence of the given tag, starting at the given index and searching towards the
beginning of the text. If two indexes are given, search from start to stop. As for

next r ange, this method looks for the start of a range, beginning at the start index. So if
you start on a character that has the given tag, this method will return that range unless
the search started on the first character in that tag range.

tag lower

tag | ower(tag),tag | ower(tag, bel ow) .Move the given tag to the bottom of the
tag stack (or place it just under the below tag). If multiple tags are defined for a range of
text, options defined by tags towards the top of the stack have precedence.

tag_raise

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (8 of 12) [3/29/2003 12:47:26 AM]

Methods

tag raise(tag),tag raise(tag, above).Move the given tag to the top of the tag
stack (or place it just over the above tag).

tag_ranges

tag_ranges(tag) . Return a tuple with start- and stop-indexes for each occurence of
the given tag. If the tag doesn't exist, this method returns an empty tuple. Note that the
tuple contains two items for each range.

Methods for Selections

To manipulate the selection, use tag methods liket ag_add andt ag_r enove on the SEL
tag. There are no selection-specific methods provided by the Text widget.

But if you insist, here's how how to emulate the Ent r y widget selection methods:

def selection clear(text):
text.tag _renove(SEL, 1.0, END)

def selection fron(text, index):
text. _anchor = i ndex

def selection_present(text):
return len(text.tag ranges(SEL)) =0

def selection_range(text, start, end):
text.tag renove(SEL, 1.0, start)
text.tag_add(SEL, start, end)
text.tag _renove(SEL, end, END)

def selection_to(text, index):
I f text.conpare(index, "<", text. _anchor):
sel ection_range(text, index, text. _ anchor)
el se:
sel ection_range(text, text. _anchor, i ndex)

Methods for Rendering

The following methods only work if the text widget is updated. To make sure this is the
case, call the updat e i dl et asks method before you use any of these.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (9 of 12) [3/29/2003 12:47:26 AM]

Methods

bbox

bbox (i ndex) . Returns the bounding box for the given character, as a 4-tuple: (x, v,
wi dt h, hei ght). If the character is not visible, this method returns None.

dlineinfo

dl i nei nf o(i ndex) . Returns the bounding box for the line containing the given
character, as a 5-tuple: (x, y, width, height, offset).Thelasttuple member is
the offset from the top of the line to the baseline. If the line is not visible, this method
returns None.

Methods for Printing

The Text widget doesn't contain any builtin support for printing. To print the contents,
use get or dunp and pass the resulting text to a suitable output device.

If you have a Postscript printer, you can use PIL's PSDr awmodule.

Methods for Searching

search

search(pattern, index, options...).Searchfortextinthewidget. Returnsthe
first matching position if successful, or an empty string if there was no match.

Table 42-4. Text Search Options

Option Type Description
f orwar ds, flag Search from the given position towards the end of
backwar ds the buffer (f or war ds), or the beginning

(backwar ds). Default is f or war ds.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (10 of 12) [3/29/2003 12:47:26 AM]

Methods

exact, flag Interpret the pattern as a literal string (exact), or

regexp a Tcl-style regular expression (r egexp). Default is
exact.

nocase flag Enable case-insensitive search. Default is case
sensitive.

st opi ndex index Don't search beyond this position. Default is to

search the whole buffer, and wrap around if the
search reaches the end of the buffer. To prevent
wrapping, set st opi ndex to ENDwhen searching
forwards, and 1. 0 when searching backwards.

count variable Return the length of the match in the given
variable. If given, this variable should be a Tkinter
| nt Var .

Methods for Scrolling

These methods are used to scroll the text widget in various ways. The scan methods can
be used to implement fast mouse pan/roam operations (they are bound to the middle
mouse button, if available), while the xvi ewand yvi ewmethods are used with standard
scrollbars.

scan_mark, scan_dragto

scan_mark(x, y),scan_dragto(x, y).scan_mark setsthe scanning anchor for
fast horizontal scrolling to the given mouse coordinate. scan_dr agt o scrolls the widget
contents sideways according to the given mouse coordinate. The text is moved 10 times
the distance between the scanning anchor and the new position.

Xview, yview

xvi ew(),yvi ew) . Returns a tuple containing two values; the first value corresponds
to the relative offset of the first visible line (column), and the second corresponds to the
relative offset of the line (column) just after the last one visible on the screen. Offset 0.0
is the beginning of the text, 1.0 the end.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (11 of 12) [3/29/2003 12:47:26 AM]

Methods
xview, yview
xvi ewm(MOVETO, offset),yvi ew MOVETO, offset) . Adjustthe text widget so that
the given offset is at the left (top) edge of the text. Offset 0.0 is the beginning of the text,

1.0 the end. These methods are used by the Scr ol | bar bindings when the user drags the
scrollbar slider.

The MOVETOconstant is not defined in Python 1.5.2 and earlier. For compatibility, use
the string "moveto” instead.

Xview, yview

xvi ewm(SCROLL, step, what),yview SCROLL, step, what). Scroll the text
widget horizontally (vertically) by the given amount. The what argument can be either
UNI TS (lines, characters) or PAGES. These methods are used by the Scr ol | bar bindings
when the user clicks at a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings "scroll", "units", and "pages" instead.

yview _pickplace

yvi ew_pi ckpl ace(i ndex) . Same as see, but only handles the vertical position
correctly. New code should use see instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (12 of 12) [3/29/2003 12:47:26 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options

The Text widget supports the following options.

FIXME: sort in relevance order

Table 42-5. Text Options

Option Type
background (bg) color
borderw dt h (bd) distance
cursor cursor
exportsel ection flag

f ont font
foreground (fQ) color

Description

The background color for this widget.
Default is system specific (usually "white").
If you change the background color, you
should make sure to change the foreground
color as well.

Border width. Default is platform
dependent, but is usually one or two pixels.

The cursor to show when the mouse pointer
Is placed over the text widget. The default is
a text insertion cursor (typically an "I beam”
cursor, such as xt er m.

If true, selected text is automatically
exported to the clipboard. Default is true.

Widget font. The default is system specific
(usually "black™).

Text color.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (1 of 4) [3/29/2003 12:47:27 AM]

Options

hei ght distance Widget height, in text units.
hi ghl i ght backgr ound, |color Controls how to draw the focus highlight
hi ghl i ght col or border. When the widget has focus, the

border is drawn in the hi ghl i ght col or
color. Otherwise, it is drawn in the

hi ghl i ght backgr ound color. The
defaults are system specific.

hi ghl i ghtt hi ckness |distance Controls the width of the focus highlight
border. Default is O (no border).

| nsert background color
I nsertborderw dth distance
i nsertofftine, time

I nsertonti nme

i nsertw dt h distance Controls cursor blinking and style. It's
usually best to leave these as they are.

padx, pady distance Extra padding between the widget's inner
border and the text body. Default is O (no
padding).

relief constant Border decoration. The default is SUNKEN.

Other possible values are FLAT, RAI SED,
GROOVE, and RI DGE.

sel ect backgr ound color Selection background color. The default is
system and display specific.

sel ect borderw dt h distance Selection border width. The default is
system specific.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (2 of 4) [3/29/2003 12:47:27 AM]

Options

sel ect f oreground

setgrid
spaci ngl
spaci ng2
spaci ng3
state

t abs

t akef ocus
wi dt h

wWr ap

color

flag

distance

distance

distance

constant

string

flag

distance

constant

Selection text color. The default is system
and display specific.

If true, Tkinter attempts to resize the
window containing the text widget in full
character steps (based on the f ont option).

Spacing to use above the first line in a block
of text. Default is O (no extra spacing).

Spacing to use between the lines in a block
of text wrapped by the widget. Defaultis O
(no extra spacing).

Spacing to use after the last line of text in a
block of text having this tag. Default is O (no
extra spacing).

One of NORVAL or DI SABLED. Default is
NORMAL. Note that if you set this to

DI SABLED, callstoi nsert ordel et e are
ignored.

If true, you can use Tab to move focus to
this widget (but not from it; the default
bindings for the Text widget insert the tab
character). Default is an empty string,
which means that the text widget accepts
focus only if it has any keyboard bindings
(default is on, in other words).

Widget width, in text units.

Word wrap mode. Use one of NONE, CHAR,
or WORD. Default is NONE.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (3 of 4) [3/29/2003 12:47:27 AM]

Options

xscrol | command,
yscrol | command

callback

Scrollbar callbacks. These options should be
set to the set method for the corresponding
scrollbar.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (4 of 4) [3/29/2003 12:47:27 AM]

The Toplevel Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 43. The Toplevel Widget

Table of Contents
When to use the Toplevel Widget

Methods
Options

The Toplevel widget work pretty much like Frame, but it is displayed in a separate, top-
level window. Such windows usually have title bars, borders, and other "window
decorations".

When to use the Toplevel
Widget

To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/toplevel.htm [3/29/2003 12:47:28 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

Except for the standard widget interface (config, etc), the Toplevel widget has no
methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9172-methods.htm [3/29/2003 12:47:29 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Table 43-1.
Option

hei ght, width

background (bg)

col or map

Type
distance

color

widget

Description

Toplevel window size.

The background color to use in this toplevel.
This defaults to the application background
color. To prevent updates, set the color to
an empty string.

Some displays support only 256 colors
(some use even less). Such displays usually
provide a color map to specify which 256
colors to use. This option allows you to
specify which color map to use for this
toplevel window, and its child widgets.

By default, a new toplevel window uses the
same color map as the root window. Using
this option, you can reuse the color map of
another window instead (this window must
be on the same screen and have the same
visual characteristics). You can also use the
value "new" to allocate a new color map for
this window.

You cannot change this option once you've
created the window.

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (1 of 3) [3/29/2003 12:47:30 AM]

Options

menu

cur sor

relief

borderwi dth (bd)

t akef ocus

hi ghl i ght backgr ound,
hi ghl i ght col or

hi ghl i ghtt hi ckness

class (class)

widget

cursor

constant

distance

flag

color

distance

class

A menu to associate with this toplevel
window. On Unix and Windows, the menu
Is placed at the top of the toplevel window
itself. On Macs, the menu is displayed at the
top of the screen when the toplevel window
Is selected.

The cursor to show when the mouse pointer
Is placed over the toplevel widget. Default is
a system specific arrow cursor.

Border decoration: either FLAT, SUNKEN,
RAISED, GROOVE, or RIDGE. The default
is FLAT.

Width of the 3D border. Defaults to O (no
border).

Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the toplevel
accepts focus only if it has any keyboard
bindings (default is off, in other words).

Controls how to draw the focus highlight
border. When any child to the toplevel
window has focus, the border is drawn in
the highlightcolor color. Otherwise, it is
drawn in the highlightbackground color.
The defaults are system specific.

Controls the width of the focus highlight
border. Default is O (no border).

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (2 of 3) [3/29/2003 12:47:30 AM]

Options

vi sual

screen

cont ai ner

use

visual

screen

container

widget

Controls the "visual" type to use for this
window. This option should usually be
omitted. In that case, the visual type is
inherited from the root window.

Some more advanced displays support
"mixed visuals". This typically means that
the root window is a 256-color display (the
"pseudocolor” visual type), but that
individual windows can be displayed as true
24-bit color (the "truecolor” visual type). On
such displays, you may wish to explicitly set
the visual option to "truecolor" for any
windows used to display full-color images.

Other possible values include "directcolor”,
"staticcolor", "grayscale", or "staticgray".
See your X window documentation for

details.

You cannot change this option once you've
created the window.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (3 of 3) [3/29/2003 12:47:30 AM]

Basic Widget Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 44. Basic Widget
Methods

Table of Contents
Configuration

Event processing

Event callbacks

Alarm handlers and other non-event callbacks
Window management

Window Related Information

Miscellaneous

Tkinter Interface Methods

Option Database

The following methods are provided by all widgets (including the root window). In the
method descriptions, self refer to the widget via which you reached the method.

The root window and other Toplevel windows provide additional methods. See the
Window Methods section for more information.

Configuration

config

config(options...),configure(options...).Changeone or more options for
self.

config

config(),configure().Return adictionary containing the current settings for all
widget options. For each option key in the dictionary, the value is either a five-tuple
(option, option database key, option database class, default value, current value), or a two-

http://www.pythonware.com/library/tkinter/introduction/basic-widget-methods.htm (1 of 2) [3/29/2003 12:47:31 AM]

Basic Widget Methods

tuple (option alias, option). The latter case is used for aliases like bg (background) and
bd (borderwidth).

Note that the value fields aren't correctly formatted for some option types. See the
description of the keys method for more information, and a workaround.

cget
cget (opti on) . Return the current value for the given option.

Note that option values are always returned as strings (also if you gave a nonstring value
when you configured the widget). Use int and float where appropriate.

keys

keys() . Return a tuple containing the options available for this widget. You can use cget
to get the corresponding value for each option.

Note that the tuple currently include option aliases (like bd, bg, and fg). To avoid this,
you can use config instead. On the other hand, config doesn't return valid option values
for some option types (such as font names), so the best way is to use a combination of
config and cget:

for itemin w config():
If len(item) == 5:
option = iten]O]
val ue = w. cget (option)
print option, value

Back Next

http://www.pythonware.com/library/tkinter/introduction/basic-widget-methods.htm (2 of 2) [3/29/2003 12:47:31 AM]

Event processing

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Event processing

mainloop

mai nl oop() . Enter Tkinter's main event loop. To leave the event loop, use the quit
method. Event loops can be nested; it's ok to call mainloop from within an event handler.

qguit

qui t () . Leaves Tkinter's main event loop. Note that you can have nested event loops;
each call to quit terminates the outermost event loop.

update

updat e() . Process all pending events, call event callbacks, complete any pending
geometry management, redraw widgets as necessary, and call all pending idle tasks. This
method should be used with care, since it may lead to really nasty race conditions if
called from the wrong place (from within an event callback, for example, or from a
function that can in any way be called from an event callback, etc.)

update i1dletasks

updat e_i dl et asks() . Call all pending idle tasks, without processing any other events.
This can be used to carry out geometry management and redraw widgets if necessary,
without calling any callbacks.

focus_set

focus_set (), focus().Move keyboard focus to self. This means that all keyboard
events sent to the application will be routed to self.

focus displayof

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (1 of 4) [3/29/2003 12:47:32 AM]

Event processing
focus_di spl ayof ().

focus_ force

focus_force().Force keyboard focus to self.

FIXME: what's the difference between "moving" and "forcing"?

focus get

focus _get ().

focus_lastfor

focus lastfor().

tk focusNext

t k_focusNext (). Return the next widget (following self) that should have focus. This is
used by the default bindings for the Tab key.

tk focusPrev

t k_focusPrev().Return the previous widget (preceding self) that should have focus.
This is used by the default bindings for the Shift-Tab key.

grab_current

grab_current ().

grab_release

grab_rel ease() . Release the event grab.

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (2 of 4) [3/29/2003 12:47:32 AM]

Event processing
grab_set

gr ab_set () . Route all events for this application to self.

grab_set global

grab_set gl obal (). Route all events for the entire screen to self.

This should only be used in very special circumstances, since it blocks all other
applications running on the same screen. And that probably includes your development
environment, so you better make sure your application won't crash or lock up until it has
properly released the grab.

grab_status

grab_status().

walit_variable

wai t _vari abl e(vari abl e) . Wait for the given Tkinter variable to change. This
method enters a local event loop, so other parts of the application will still be responsive.
The local event loop is terminated when the variable is updated (setting it to it's current
value also counts).

walit_visibility

wait_visibility(w dget).Wait for the given widget to become visible. This is
typically used to wait until a new toplevel window appears on the screen. Like
wait_variable, this method enters a local event loop, so other parts of the application
will still work as usual.

wait_window

wai t _wi ndow(wi dget) . Wait for the given widget to be destroyed. This is typically
used to wait until a destroyed window disappears from the screen. Like wait_variable
and wait_ visibility, this method enters a local event loop, so other parts of the
application will still work as usual.

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (3 of 4) [3/29/2003 12:47:32 AM]

Event processing

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (4 of 4) [3/29/2003 12:47:32 AM]

Event callbacks

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Event callbacks

All event callbacks take one argument; an event descriptor. See the introduction for more
information on this descriptor.

bind

bi nd(sequence, call back), bi nd(sequence, call back, "+").Addanevent
binding to self. Usually, the new binding replaces any existing binding for the same event
sequence. The second form can be used to add the new callback to the existing binding.

unbind

unbi nd(sequence) . Remove any bindings for the given event sequence, for self.

bind_all

bi nd_al | (sequence, call back),bind all (sequence, call back, "+").
Add an event binding to the application level. Usually, the new binding replaces any
existing binding for the same event sequence. The second form can be used to add the
new callback to the existing binding.

unbind_all

unbi nd_al | (sequence) . Remove any bindings for the given event sequence, on the
application level.

bind class

bi nd_cl ass(cl ass, sequence, func),bind class(class, sequence,
func, "+").Addan event binding to the given widget class. Usually, the new binding
replaces any existing binding for the same event sequence. The second form can be used

http://www.pythonware.com/library/tkinter/introduction/x9466-event-callbacks.htm (1 of 2) [3/29/2003 12:47:33 AM]

Event callbacks

to add the new callback to the existing binding.

unbind_class

unbi nd_cl ass(cl ass, sequence).Remove any bindings for the given event
sequence, for the given binding class.

bindtags

bi ndt ags() . Return a tuple containing the binding search order used for self. By
default, this tuple contains the self's widget name (str(self)), the widget class (e.g.
Button), the root window's name, and finally the special name all which refers to the
application level.

bindtags
bi ndt ags(bi ndi ngs) . Modify the binding search order for self.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9466-event-callbacks.htm (2 of 2) [3/29/2003 12:47:33 AM]

Alarm handlers and other non-event callbacks

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Alarm handlers and other non-
event callbacks

after

after(del ay_ns, call back, args...).Registeranalarm callback that is called
after the given number of milliseconds (Tkinter only guarantees that the callback will not
be called earlier than that; if the system is busy, the actual delay may be much longer).
The callback is only called once for each call to after. To keep calling the callback, you
need to reregister the callback inside itself:

cl ass App:
def __init_ (self, naster):

sel f. master = master
self.poll () # start polling

def poll (self):

sel f.master.after (100, self.poll)

You can provide one or more arguments which are passed to the callback. This method
returns an alarm id which can be used with after_cancel to cancel the callback.

after_ cancel

af ter _cancel (i d). Cancels the given alarm callback.

after

af t er (del ay_ns) . Wait for the given number of milliseconds. Note that in the current
version, this also blocks the event loop. In practice, this means that you might as well do:

tinme.sleep(delay ns*0.001)

http://www.pythonware.com/library/tkinter/introduction/x9507-alarm-handlers-and-other.htm (1 of 2) [3/29/2003 12:47:34 AM]

Alarm handlers and other non-event callbacks

after _idle
after idle(callback, args...).Registeran idle callback which is called when
the system is idle (that is, when there are no more events to process in the mainloop).

The callback is only called once for each call to after_idle.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9507-alarm-handlers-and-other.htm (2 of 2) [3/29/2003 12:47:34 AM]

Window management

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Window management

lift
lift(),tkraise(),lift(above),tkrai se(above).Move self to the top of the
window stack. If self is a child window, it is moved to the top of it's toplevel window. If

self is a toplevel window (the root or a Toplevel window), it is moved in front of all other
windows on the display. If an argument is given, the widget (or window) is moved so it's

just above the given widget (window).

lower

| ower (), | ower (bel ow) . Same as lift, but moves the widget to the bottom of the stack
(or places it just under the below widget).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9531-window-management.htm [3/29/2003 12:47:35 AM]

Window Related Information

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

wWindow Related Information

This group of methods provide information related to the widget (self) to which the
method belongs.

winfo cells

wi nfo_cel | s() . Return the number of "cells" in the color map for self. This is typically
a value between 2 and 256 (also for true color displays, by some odd reason).

winfo_children

wi nfo_chi | dren() . Return a list containing widget instances for all children of self.
The windows are returned in stacking order from bottom to top. If the order doesn't
matter, you can get the same information from the children widget attribute (it's a
dictionary mapping Tk widget names to widget instances, so widget.children.values()
gives you a list of instances).

winfo class

wi nf o_cl ass() . Returns the Tkinter widget class name for self. If self is a Tkinter base
widget, widget.winfo_class() is the same as widget. _class . name_ .

winfo_ colormapfull

wi nf o_col or mapf ul | (). Return true if the color map for self is full.

winfo_containing

wi nf o_cont ai ni ng(x, V) .Return the widget at the given position, or None if there is
no such window, or it isn't owned by this application. The coordinates are given relative
to the screen's upper left corner.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (1 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

winfo_ depth

wi nf o_dept h() . Return the bit depth used to display self. This is typically 8 for a 256-
color display device, 15 or 16 for a "hicolor" display, and 24 or 32 for a true color display.

winfo_exists

w nf o_exi st s().Return true if there is Tk window corresponding to self. Unless
you've done something really strange, this method should always return true.

winfo pixels

wi nf o_pi xel s(di stance),w nf o_f pi xel s(di st ance) . Convert the given
distance (in any form accepted by Tkinter) to the corresponding number of pixels.
winfo_pixels returns an integer value, winfo_fpixels a floating point value.

winfo geometry

wi nf o_geonet ry() . Returns a string describing self's "geometry". The string has the
following format:

"Ydx%d%-d%d" % (w dth, height, xoffset, yoffset)

where all coordinates are given in pixels.

winfo_ width, winfo height

wi nfo_w dt h(),w nf o_hei ght () . Return the width (height) of self, in pixels. Note
that if the window isn't managed by a geometry manager, these methods returns 1. To
you get the real value, you may have to call update_idletasks first. You can also use
winfo_regheight to get the widget's requested height (that is, the "natural” size as
defined by the widget itself based on it's contents).

winfo id

wi nf o_i d() . Return a string containing a system-specific window identifier

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (2 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

corresponding to self. For Unix, this is the X window identifier. For Windows, this is the
HWND cast to a long integer.

winfo_ ismapped

wi nf o_i smapped() . Return true if there is window corresponding to self in the
underlying window system (an X window, a Windows HWND, etc).

winfo_manager

wi nf o_manager () . Return the name of the geometry manager used to keep manage
self (typically one of grid, pack, place, canvas, or text).

FIXME: this is not implemented by Tkinter (or is it, in 1.5.27?)

winfo name

wi nf o_nane() . Return the Tk widget name. This is the same as the last part of the full
widget name (which you can get via str(widget)).

winfo_ parent

wi nf o_par ent () . Return the full widget name of self's parent, or an empty string if self
doesn't have a parent (if self is the root window, that is).

To get the widget instance instead, you can simply use the master attribute instead of
calling this method (the master attribute is None for the root window). Or if you insist,
use _nametowidget to map the full widget name to an instance.

winfo_ pathname

wi nf o_pat hnane(i d) . Return the full window name for the window having the given
identity (see winfo_id for details). If the window doesn't exist, or it isn't owned by this
application, Tkinter raises a TclError exception.

To convert the full name to a widget instance, use _nametowidget.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (3 of 5) [3/29/2003 12:47:36 AM]

winfo_regheight, winfo_reqwidth

wi nf o_reghei ght (),w nfo_regw dt h() . Return the "natural" height (width) for
self. The natural size is the minimal size needed to display the widget's contents,
including padding, borders, etc. This size is calculated by the widget itself, based on the
given options. The actual widget size is then determined by the widget's geometry
manager, based on this value, the size of the widget's master, and the options given to the
geometry manager.

winfo_ rootx, winfo_ rooty

wi nfo_root x(),w nfo_rooty().Return the pixel coordinates for self's upper left
corner, relative to the screen's upper left corner.

winfo screen

wi nf o_screen() . Return the X window screen name for the current window. The
string has the following format:

" %d. %" % (di splay, screen)

On Windows and Macintosh, this is always ":0.0".

winfo screencells

wi nf o_screencel | s() . Returns the number of "cells" in the default color map for
self's screen.

winfo screendepth

wi nf o_scr eendept h() . Return the default bit depth for self's screen.

winfo screenwidth, winfo screenheight

w nf o_screenw dt h(),w nfo_screenhei ght (). Return the width (height) of self's
screen, in pixels.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (4 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

winfo screenmmwidth,
winfo screenmmheight

wi nfo_screennmmi dt h(),w nf o_screenmrhei ght () . Return the width (height) of
self's screen, in millimetres. This may not be accurate on all platforms.

FIXME: does this take the logical resolution into account on Windows?

winfo screenvisual

wi nf o_screenvi sual () . Return the "visual" type used for self. This is typically
"pseudocolor” (for 256-color displays) or "truecolor" (for 16- or 24-bit displays).

Other possible values (on X window systems only) include "directcolor", "staticcolor”,
"grayscale", or "staticgray".

winfo_ toplevel

wi nf o_t opl evel (). Return the toplevel window (or root) window for self, as a widget
instance.

winfo_ visual

wi nf o_vi sual () . Return a string describing the display type (the X window "visual™)
for self's screen. This is one of staticgray, grayscale, staticcolor, psuedocolor,
directcolor, or truecolor. For most display devices, this is either psuedocolor (an 8-bit
colormapped display), or truecolor (a 15- or 24-bit truecolor display).

winfo X, winfo vy

wi nfo_x(),w nfo_y().Return the pixel coordinates for self's upper left corner,
relative to its parent's upper left corner.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (5 of 5) [3/29/2003 12:47:36 AM]

Miscellaneous

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Miscellaneous
bell

bel | (). Generate a system-dependent sound (typically a short beep).

clipboard append

cli pboard_append(string).Add text to the clipboard.

clipboard_clear

clipboard cl ear (). Clear the clipboard.

selection_clear

sel ection_clear().

selection_get

sel ection_get().

selection_ handle

sel ecti on_handl e(conmand) .

selection_own

sel ecti on_own().

http://www.pythonware.com/library/tkinter/introduction/x9708-miscellaneous.htm (1 of 2) [3/29/2003 12:47:37 AM]

Miscellaneous

selection_own_get

sel ecti on_own_get ().

tk focusFollowsMouse

t k_focusFol | owsMouse().

tk _strictMotif

tk_strictMtif (flag).Under Unix, this method can be called to enforce strict Motif
look and feel. To use this, create a root window by calling the Tk constructor, and then
call this method with flag set to 1 before you create any other widgets. This method has
no effect on other platforms.

winfo_rgb

wi nf o_rgb(col or) . Converta color string (in any form accepted by Tkinter) to a 3-
tuple containing the corresponding red, green, and blue component. Note that the tuple
contains 16-bit values (0..65535).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9708-miscellaneous.htm (2 of 2) [3/29/2003 12:47:37 AM]

Tkinter Interface Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Tkinter Interface Methods

The following methods are used by Tkinter's inner workings. Don't use these unless you
know exactly what you are doing, and why you should do that.

getboolean

get bool ean(s) . Convert a string to a boolean (flag) value, using Tcl's conventions.

getdouble

get doubl e(s) . Convert a string to a floating point value, using Tcl's conventions. In
practice, this is equivalent to float and string.atof.

getint

getint (s).Converta string to an integer point value, using Tcl's conventions. In
practice, this is equivalent to int and string.atoi.

register

regi st er (cal | back) . Register a Tcl to Python callback. Returns the name of a Tcl
wrapper procedure. When that procedure is called from a Tcl program, it will call the
corresponding Python function with the arguments given to the Tcl procedure. Values
returned from the Python callback are converted to strings, and returned to the Tcl
program.

winfo atom

wi nf o_at on(stri ng).Map the given to a unique integer. Everytime you call this
method with the same string, the same integer will be returned.

http://www.pythonware.com/library/tkinter/introduction/x9755-tkinter-interface-methods.htm (1 of 2) [3/29/2003 12:47:38 AM]

Tkinter Interface Methods

winfo atomname

wi nf o_at oormane(i d) . Return the string corresponding to the given integer (obtained
by a call to winfo_atom). If the integer isn't in use, TKinter raises a TclError exception.
Note that Tkinter predefines a bunch of integers (typically 1-80 or so). If you're curious,
you can use winfo_atomname to find out what they are used for.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9755-tkinter-interface-methods.htm (2 of 2) [3/29/2003 12:47:38 AM]

Option Database

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Option Database

Not yet documented.
option__add

opti on_add(pattern, val ue).
option_clear
option_clear().
option_get

opti on_get (nanme, cl assNane).
option_readfile

option_readfile(fileNane).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9789-option-database.htm [3/29/2003 12:47:39 AM]

Toplevel Window Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 45. Toplevel Window
Methods

Table of Contents
Visibility Methods

Style Methods

Window Geometry Methods
Icon Methods

Property Access Methods

This group of methods are used to communicated with the window manager. They are
available on the root window (Tk), as well as on all Toplevel instances.

Note that different window managers behave in different ways. For example, some
window managers don't support icon windows, some don't support window groups, etc.

Visibility Methods
deiconify

dei coni fy() . Display the window. New windows are displayed by default, so you only
have to use this method if you have used iconify or withdraw to remove the window from
the screen.

iconify

I coni fy().Turnthe window into an icon (without destroying it). To redraw the
window, use deiconify. Under Windows, the window will show up in the taskbar.

When the window has been iconified, the state method returns "iconic".

http://www.pythonware.com/library/tkinter/introduction/toplevel-window-methods.htm (1 of 2) [3/29/2003 12:47:40 AM]

Toplevel Window Methods

withdraw

wi t hdr aw() . Remove the window from the screen (without destroying it). To redraw
the window, use deiconify.

When the window has been withdrawn, the state method returns "withdrawn".

state

st at e() . Returns the current state of self. This is one of the values "normal*, "iconic"
(see iconify), "withdrawn" (see withdraw) or "icon" (see iconwindow).

Back Next

http://www.pythonware.com/library/tkinter/introduction/toplevel-window-methods.htm (2 of 2) [3/29/2003 12:47:40 AM]

Style Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Style Methods

title

title(string),title().Set(get) the window title.

group

gr oup(w ndow) . Adds self to the window group controlled by the given window. A
group member is usually hidden when the group owner is iconified or withdrawn (the
exact behavior depends on the window manager in use).

transient

t ransi ent (mast er) . Make self a transient window for the given master (if omitted,
master defaults to self's parent). A transient window is always drawn on top of its master,
and is automatically hidden when the master is iconified or withdrawn. Under Windows,
transient windows don't show show up in the task bar.

overrideredirect

overrideredirect(flag),overrideredirect().Set(get)the override redirect
flag. If non-zero, this prevents the window manager from decorating the window. In
other words, the window will not have a title or a border, and it cannot be moved or
closed via ordinary means.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9843-style-methods.htm [3/29/2003 12:47:41 AM]

Window Geometry Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Window Geometry Methods

geometry

geonet ry() . Returns a string describing self's "geometry". The string has the following
format:

"Yex%d%-d%d" % (wi dth, height, xoffset, yoffset)

where all coordinates are given in pixels.

geometry

geonetry(geonet ry) . Change the geometry for self. The string format is as described
above.

aspect

aspect (m nNunmer, m nDenom maxNunmer, nmaxDenomn),aspect (). Control the
aspect ratio (the relation between width and height) of this window. The aspect ratio is
constrained to lie between minNumer/minDenom and maxNumer/maxDenom.

If no arguments are given, this method returns the current constraints as a 4-tuple, if
any.

maxsize

maxsi ze(w dt h, hei ght), maxsi ze() . Set (get) the maximum size for this window.
minsize

m nsi ze(w dt h, height),m nsi ze() . Set (get) the minimum size for this window.

http://www.pythonware.com/library/tkinter/introduction/x9867-window-geometry-methods.htm (1 of 2) [3/29/2003 12:47:42 AM]

Window Geometry Methods

resizable

resi zabl e(w dth, hei ght),resizabl e() . Set (get) the resize flags. The width flag
controls whether the window can be resized horizontally by the user. The height flag
controls whether the window can be resized vertically.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9867-window-geometry-methods.htm (2 of 2) [3/29/2003 12:47:42 AM]

Icon Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Ilcon Methods

iconbitmap

I conbi t map(bi t map),i conbit map() . Set (get) the icon bitmap to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

Note that this method can only be used to display monochrome icons. To display a color
icon, put it in a Label widget and display it using the iconwindow method instead (see
below).

iconmask

I conmask(bi t map),i conmask() . Set (get) the icon bitmap mask to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

iconname

I connanme(newNane=None), i connane() . Set (get) the icon name to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

iconposition

| conposition(x, y),iconposition().Set(get)theicon position hint to use when
this window is iconified. This method are ignored by some window managers (including
Windows).

iconwindow

http://www.pythonware.com/library/tkinter/introduction/x9905-icon-methods.htm (1 of 2) [3/29/2003 12:47:43 AM]

Icon Methods

I conwi ndow(wi ndow) , i conwi ndow() . Set (get) the icon window to use as an icon
when this window is iconified. This method are ignored by some window managers
(including Windows).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9905-icon-methods.htm (2 of 2) [3/29/2003 12:47:43 AM]

Property Access Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Property Access Methods

client

client(nane),client().Set(get)the WM _CLIENT_MACHINE property. This
property is used by window managers under the X window system. It is ignored on other
platforms.

To remove the property, set it to an empty string.

colormapwindows

col or mapwi ndows(w i st...),col ormapw ndows() . Set (get) the
WM_COLORMAP_WINDOWS property. This property is used by window managers
under the X window system. It is ignored on other platforms.

command

conmmand(val ue) , command() . Set (get) the WM_COMMAND property. This property
Is used by window managers under the X window system. It is ignored on other
platforms.

To remove the property, set it to an empty string.

focusmodel

f ocusnodel (nodel), f ocusnodel () . Set (get) the focus model.

frame

f rame() . Return a string containing a system-specific window identifier corresponding
to self's outermost parent. For Unix, this is the X window identifier. For Windows, this is

http://www.pythonware.com/library/tkinter/introduction/x9935-property-access-methods.htm (1 of 2) [3/29/2003 12:47:44 AM]

Property Access Methods

the HWND cast to a long integer.

Note that if the window hasn't been reparented by the window manager, this method
returns the window identifier corresponding to self.

positionfrom

posi ti onfrom who), positionfrom(). Set(get) the position controller.

protocol

prot ocol (name, functi on).Register function as a callback which will be called for
the given protocol. The name argument is typically one of BWM_DELETE_WINDOW
(the window is about to be deleted), WM_SAVE_YOURSELF (called by X window
managers when the application should save a snapshot of its working set) or
WM_TAKE_FOCUS (called by X window managers when the application receives focus).

sizefrom

si zef rom(who), si zef rom() . Set (get) the size controller.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9935-property-access-methods.htm (2 of 2) [3/29/2003 12:47:44 AM]

Index

pythonware.com ::: library ::: An Introduction to Tkinter

Back

INndex

Back

http://www.pythonware.com/library/tkinter/introduction/book-index.htm [3/29/2003 12:47:44 AM]

