
An Introduction to Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Next

An Introduction to Tkinter
Fredrik Lundh

Copyright © 1999 by Fredrik Lundh

Table of Contents
Preface
I. Introducing Tkinter

1. What's Tkinter?
2. Hello, Tkinter

Running the Example
Details

3. Hello, Again
Running the Example
Details
More on widget references
More on widget names

4. Tkinter Classes
Widget classes
Mixins

5. Widget Configuration
Configuration Interface
Backwards Compatibility

6. Widget Styling
Colors
Fonts
Text Formatting
Borders
Cursors

7. Events and Bindings
Events

http://www.pythonware.com/library/tkinter/introduction/index.htm (1 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

8. Application Windows
Base Windows
Menus
Toolbars
Status Bars

9. Standard Dialogs
Message Boxes
Data Entry

10. Dialog Windows
Grid Layouts
Validating Data

II. Tkinter Reference
11. The BitmapImage Class

When to use the BitmapImage Class
Patterns
Methods
Options

12. The Button Widget
When to use the Button Widget
Patterns
Methods
Helpers
Options

13. The Canvas Widget
When to use the Canvas Widget
Concepts
Patterns
Methods
Options

14. The Canvas Arc Item
Methods
Options

15. The Canvas Bitmap Item
Bitmaps
Methods
Options

16. The Canvas Image Item
Methods

http://www.pythonware.com/library/tkinter/introduction/index.htm (2 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Options
17. The Canvas Line Item

Methods
Options

18. The Canvas Oval Item
Methods
Options

19. The Canvas Polygon Item
Methods
Options

20. The Canvas Rectangle Item
Methods
Options

21. The Canvas Text Item
Methods
Options

22. The Canvas Window Item
Methods
Options

23. The Checkbutton Widget
When to use the Checkbutton Widget
Patterns
Methods
Options

24. The DoubleVar Class
When to use the DoubleVar Class
Patterns
Methods

25. The Entry Widget
When to use the Entry Widget
Concepts
Patterns
Methods
Options

26. The Font Class
Patterns
Methods
Functions

http://www.pythonware.com/library/tkinter/introduction/index.htm (3 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Options
27. The Frame Widget

When to use the Frame Widget
Patterns
Methods
Options

28. The Grid Geometry Manager
When to use the Grid Manager
Patterns
Methods
Options

29. The IntVar Class
When to use the IntVar Class
Patterns
Methods

30. The Label Widget
When to use the Label Widget
Patterns
Methods
Options

31. The Listbox Widget
When to use the Listbox Widget
Patterns
Methods
Options

32. The Menu Widget
When to use the Menu Widget
Patterns
Methods
Options

33. The Menubutton Widget
When to use the Menubutton Widget
Patterns
Methods
Options

34. The Message Widget
When to use the Message Widget
Patterns

http://www.pythonware.com/library/tkinter/introduction/index.htm (4 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Methods
Options

35. The Pack Geometry Manager
When to use the Pack Manager
Patterns
Methods
Options

36. The PhotoImage Class
When to use the PhotoImage Class
Patterns
Methods
Options

37. The Place Geometry Manager
When to use the Place Manager
Patterns
Methods
Options

38. The Radiobutton Widget
When to use the Radiobutton Widget
Patterns
Methods
Options

39. The Scale Widget
When to use the Scale Widget
Patterns
Methods
Options

40. The Scrollbar Widget
When to use the Scrollbar Widget
Patterns
Methods
Options

41. The StringVar Class
When to use the StringVar Class
Patterns
Methods

42. The Text Widget
When to use the Text Widget

http://www.pythonware.com/library/tkinter/introduction/index.htm (5 of 6) [3/29/2003 12:44:42 AM]

An Introduction to Tkinter

Concepts
Patterns
Methods
Options

43. The Toplevel Widget
When to use the Toplevel Widget
Methods
Options

44. Basic Widget Methods
Configuration
Event processing
Event callbacks
Alarm handlers and other non-event callbacks
Window management
Window Related Information
Miscellaneous
Tkinter Interface Methods
Option Database

45. Toplevel Window Methods
Visibility Methods
Style Methods
Window Geometry Methods
Icon Methods
Property Access Methods

Index

Next

http://www.pythonware.com/library/tkinter/introduction/index.htm (6 of 6) [3/29/2003 12:44:42 AM]

PYTHONWARE

pythonware.com products ::: library ::: search ::: daily Python-URL!

Daily Python-URL

Products

Library

Downloads

Support

Training

Store

About Us

Search

PYTHONWARE
Secret Labs
AB är
specialister
på att bygga
system för att
hantera och
visualisera
meteorologisk
information.
Radar- och
satellitbilder
som visas
varje dag i TV
och tidningar
är skapade i
system
levererade av
Secret Labs.
::: [mer info]

The
PythonWare
group at
Secret Labs
AB designs
and develops
tools and
methodologies
for successful
deployment of
Python-based
technology :::
[more]

News

Selected news from the PythonWare ® universe :::

Mar 11: Press Release: Weather Media Server visar
värdefullt väder!

Mar 03: Grattis, Lalle!

Feb 10: Dagens Eko: Elbolagen nya storkunder för SMHI
"Den avreglerade elmarknaden har lett till att
specialanpassade väderprognoser blivit en
mångmiljonprodukt."

Dec 05: Genombrottsorder på Weather Media Generator
från ledande nordiskt energiföretag!

http://www.pythonware.com/index.htm (1 of 2) [3/29/2003 12:44:44 AM]

http://www.pythonware.com/products/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/products/index.htm
http://www.pythonware.com/downloads/index.htm
http://www.pythonware.com/support/index.htm
http://www.pythonware.com/training/index.htm
http://www.pythonware.com/store/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/sv/index.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/media/news.htm
http://www.pythonware.com/media/releases/20030311-fortum.htm
http://www.pythonware.com/media/releases/20030311-fortum.htm
http://www.corren.se/archive/2003/3/3/64w290pnsz62g0.xml
http://www.sr.se/ekot/artikel.asp?artikel=182449
http://www.sr.se/ekot/artikel.asp?artikel=182449
http://www.pythonware.com/products/weather/index.htm

PYTHONWARE

Nov 25: Python Imaging Library 1.1.4 alpha 2

Feb 05: Press Release: Secret Labs utvecklar
avancerad applikation för radarbilder åt
SMHI

Dec 20: Why not take PythonWorks 1.3 for a test drive?

http://www.pythonware.com/index.htm (2 of 2) [3/29/2003 12:44:44 AM]

http://effbot.org/zone/pil-changes-114.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/media/releases/20020205-smhi-sv.htm
http://www.pythonware.com/products/works/testdrive.htm

Library

pythonware.com products ::: library ::: search ::: daily Python-URL!

Daily Python-URL

Products

Library :::

An Introduction to
Tkinter

The Python Imaging
Library

Downloads

Support

Training

Store

About Us

Search

Library
Welcome to the PythonWare ® library.

PythonWorks™

● Using PythonWorks (PDF)
● Articles

Python

● Tutorial
● Library Reference
● Macintosh Library Modules
● Language Reference
● Extending and Embedding
● Python/C API
● Documenting Python
● Installing Python Modules
● Distributing Python Modules
● Global Module Index

Python Imaging Library
(PIL)

● Python Imaging Library Handbook for 1.1 (online)
● Python Imaging Library Handbook for 1.1.3 (PDF)
● Articles

Tkinter

● An Introduction to Tkinter (online)
● An Introduction to Tkinter (PDF)

http://www.pythonware.com/library/index.htm (1 of 2) [3/29/2003 12:44:45 AM]

http://www.pythonware.com/products/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/daily/index.htm
http://www.pythonware.com/products/index.htm
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://www.pythonware.com/library/the-python-imaging-library.htm
http://www.pythonware.com/library/the-python-imaging-library.htm
http://www.pythonware.com/downloads/index.htm
http://www.pythonware.com/support/index.htm
http://www.pythonware.com/training/index.htm
http://www.pythonware.com/store/index.htm
http://www.pythonware.com/company/index.htm
http://www.pythonware.com/search.htm
http://www.pythonware.com/products/works/index.htm
http://www.pythonware.com/products/works/using-pythonworks.pdf
http://www.pythonware.com/products/works/articles/index.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/mac/mac.html
http://www.python.org/doc/current/mac/mac.html
http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/doc/doc.html
http://www.python.org/doc/current/doc/doc.html
http://www.python.org/doc/current/inst/inst.html
http://www.python.org/doc/current/inst/inst.html
http://www.python.org/doc/current/dist/dist.html
http://www.python.org/doc/current/dist/dist.html
http://www.python.org/doc/current/modindex.html
http://www.python.org/doc/current/modindex.html
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/products/pil/pil-handbook.pdf
http://www.pythonware.com/products/pil/articles/index.htm
http://www.pythonware.com/library/tkinter/an-introduction-to-tkinter.pdf

Library

http://www.pythonware.com/library/index.htm (2 of 2) [3/29/2003 12:44:45 AM]

Preface

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Preface
This is yet another snapshot of my continously growing Tkinter documentation.

If you like this book, you might be interested in hearing that O'Reilly & Associates will
be publishing a Tkinter book (tentatively called Programming Tkinter in Python). This
book features lots of new material written by yours truly, giving you a more thorough
description of Tkinter (and many other things) than you can find anywhere else.

</F>

(last update: Dec 10, 1999)

Back Next

http://www.pythonware.com/library/tkinter/introduction/preface.htm [3/29/2003 12:44:46 AM]

http://www.ora.com/
http://www.ora.com/

Introducing Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

I. Introducing Tkinter
The first few chapters in this book provide a brief introduction to Tkinter. After reading
this, you should have a fair grasp of the Tkinter fundamentals.

Table of Contents
1. What's Tkinter?
2. Hello, Tkinter
3. Hello, Again
4. Tkinter Classes
5. Widget Configuration
6. Widget Styling
7. Events and Bindings
8. Application Windows
9. Standard Dialogs
10. Dialog Windows

Back Next

http://www.pythonware.com/library/tkinter/introduction/introducing-tkinter.htm [3/29/2003 12:44:47 AM]

What's Tkinter?

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 1. What's Tkinter?
The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI
toolkit from Scriptics (formerly developed by Sun Labs).

Both Tk and Tkinter are available on most Unix platforms, as well as on Windows and
Macintosh systems. Starting with the 8.0 release, Tk offers native look and feel on all
platforms.

Tkinter consists of a number of modules. The Tk interface is located in a binary module
named _tkinter (this was tkinter in earlier versions). This module contains the low-
level interface to Tk, and should never be used directly by application programmers. It is
usually a shared library (or DLL), but might in some cases be statically linked with the
Python interpreter.

In addition to the Tk interface module, Tkinter includes a number of Python modules.
The two most important modules are the Tkinter module itself, and a module called
Tkconstants. The former automatically imports the latter, so to use Tkinter, all you
need to do is to import one module:

 import Tkinter

Or, more often:

 from Tkinter import *

Back Next

http://www.pythonware.com/library/tkinter/introduction/whats-tkinter.htm [3/29/2003 12:44:48 AM]

http://www.scriptics.com/
http://www.scriptics.com/

Hello, Tkinter

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 2. Hello, Tkinter
Table of Contents
Running the Example
Details

But enough talk. Time to look at some code instead.

As you know, every serious tutorial should start with a "hello world"-type example. In
this overview, we'll show you not only one such example, but two.

First, let's look at a pretty minimal version:

Example 2-1. Our First Tkinter Program

File: hello1.py

from Tkinter import *

root = Tk()

w = Label(root, text="Hello, world!")
w.pack()

root.mainloop()

Running the Example
To run the program, run the script as usual:

$ python hello1.py

The following window appears.

Figure 2-1. Running the program

http://www.pythonware.com/library/tkinter/introduction/hello-tkinter.htm (1 of 2) [3/29/2003 12:44:49 AM]

Hello, Tkinter

To stop the program, just close the window.

Back Next

http://www.pythonware.com/library/tkinter/introduction/hello-tkinter.htm (2 of 2) [3/29/2003 12:44:49 AM]

Details

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Details
We start by importing the Tkinter module. It contains all classes, functions and other
things needed to work with the Tk toolkit. In most cases, you can simply import
everything from Tkinter into your module's namespace:

 from Tkinter import *

To initialize Tkinter, we have to create a Tk root widget. This is an ordinary window, with
a title bar and other decoration provided by your window manager. You should only
create one root widget for each program, and it must be created before any other widgets.

 root = Tk()

Next, we create a Label widget as a child to the root window:

 w = Label(root, text="Hello, world!")
 w.pack()

A Label widget can display either text or an icon or other image. In this case, we use the
text option to specify which text to display. Next, we call the pack method on this
widget, which tells it to size itself to fit the given text, and make itself visible. But before
this happens, we have to enter the Tkinter event loop:

 root.mainloop()

The program will stay in the event loop until we close the window. The event loop doesn't
only handle events from the user (such as mouse clicks and key presses) or the
windowing system (such as redraw events and window configuration messages), it also
handle operations queued by Tkinter itself. Among these operations are geometry
management (queued by the pack method) and display updates. This also means that
the application window will not appear before you enter the main loop.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x59-details.htm [3/29/2003 12:44:50 AM]

Hello, Again

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 3. Hello, Again
Table of Contents
Running the Example
Details
More on widget references
More on widget names

When you write larger programs, it is usually a good idea to wrap your code up in one or more classes. The
following example is adapted from the "hello world" program in Matt Conway's A Tkinter Life Preserver

.

Example 3-1. Our Second Tkinter Program

File: hello2.py

from Tkinter import *

class App:

 def __init__(self, master):

 frame = Frame(master)
 frame.pack()

 self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
 self.button.pack(side=LEFT)

 self.hi_there = Button(frame, text="Hello", command=self.say_hi)
 self.hi_there.pack(side=LEFT)

 def say_hi(self):
 print "hi there, everyone!"

root = Tk()

app = App(root)

root.mainloop()

Running the Example
When you run this example, the following window appears.

http://www.pythonware.com/library/tkinter/introduction/hello-again.htm (1 of 2) [3/29/2003 12:44:51 AM]

http://www.python.org/docs/tkinter
http://www.python.org/docs/tkinter

Hello, Again

Figure 3-1. Running the sample program (using Tk 8.0 on a Windows 95 box)

If you click the right button, the text "hi there, everyone!" is printed to the console. If you click the
left button, the program stops.

Back Next

http://www.pythonware.com/library/tkinter/introduction/hello-again.htm (2 of 2) [3/29/2003 12:44:51 AM]

Details

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Details
This sample application is written as a class. The constructor (the __init__ method) is called with
a parent widget (the master), to which it adds a number of child widgets. The constructor starts by
creating a Frame widget. A frame is a simple container, and is in this case only used to hold the
other two widgets.

 class App:
 def __init__(self, master):

 frame = Frame(master)
 frame.pack()

The frame instance is stored in a local variable called frame. After creating the widget, we
immediately call the pack method to make the frame visible.

We then create two Button widgets, as children to the frame.

 self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
 self.button.pack(side=LEFT)

 self.hi_there = Button(frame, text="Hello", command=self.say_hi)
 self.hi_there.pack(side=LEFT)

This time, we pass a number of options to the constructor, as keyword arguments. The first button is
labelled "QUIT", and is made red (fg is short for foreground). The second is labelled "Hello". Both
buttons also take a command option. This option specifies a function, or (as in this case) a bound
method, which will be called when the button is clicked.

The button instances are stored in instance attributes. They are both packed, but this time with the
side=LEFT argument. This means that they will be placed as far left as possible in the frame; the
first button is placed at the frame's left edge, and the second is placed just to the right of the first one
(at the left edge of the remaining space in the frame, that is). By default, widgets are packed relative
to their parent (which is master for the frame widget, and the frame itself for the buttons). If the
side is not given, it defaults to TOP.

The "hello" button callback is given next. It simply prints a message to the console everytime the
button is pressed:

 def say_hi(self):
 print "hi there, everyone!"

http://www.pythonware.com/library/tkinter/introduction/x96-details.htm (1 of 2) [3/29/2003 12:44:52 AM]

Details

Finally, we provide some script level code that creates a Tk root widget, and one instance of the App
class using the root widget as its parent:

 root = Tk()

 app = App(root)

 root.mainloop()

The last call is to the mainloop method on the root widget. It enters the Tk event loop, in which the
application will stay until the quit method is called (just click the QUIT button), or the window is
closed.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x96-details.htm (2 of 2) [3/29/2003 12:44:52 AM]

More on widget references

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

More on widget references
In the second example, the frame widget is stored in a local variable named frame, while
the button widgets are stored in two instance attributes. Isn't there a serious problem
hidden in here: what happens when the __init__ function returns and the frame
variable goes out of scope?

Just relax; there's actually no need to keep a reference to the widget instance. Tkinter
automatically maintains a widget tree (via the master and children attributes of each
widget instance), so a widget won't disappear when the application's last reference goes
away; it must be explicitly destroyed before this happens (using the destroy method). But
if you wish to do something with the widget after it has been created, you better keep a
reference to the widget instance yourself.

Note that if you don't need to keep a reference to a widget, it might be tempting to create
and pack it on a single line:

 Button(frame, text="Hello", command=self.hello).pack(side=LEFT)

Don't store the result from this operation; you'll only get disappointed when you try to use
that value (the pack method returns None). To be on the safe side, it might be better to
always separate construction from packing:

 w = Button(frame, text="Hello", command=self.hello)
 w.pack(side=LEFT)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x131-more-on-widget-references.htm [3/29/2003 12:44:53 AM]

More on widget names

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

More on widget names
Another source of confusion, especially for those who have some experience of
programming Tk using Tcl, is Tkinter's notion of the widget name. In Tcl, you must
explicitly name each widget. For example, the following Tcl command creates a Button
named "ok", as a child to a widget named "dialog" (which in turn is a child of the root
window, ".").

 button .dialog.ok

The corresponding Tkinter call would look like:

 ok = Button(dialog)

However, in the Tkinter case, ok and dialog are references to widget instances, not the
actual names of the widgets. Since Tk itself needs the names, Tkinter automatically
assigns a unique name to each new widget. In the above case, the dialog name is probably
something like ".1428748," and the button could be named ".1428748.1432920". If you
wish to get the full name of a Tkinter widget, simply use the str function on the widget
instance:

 >>> print str(ok)
 .1428748.1432920

(if you print something, Python automatically uses the str function to find out what to
print. But obviously, an operation like "name = ok" won't do the that, so make sure
always to explicitly use str if you need the name).

If you really need to specify the name of a widget, you can use the name option when you
create the widget. One (and most likely the only) reason for this is if you need to interface
with code written in Tcl.

In the following example, the resulting widget is named ".dialog.ok" (or, if you forgot
to name the dialog, something like ".1428748.ok"):

 ok = Button(dialog, name="ok")

http://www.pythonware.com/library/tkinter/introduction/x147-more-on-widget-names.htm (1 of 2) [3/29/2003 12:44:54 AM]

More on widget names

To avoid conflicts with Tkinter's naming scheme, don't use names which only contain
digits. Also note that name is a "creation only" option; you cannot change the name once
you've created the widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x147-more-on-widget-names.htm (2 of 2) [3/29/2003 12:44:54 AM]

Tkinter Classes

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 4. Tkinter Classes
Table of Contents
Widget classes
Mixins

Widget classes
Tkinter supports 15 core widgets:

Table 4-1. Tkinter Widget Classes

Widget Description

Button A simple button, used to execute a command or other operation.

Canvas Structured graphics. This widget can be used to draw graphs and
plots, create graphics editors, and to implement custom widgets.

Checkbutton Represents a variable that can have two distinct values. Clicking the
button toggles between the values.

Entry A text entry field.

Frame A container widget. The frame can have a border and a background,
and is used to group other widgets when creating an application or
dialog layout.

Label Displays a text or an image.

Listbox Displays a list of alternatives. The listbox can be configured to get
radiobutton or checklist behavior.

Menu A menu pane. Used to implement pulldown and popup menus.

Menubutton A menubutton. Used to implement pulldown menus.

Message Display a text. Similar to the label widget, but can automatically wrap
text to a given width or aspect ratio.

http://www.pythonware.com/library/tkinter/introduction/tkinter-classes.htm (1 of 2) [3/29/2003 12:44:55 AM]

Tkinter Classes

Radiobutton Represents one value of a variable that can have one of many values.
Clicking the button sets the variable to that value, and clears all other
radiobuttons associated with the same variable.

Scale Allows you to set a numerical value by dragging a "slider".

Scrollbar Standard scrollbars for use with canvas, entry, listbox, and text
widgets.

Text Formatted text display. Allows you to display and edit text with
various styles and attributes. Also supports embedded images and
windows.

Toplevel A container widget displayed as a separate, top-level window.

Also note that there's no widget class hierarchy in Tkinter; all widget classes are siblings
in the inheritance tree.

All these widgets provide the Misc and geometry management methods, the
configuration management methods, and additional methods defined by the widget itself.
In addition, the Toplevel class also provides the window manager interface. This
means that a typical widget class provides some 150 methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/tkinter-classes.htm (2 of 2) [3/29/2003 12:44:55 AM]

Mixins

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Mixins
The Tkinter module provides classes corresponding to the various widget types in Tk,
and a number of mixin and other helper classes (a mixin is a class designed to be
combined with other classes using multiple inheritance). When you use Tkinter, you
should never access the mixin classes directly.

Implementation mixins

The Misc class is used as a mixin by the root window and widget classes. It provides a
large number of Tk and window related services, which are thus available for all Tkinter
core widgets. This is done by delegation; the widget simply forwards the request to the
appropriate internal object.

The Wm class is used as a mixin by the root window and Toplevel widget classes. It
provides window manager services, also by delegation.

Using delegation like this simplifies your application code: once you have a widget, you
can access all parts of Tkinter using methods on the widget instance.

Geometry mixins

The Grid, Pack, and Place classes are used as mixins by the widget classes. They
provide access to the various geometry managers, also via delegation.

Table 4-2. Geometry Mixins

Manager Description

Grid The grid geometry manager allows you to create table-like layouts, by
organizing the widgets in a 2-dimensional grid. To use this geometry
manager, use the grid method.

http://www.pythonware.com/library/tkinter/introduction/x275-mixins.htm (1 of 2) [3/29/2003 12:44:56 AM]

Mixins

Pack The pack geometry manager lets you create a layout by "packing" the
widgets into a parent widget, by treating them as rectangular blocks
placed in a frame. To use this geometry manager for a widget, use the
pack method on that widget to set things up.

Place The place geometry manager lets you explicitly place a widget in a
given position. To use this geometry manager, use the place
method.

Widget configuration management

The Widget class mixes the Misc class with the geometry mixins, and adds
configuration management through the cget and configure methods, as well as
through a partial dictionary interface. The latter can be used to set and query individual
options, and is explained in further detail in the next chapter.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x275-mixins.htm (2 of 2) [3/29/2003 12:44:56 AM]

Widget Configuration

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 5. Widget Configuration
Table of Contents
Configuration Interface
Backwards Compatibility

To control the appearance of a widget, you usually use options rather than method calls.
Typical options include text and color, size, command callbacks, etc. To deal with
options, all core widgets implement the same configuration interface:

Configuration Interface
widgetclass(master, option=value, ...) => widget

Create an instance of this widget class, as a child to the given master, and using the
given options. All options have default values, so in the simplest case, you only
have to specify the master. You can even leave that out if you really want; Tkinter
then uses the most recently created root window as master. Note that the name
option can only be set when the widget is created.

cget(option) => string

Return the current value of an option. Both the option name, and the returned
value, are strings. To get the name option, use str(widget) instead.

configure(option=value, ...), config(option=value, ...)

Set one or more options (given as keyword arguments).

Note that some options have names that are reserved words in Python (class, from, ...).
To use these as keyword arguments, simply append an underscore to the option name
(class_, from_, ...). Note that you cannot set the name option using this method; it can
only be set when the widget is created.

http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm (1 of 2) [3/29/2003 12:44:57 AM]

Widget Configuration

For convenience, the widgets also implement a partial dictionary interface. The
__setitem__ method maps to configure, while __getitem__ maps to cget. As a
result, you can use the following syntax to set and query options:

 value = widget[option]
 widget[option] = value

Note that each assignment results in one call to Tk. If you wish to change multiple
options, it is usually a better idea to change them with a single call to config or
configure (personally, I prefer to always change options in that fashion).

The following dictionary method also works for widgets:

keys() => list

Return a list of all options that can be set for this widget. The name option is not
included in this list (it cannot be queried or modified through the dictionary
interface anyway, so this doesn't really matter).

Back Next

http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm (2 of 2) [3/29/2003 12:44:57 AM]

Backwards Compatibility

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Backwards Compatibility
Keyword arguments were introduced in Python 1.3. Before that, options were passed to the widget constructors and
configure methods using ordinary Python dictionaries. The source code could then look something like this:

 self.button = Button(frame, {"text": "QUIT", "fg": "red", "command": frame.quit})
 self.button.pack({"side": LEFT})

The keyword argument syntax is of course much more elegant, and less error prone. However, for compatibility
with existing code, Tkinter still supports the older syntax. You shouldn't use this syntax in new programs, even if it
might be tempting in some cases. For example, if you create a custom widget which needs to pass configuration
options along to its parent class, you may come up with something like:

 def __init__(self, master, **kw):
 Canvas.__init__(self, master, kw) # kw is a dictionary

This works just fine with the current version of Tkinter, but it may not work with future versions. A more general
approach is to use the apply function:

 def __init__(self, master, **kw):
 apply(Canvas.__init__, (self, master), kw)

The apply function takes a function (an unbound method, in this case), a tuple with arguments (which must
include self since we're calling an unbound method), and optionally, a dictionary which provides the keyword
arguments.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x386-backwards-compatibility.htm [3/29/2003 12:44:58 AM]

Widget Styling

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 6. Widget Styling
Table of Contents
Colors
Fonts
Text Formatting
Borders
Cursors

All Tkinter standard widgets provide a basic set of "styling" options, which allow you to
modify things like colors, fonts, and other visual aspects of each widget.

Colors
Most widgets allow you to specify the widget and text colors, using the background and
foreground options. To specify a color, you can either use a color name, or explicitly
specify the red, green, and blue (RGB) color components.

Color Names

Tkinter includes a color database which maps color names to the corresponding RGB
values. This database includes common names like Red, Green, Blue, Yellow, and
LightBlue, but also more exotic things like Moccasin, PeachPuff, etc.

On an X window system, the color names are defined by the X server. You might be able
to locate a file named xrgb.txt which contains a list of color names and the
corresponding RGB values. On Windows and Macintosh systems, the color name table is
built into Tk.

Under Windows, you can also use the Windows system colors (these can be changed by
the user via the control panel):

SystemActiveBorder, SystemActiveCaption,
SystemAppWorkspace, SystemBackground, SystemButtonFace,

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (1 of 3) [3/29/2003 12:44:59 AM]

Widget Styling

SystemButtonHighlight, SystemButtonShadow,
SystemButtonText, SystemCaptionText, SystemDisabledText,
SystemHighlight, SystemHighlightText,
SystemInactiveBorder, SystemInactiveCaption,
SystemInactiveCaptionText, SystemMenu, SystemMenuText,
SystemScrollbar, SystemWindow, SystemWindowFrame,
SystemWindowText.

On the Macintosh, the following system colors are available:

SystemButtonFace, SystemButtonFrame, SystemButtonText,
SystemHighlight, SystemHighlightText, SystemMenu,
SystemMenuActive, SystemMenuActiveText,
SystemMenuDisabled, SystemMenuText, SystemWindowBody.

Color names are case insensitive. Many (but not all) color names are also available with
or without spaces between the words. For example, "lightblue", "light blue", and "Light
Blue" all specify the same color.

RGB Specifications

If you need to explicitly specify a color, you can use a string with the following format:

 #RRGGBB

RR, GG, BB are hexadecimal representations of the red, green and blue values,
respectively. The following sample shows how you can convert a color 3-tuple to a Tk
color specification:

 tk_rgb = "#%02x%02x%02x" % (128, 192, 200)

Tk also supports the forms "#RGB" and "#RRRRGGGGBBBB" to specify each value with 16
and 65536 levels, respectively.

You can use the winfo_rgb widget method to translate a color string (either a name or
an RGB specification) to a 3-tuple:

 rgb = widget.winfo_rgb("red")
 red, green, blue = rgb[0]/256, rgb[1]/256, rgb[2]/256

Note that winfo_rgb returns 16-bit RGB values, ranging from 0 to 65535. To map them

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (2 of 3) [3/29/2003 12:44:59 AM]

Widget Styling

into the more common 0-255 range, you must divide each value by 256 (or shift them 8
bits to the right).

Back Next

http://www.pythonware.com/library/tkinter/introduction/widget-styling.htm (3 of 3) [3/29/2003 12:44:59 AM]

Fonts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Fonts
Widgets that allow you to display text in one way or another also allows you to specify
which font to use. All widgets provide reasonable default values, and you seldom have to
specify the font for simpler elements like labels and buttons.

Fonts are usually specifed using the font widget option. Tkinter supports a number of
different font descriptor types:

● Font descriptors

● User-defined font names

● System fonts

● X font descriptors

With Tk versions before 8.0, only X font descriptors are supported (see below).

Font descriptors

Starting with Tk 8.0, Tkinter supports platform independent font descriptors. You can
specify a font as tuple containing a family name, a height in points, and optionally a
string with one or more styles. Examples:

 ("Times", 10, "bold")
 ("Helvetica", 10, "bold italic")
 ("Symbol", 8)

To get the default size and style, you can give the font name as a single string. If the
family name doesn't include spaces, you can also add size and styles to the string itself:

 "Times 10 bold"
 "Helvetica 10 bold italic"
 "Symbol 8"

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (1 of 5) [3/29/2003 12:45:01 AM]

Fonts

Here are some families available on most Windows platforms:

Arial (corresponds to Helvetica), Courier New (Courier), Comic Sans MS,
Fixedsys, MS Sans Serif, MS Serif, Symbol, System, Times New Roman
(Times), and Verdana:

Note that if the family name contains spaces, you must use the tuple syntax described
above.

The available styles are normal, bold, roman, italic, underline, and overstrike.

Tk 8.0 automatically maps Courier, Helvetica, and Times to their corresponding
native family names on all platforms. In addition, a font specification can never fail under
Tk 8.0; if Tk cannot come up with an exact match, it tries to find a similar font. If that
fails, Tk falls back to a platform-specific default font. Tk's idea of what is "similar
enough" probably doesn't correspond to your own view, so you shouldn't rely too much
on this feature.

Tk 4.2 under Windows supports this kind of font descriptors as well. There are several
restrictions, including that the family name must exist on the platform, and not all the
above style names exist (or rather, some of them have different names).

Font names

In addition, Tk 8.0 allows you to create named fonts and use their names when
specifying fonts to the widgets.

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (2 of 5) [3/29/2003 12:45:01 AM]

Fonts

The tkFont module provides a Font class which allows you to create font instances. You
can use such an instance everywhere Tkinter accepts a font specifier. You can also use a
font instance to get font metrics, including the size occupied by a given string written in
that font.

 tkFont.Font(family="Times", size=10, weight=tkFont.BOLD)
 tkFont.Font(family="Helvetica", size=10, weight=tkFont.BOLD,
 slant=tkFont.ITALIC)
 tkFont.Font(family="Symbol", size=8)

If you modify a named font (using the config method), the changes are automatically
propagated to all widgets using the font.

The Font constructor supports the following style options (note that the constants are
defined in the tkFont module):

Table 6-1. Font Style Options

Option Type Description

family string Font family.

size integer Font size in points. To give the size in pixels, use a
negative value.

weight constant Font thickness. Use one of NORMAL or BOLD.
Default is NORMAL.

slant constant Font slant. Use one of NORMAL or ITALIC. Default
is NORMAL.

underline flag Font underlining. If 1 (true), the font is underlined.
Default is 0 (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is 0 (false).

System fonts

Tk also supports system specific font names. Under X, these are usually font aliases like
fixed, 6x10, etc.

Under Windows, these include ansi, ansifixed, device, oemfixed, system, and

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (3 of 5) [3/29/2003 12:45:01 AM]

Fonts

systemfixed:

On the Macintosh, the system font names are application and system.

Note that the system fonts are full font names, not family names, and they cannot be
combined with size or style attributes. For portability reasons, avoid using these names
wherever possible.

X Font Descriptors

X Font Descriptors are strings having the following format (the asterisks represent fields
that are usually not relevant. For details, see the Tk documentation, or an X manual):

 -*-family-weight-slant-*--*-size-*-*-*-*-charset

The font family is typically something like Times, Helvetica, Courier or Symbol.

The weight is either Bold or Normal. Slant is either R for "roman" (normal), I for italic,
or O for oblique (in practice, this is just another word for italic).

Size is the height of the font in decipoints (that is, points multiplied by 10). There are
usually 72 points per inch, but some low-resolution displays may use larger "logical"
points to make sure that small fonts are still legible. The character set, finally, is usually
ISO8859-1 (ISO Latin 1), but may have other values for some fonts.

The following descriptor requests a 12-point boldface Times font, using the ISO Latin 1
character set:

 -*-Times-Bold-R-*--*-120-*-*-*-*-ISO8859-1

If you don't care about the character set, or use a font like Symbol which has a special
character set, you can use a single asterisk as the last component:

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (4 of 5) [3/29/2003 12:45:01 AM]

Fonts

 -*-Symbol-*-*-*--*-80-*

A typical X server supports at least Times, Helvetica, Courier, and a few more fonts,
in sizes like 8, 10, 12, 14, 18, and 24 points, and in normal, bold, and italic (Times) or
oblique (Helvetica, Courier) variants. Most servers also support freely scaleable
fonts. You can use programs like xlsfonts and xfontsel to check which fonts you
have access to on a given server.

This kind of font descriptors can also be used on Windows and Macintosh. Note that if
you use Tk 4.2, you should keep in mind that the font family must be one supported by
Windows (see above).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x444-fonts.htm (5 of 5) [3/29/2003 12:45:01 AM]

Text Formatting

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Text Formatting
While text labels and buttons usually contain a single line of text, Tkinter also supports
multiple lines. To split the text across lines, simply insert newline characters (\n) where
necessary.

By default, the lines are centered. You can change this by setting the justify option to
LEFT or RIGHT. The default value is CENTER.

You can also use the wraplength option to set a maximum width, and let the widget
wrap the text over multiple lines all by itself. Tkinter attempts to wrap on whitespace, but
if the widget is too narrow, it may break individual words across lines.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x611-text-formatting.htm [3/29/2003 12:45:04 AM]

Borders

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Borders
All Tkinter widgets have a border (though it's not visible by default for some widgets).
The border consists of an optional 3D relief, and a focus highlight region.

Relief

The relief settings control how to draw the widget border:

borderwidth (or bd) is the width of the border, in pixels. Most widgets have a default
borderwidth of one or two pixels. There's hardly any reason to make the border wider
than that.

relief controls how to draw the 3D border. It can be set to one of SUNKEN, RAISED,
GROOVE, RIDGE, and FLAT.

Focus Highlights

The highlight settings control how to indicate that the widget (or one of its children) has
keyboard focus. In most cases, the highlight region is a border outside the relief. The
following options control how this extra border is drawn:

The highlightcolor is used to draw the highlight region when the widget has
keyboard focus. It's usually black, or some other distinct contrast color.

The highlightbackground is used to draw the highlight region when the widget
doesn't have focus. It's usually same as the widget background.

The highlightthickness option is the width of the highlight region, in pixels. It is
usually one or two pixels for widgets that can take keyboard focus.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x622-borders.htm [3/29/2003 12:45:06 AM]

Cursors

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Cursors
The cursor option control which mouse cursor to use when the mouse is moved over
the widget. If this option isn't set, the widget uses the same mouse pointer as its parent.

Note that some widgets, including the Text and Entry widgets, set this option by
default.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x647-cursors.htm [3/29/2003 12:45:07 AM]

Events and Bindings

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 7. Events and Bindings
As was mentioned earlier, a Tkinter application spends most of its time inside an event loop
(entered via the mainloop method). Events can come from various sources, including key
presses and mouse operations by the user, and redraw events from the window manager
(indirectly caused by the user, in many cases).

Tkinter provides a powerful mechanism to let you deal with events yourself. For each widget,
you can bind Python functions and methods to events.

 widget.bind(event, handler)

If an event matching the event description occurs in the widget, the given handler is called with
an object describing the event.

Here's a simple example:

Example 7-1. Capturing clicks in a window

File: bind1.py

from Tkinter import *

root = Tk()

def callback(event):
 print "clicked at", event.x, event.y

frame = Frame(root, width=100, height=100)
frame.bind("<Button-1>", callback)
frame.pack()

root.mainloop()

In this example, we use the bind method of the frame widget to bind a callback function to an
event called <Button-1>. Run this program and click in the window that appears. Each time
you click, a message like "clicked at 44 63" is printed to the console window.

Events
http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (1 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

Events are given as strings, using a special event syntax:

 <modifier-type-detail>

The type field is the most important part of an event specifier. It specifies the kind of event that
we wish to bind, and can be user actions like Button, and Key, or window manager events like
Enter, Configure, and others. The modifier and detail fields are used to give additional
information, and can in many cases be left out. There are also various ways to simplify the event
string; for example, to match a keyboard key, you can leave out the angle brackets and just use
the key as is. Unless it is a space or an angle bracket, of course.

Instead of spending a few pages on discussing all the syntactic shortcuts, let's take a look on the
most common event formats:

Table 7-1. Event Formats

Event Description

<Button-1> A mouse button is pressed over the widget. Button 1 is the leftmost
button, button 2 is the middle button (where available), and button 3 the
rightmost button. When you press down a mouse button over a widget,
Tkinter will automatically "grab" the mouse pointer, and mouse events
will then be sent to the current widget as long as the mouse button is held
down. The current position of the mouse pointer (relative to the widget)
is provided in the x and y members of the event object passed to the
callback.

You can use ButtonPress instead of Button, or even leave it out
completely: <Button-1>, <ButtonPress-1>, and <1> are all
synonyms. For clarity, I prefer the <Button-1> syntax.

<B1-Motion> The mouse is moved, with mouse button 1 being held down (use B2 for
the middle button, B3 for the right button). The current position of the
mouse pointer is provided in the x and y members of the event object
passed to the callback.

<ButtonRelease-
1>

Button 1 was released. The current position of the mouse pointer is
provided in the x and y members of the event object passed to the
callback.

<Double-Button-
1>

Button 1 was double clicked. You can use Double or Triple as prefixes.
Note that if you bind to both a single click (<Button-1>) and a double
click, both bindings will be called.

<Enter> The mouse pointer entered the widget (this event doesn't mean that the
user pressed the Enter key!).

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (2 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

<Leave> The mouse pointer left the widget.

<Return> The user pressed the Enter key. You can bind to virtually all keys on the
keyboard. For an ordinary 102-key PC-style keyboard, the special keys
are Cancel (the Break key), BackSpace, Tab, Return(the Enter key),
Shift_L (any Shift key), Control_L (any Control key), Alt_L (any Alt
key), Pause, Caps_Lock, Escape, Prior (Page Up), Next (Page
Down), End, Home, Left, Up, Right, Down, Print, Insert, Delete,
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_Lock, and
Scroll_Lock.

<Key> The user pressed any key. The key is provided in the char member of the
event object passed to the callback (this is an empty string for special
keys).

a The user typed an "a". Most printable characters can be used as is. The
exceptions are space (<space>) and less than (<less>). Note that 1 is a
keyboard binding, while <1> is a button binding.

<Shift-Up> The user pressed the Up arrow, while holding the Shift key pressed. You
can use prefixes like Alt, Shift, and Control.

<Configure> The widget changed size (or location, on some platforms). The new size is
provided in the width and height attributes of the event object passed
to the callback.

The Event Object

The event object is a standard Python object instance, with a number of attributes describing the
event.

Table 7-2. Event Attributes

Attribute Description

widget The widget which generated this event. This is a valid Tkinter widget
instance, not a name. This attribute is set for all events.

x, y The current mouse position, in pixels.

x_root,
y_root

The current mouse position relative to the upper left corner of the screen,
in pixels.

char The character code (keyboard events only), as a string.

keysym The key symbol (keyboard events only).

keycode The key code (keyboard events only)

num The button number (mouse button events only)

width, height The new size of the widget, in pixels (Configure events only).

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (3 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

type The event type.

For portability reasons, you should stick to char, height, width, x, y, x_root, y_root, and
widget unless you know exactly what you're doing...

Instance and Class Bindings

The bind method we used in the above example creates an instance binding. This means that
the binding applies to a single widget only; if you create new frames, they will not inherit the
bindings.

But Tkinter also allows you to create bindings on the class and application level; in fact, you can
create bindings on four different levels:

● the widget instance, using bind.

● the widget's toplevel window (Toplevel or root), also using bind.

● the widget class, using bind_class (this is used by Tkinter to provide standard
bindings).

● the whole application, using bind_all.

For example, you can use bind_all to create a binding for the F1 key, so you can provide help
everywhere in the application. But what happens if you create multiple bindings for the same
key, or provide overlapping bindings?

First, on each of these four levels, Tkinter chooses the "closest match" of the available bindings.
For example, if you create instance bindings for the <Key> and <Return> events, only the
second binding will be called if you press the Enter key.

However, if you add a <Return> binding to the toplevel widget, both bindings will be called.
Tkinter first calls the best binding on the instance level, then the best binding on the toplevel
window level, then the best binding on the class level (which is often a standard binding), and
finally the best available binding on the application level. So in an extreme case, a single event
may call four event handlers.

A common cause of confusion is when you try to use bindings to override the default behavior of
a standard widget. For example, assume you wish to disable the Enter key in the text widget, so
that the users cannot insert newlines into the text. Maybe the following will do the trick?

 def ignore(event):
 pass

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (4 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

 text.bind("<Return>", ignore)

or, if you prefer one-liners:

 text.bind("<Return>", lambda e: None)

(the lambda function used here takes one argument, and returns None)

Unfortunately, the newline is still inserted, since the above binding applies to the instance level
only, and the standard behavior is provided by a class level bindings.

You could use the bind_class method to modify the bindings on the class level, but that would
change the behavior of all text widgets in the application. An easier solution is to prevent Tkinter
from propagating the event to other handlers; just return the string "break" from your event
handler:

 def ignore(event):
 return "break"
 text.bind("<Return>", ignore)

or

 text.bind("<Return>", lambda e: "break")

By the way, if you really want to change the behavior of all text widgets in your application,
here's how to use the bind_class method:

 top.bind_class("Text", "<Return>", lambda e: None)

But there are a lot of reasons why you shouldn't do this. For example, it messes things up
completely the day you wish to extend your application with some cool little UI component you
downloaded from the net. Better use your own Text widget specialization, and keep Tkinter's
default bindings intact:

 class MyText(Text):
 def __init__(self, master, **kw):
 apply(Text.__init__, (self, master), kw)
 self.bind("<Return>", lambda e: "break")

Protocols

In addition to event bindings, Tkinter also supports a mechanism called protocol handlers.
Here, the term protocol refers to the interaction between the application and the window
manager. The most commonly used protocol is called WM_DELETE_WINDOW, and is used to

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (5 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

define what happens when the user explicitly closes a window using the window manager.

You can use the protocol method to install a handler for this protocol (the widget must be a
root or Toplevel widget):

 widget.protocol("WM_DELETE_WINDOW", handler)

Once you have installed your own handler, Tkinter will no longer automatically close the
window. Instead, you could for example display a message box asking the user if the current data
should be saved, or in some cases, simply ignore the request. To close the window from this
handler, simply call the destroy method of the window:

Example 7-2. Capturing destroy events

File: protocol1.py

from Tkinter import *
import tkMessageBox

def callback():
 if tkMessageBox.askokcancel("Quit", "Do you really wish to quit?"):
 root.destroy()

root = Tk()
root.protocol("WM_DELETE_WINDOW", callback)

root.mainloop()

Note that even you don't register an handler for WM_DELETE_WINDOW on a toplevel window, the
window itself will be destroyed as usual (in a controlled fashion, unlike X). However, as of
Python 1.5.2, Tkinter will not destroy the corresponding widget instance hierarchy, so it is a
good idea to always register a handler yourself:

 top = Toplevel(...)

 # make sure widget instances are deleted
 top.protocol("WM_DELETE_WINDOW", top.destroy)

Future versions of Tkinter will most likely do this by default.

Other Protocols

Window manager protocols were originally part of the X window system (they are defined in a
document titled Inter-Client Communication Conventions Manual, or ICCCM). On that
platform, you can install handlers for other protocols as well, like WM_TAKE_FOCUS and

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (6 of 7) [3/29/2003 12:45:09 AM]

Events and Bindings

WM_SAVE_YOURSELF. See the ICCCM documentation for details.

Back Next

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm (7 of 7) [3/29/2003 12:45:09 AM]

Application Windows

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 8. Application Windows
Table of Contents
Base Windows
Menus
Toolbars
Status Bars

Base Windows
In the simple examples we've used this far, there's only one window on the screen; the
root window. This is automatically created when you call the Tk constructor, and is of
course very convenient for simple applications:

 from Tkinter import *

 root = Tk()

 # create window contents as children to root...

 root.mainloop()

If you need to create additional windows, you can use the Toplevel widget. It simply
creates a new window on the screen, a window that looks and behaves pretty much like
the original root window:

 from Tkinter import *

 root = Tk()

 # create root window contents...

 top = Toplevel()

 # create top window contents...

http://www.pythonware.com/library/tkinter/introduction/application-windows.htm (1 of 2) [3/29/2003 12:45:10 AM]

Application Windows

 root.mainloop()

There's no need to use pack to display the Toplevel, since it is automatically displayed
by the window manager (in fact, you'll get an error message if you try to use pack or any
other geometry manager with a Toplevel widget).

Back Next

http://www.pythonware.com/library/tkinter/introduction/application-windows.htm (2 of 2) [3/29/2003 12:45:10 AM]

Menus

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Menus
Tkinter provides a special widget type for menus. To create a menu, you create an
instance of the Menu class, and use add methods to add entries to it:

● add_command(label=string, command=callback) adds an ordinary menu
entry.

● add_separator() adds an separator line. This is used to group menu entries.

● add_cascade(label=string, menu=menu instance) adds a submenu
(another Menu instance). This is either a pull-down menu or a fold-out menu,
depending on the parent.

Here's an example:

Example 8-1. Creating a small menu

File: menu1.py

from Tkinter import *

def callback():
 print "called the callback!"

root = Tk()

create a menu
menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)
filemenu.add_command(label="New", command=callback)
filemenu.add_command(label="Open...", command=callback)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=callback)

http://www.pythonware.com/library/tkinter/introduction/x953-menus.htm (1 of 2) [3/29/2003 12:45:11 AM]

Menus

helpmenu = Menu(menu)
menu.add_cascade(label="Help", menu=helpmenu)
helpmenu.add_command(label="About...", command=callback)

mainloop()

In this example, we start out by creating a Menu instance, and we then use the config
method to attach it to the root window. The contents of that menu will be used to create a
menubar at the top of the root window. You don't have to pack the menu, since it is
automatically displayed by Tkinter.

Next, we create a new Menu instance, using the menubar as the widget parent, and the
add_cascade method to make it a pulldown menu. We then call add_command to add
commands to the menu (note that all commands in this example use the same callback),
and add_separator to add a line between the file commands and the exit command.

Finally, we create a small help menu in the same fashion.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x953-menus.htm (2 of 2) [3/29/2003 12:45:11 AM]

Toolbars

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Toolbars
Many applications place a toolbar just under the menubar, which typically contains a
number of buttons for common functions like open file, print, undo, etc.

In the following example, we use a Frame widget as the toolbar, and pack a number of
ordinary buttons into it.

Example 8-2. Creating a simple toolbar

File: toolbar1.py

from Tkinter import *

root = Tk()

def callback():
 print "called the callback!"

create a toolbar
toolbar = Frame(root)

b = Button(toolbar, text="new", width=6, command=callback)
b.pack(side=LEFT, padx=2, pady=2)

b = Button(toolbar, text="open", width=6, command=callback)
b.pack(side=LEFT, padx=2, pady=2)

toolbar.pack(side=TOP, fill=X)

mainloop()

The buttons are packed against the left side, and the toolbar itself is packed against the
topmost side, with the fill option set to X. As a result, the widget is resized if necssary,
to cover the full with of the parent widget.

Also note that I've used text labels rather than icons, to keep things simple. To display an
icon, you can use the PhotoImage constructor to load a small image from disk, and use

http://www.pythonware.com/library/tkinter/introduction/x982-toolbars.htm (1 of 2) [3/29/2003 12:45:12 AM]

Toolbars

the image option to display it.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x982-toolbars.htm (2 of 2) [3/29/2003 12:45:12 AM]

Status Bars

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Status Bars
Finally, most applications sport a status bar at the bottom of each application window.
Implementing a status bar with Tkinter is trivial: you can simply use a suitably configured
Label widget, and reconfigure the text option now and then. Here's one way to do it:

 status = Label(master, text="", bd=1, relief=SUNKEN, anchor=W)
 status.pack(side=BOTTOM, fill=X)

If you wish to be fancy, you can use the following class instead. It wraps a label widget in
a convenience class, and provides set and clear methods to modify the contents.

Example 8-3. A Status Bar Class

File: tkSimpleStatusBar.py

class StatusBar(Frame):

 def __init__(self, master):
 Frame.__init__(self, master)
 self.label = Label(self, bd=1, relief=SUNKEN, anchor=W)
 self.label.pack(fill=X)

 def set(self, format, *args):
 self.label.config(text=format % args)
 self.label.update_idletasks()

 def clear(self):
 self.label.config(text="")
 self.label.update_idletasks()

The set method works like C's printf function; it takes a format string, possibly
followed by a set of arguments (a drawback is that if you wish to print an arbitrary string,
you must do that as set("%s", string)). Also note that this method calls the
update_idletasks method, to make sure pending draw operations (like the status bar
update) are carried out immediately.

http://www.pythonware.com/library/tkinter/introduction/x996-status-bars.htm (1 of 2) [3/29/2003 12:45:13 AM]

Status Bars

But the real trick here is that we've inherited from the Frame widget. At the cost of a
somewhat awkward call to the frame widget's constructor, we've created a new kind of
custom widget that can be treated as any other widget. You can create and display the
status bar using the usual widget syntax:

 status = StatusBar(root)
 status.pack(side=BOTTOM, fill=X)

We could have inherited from the Label widget itself, and just extended it with set and
clear methods. This approach have a few drawbacks, though:

● It makes it harder to maintain the status bar's integrity. Some team members may
cheat, and use config instead of set. That's not a big deal, until the day you
decide to do some extra processing in the set method. Or the day you decide to
use a Canvas widget to implement a fancier status bar.

● It increases the risk that your additional methods conflict with attributes or
methods used by Tkinter. While the Frame and Toplevel widgets have relatively
few methods, other widgets can have several dozens of widget specific attributes
and methods.

● Future versions of Tkinter may use factory functions rather than class constructors
for most widgets. However, it's more or less guaranteed that such versions will still
provide Frame and Toplevel classes. Better safe than sorry, in other words.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x996-status-bars.htm (2 of 2) [3/29/2003 12:45:13 AM]

Standard Dialogs

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 9. Standard Dialogs
Table of Contents
Message Boxes
Data Entry

Before we look at what to put in that application work area, let's take a look at another
important part of GUI programming: displaying dialogs and message boxes.

Starting with Tk 4.2, the Tk library provides a set of standard dialogs that can be used to
display message boxes, and to select files and colors. In addition, Tkinter provides some
simple dialogs allowing you to ask the user for integers, floating point values, and strings.
Where possible, these standard dialogs use platform-specific mechanisms, to get the
right look and feel.

Message Boxes
The tkMessageBox module provides an interface to the message dialogs.

The easiest way to use this module is to use one of the convenience functions: showinfo,
showwarning, showerror, askquestion, askokcancel, askyesno, or
askretryignore. They all have the same syntax:

tkMessageBox.function(title, message [, options]). The title argument
is shown in the window title, and the message in the dialog body. You can use newline
characters ("\n") in the message to make it occupy multiple lines. The options can be
used to modify the look; they are explained later in this section.

The first group of standard dialogs is used to present information. You provide the title
and the message, the function displays these using an appropriate icon, and returns when
the user has pressed OK. The return value should be ignored.

Here's an example:

 try:

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (1 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

 fp = open(filename)
 except:
 tkMessageBox.showwarning(
 "Open file",
 "Cannot open this file\n(%s)" % filename
)
 return

Figure 9-1. showinfo, showwarning, showerror dialogs

The second group is used to ask questions. The askquestion function returns the
strings "yes" or "no" (you can use options to modify the number and type of buttons
shown), while the others return a true value of the user gave a positive answer (ok, yes,
and retry, respectively).

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (2 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

 if tkMessageBox.askyesno("Print", "Print this report?"):
 report.print()

Figure 9-2. askquestion dialog

Figure 9-3. askokcancel, askyesno, askretryignore dialogs

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (3 of 4) [3/29/2003 12:45:17 AM]

Standard Dialogs

[Screenshots made on a Swedish version of Windows 95. Hope you don't mind...]

Message Box Options

If the standard message boxes are not appropriate, you can pick the closest alternative
(askquestion, in most cases), and use options to change it to exactly suit your needs.
You can use the following options (note that message and title are usually given as
arguments, not as options).

Table 9-1. Message Box Options

Option Type Description

default constant Which button to make default: ABORT, RETRY,
IGNORE, OK, CANCEL, YES, or NO (the constants
are defined in the tkMessageBox module).

icon constant Which icon to display: ERROR, INFO, QUESTION,
or WARNING

message string The message to display (the second argument to the
convenience functions). May contain newlines.

parent widget Which window to place the message box on top of.
When the message box is closed, the focus is
returned to the parent window.

title string Message box title (the first argument to the
convenience functions).

type constant Message box type; that is, which buttons to display:
ABORTRETRYIGNORE, OK, OKCANCEL,
RETRYCANCEL, YESNO, or YESNOCANCEL.

Back Next

http://www.pythonware.com/library/tkinter/introduction/standard-dialogs.htm (4 of 4) [3/29/2003 12:45:17 AM]

Data Entry

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Data Entry
The tkSimpleDialog module provides an interface to the following simple dialogs.

Strings

The askstring function in the tkSimpleDialog module prompts the user for a string. You
specify the dialog title and the prompt string, and the function returns when the user
closes the dialog. The prompt string may include newline characters.

tkSimpleDialog.askstring(title, prompt [,options]). Ask the user to
enter an string value. If the user pressed Enter, or clicked OK, the function returns the
string. If the user closed the dialog by pressing Escape, clicking Cancel, or explicitly via
the window manager, this function returns None.

Figure 9-4. askstring

The following options can be used with this function:

Table 9-2. askstring Options

Option Type Description

initialvalue string Initial value, if any. Default is an empty string.

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (1 of 6) [3/29/2003 12:45:21 AM]

Data Entry

parent widget Which window to place the dialog on top of. When
the dialog is closed, the focus is returned to the
parent window.

Numeric Values

The askinteger and askfloat functions is similar to askstring, but they only accept
integers and float values, respectively. You can also use the minvalue and maxvalue
options to limit the input range:

tkSimpleDialog.askinteger(title, prompt [,options]). Ask the user to
enter an integer value. If the entered value is not a valid integer or floating point value, a
message box is displayed, and the dialog is not closed. As with the askstring function, the
function returns None if the dialog box is cancelled.

tkSimpleDialog.askfloat(title, prompt [,options]). Same, but returns a
floating point value.

Figure 9-5. askinteger, askfloat

The following options can be used with these functions:

Table 9-3. askinteger and askfloat options

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (2 of 6) [3/29/2003 12:45:21 AM]

Data Entry

Option Type Description

initialvalue integer or float Initial value, if any. Default is an empty string.

parent widget Which window to place the dialog on top of. When
the dialog is closed, the focus is returned to the
parent window.

minvalue integer or float Minimum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

maxvalue integer or float Maximum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

File Names

The tkFileDialog module (included in the standard dialog kit described earlier) can be
used to get a filename from the user. The module provides two convenience functions,
one to get an existing filename so you can open it, and one to get a new filename, to save
things into.

tkFileDialog.askopenfilename([options]). If the dialog is cancelled by the
user, the function returns None.

tkFileDialog.asksaveasfilename([options]).

Figure 9-6. askopenfilename, asksaveasfilename

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (3 of 6) [3/29/2003 12:45:21 AM]

Data Entry

The following options can be used with the askopenfilename and asksavefilename
functions:

Table 9-4. askopenfilename options

Option Type Description

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (4 of 6) [3/29/2003 12:45:21 AM]

Data Entry

defaultextension string An extension to add to the filename, if not
explicitly given by the user. The string should
include the leading dot (ignored by the open
dialog).

filetypes list Sequence of (label, pattern) tuples. The same
label may occur with several patterns. Use "*" as
the pattern to indicate all files.

initialdir string Initial directory.

initialfile string Initial file (ignored by the open dialog)

parent widget Which window to place the message box on top
of. When the dialog is closed, the focus is
returned to the parent window.

title string Message box title.

Colors

The tkColorChooser module (included in the standard dialog kit described earlier) can be
used to specify an RGB color value.

tkColorChooser.askcolor([color [,options]]). The convenience function
returns two values; the first is the color as a RGB triplet (a 3-tuple containing the red,
green and blue values as integers in the range 0-255), the second a Tk color string. To
preset a color when you display the dialog, you can pass a color (in either format) to the
function.

If the dialog is cancelled, the function returns (None, None)

Figure 9-7. askcolor (in Swedish)

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (5 of 6) [3/29/2003 12:45:21 AM]

Data Entry

The following options can be used with the askcolor function:

Table 9-5. askcolor Options

Option Type Description

initialcolor color Color to mark as selected when dialog is displayed
(given as an RGB triplet or a Tk color string). (the
first argument to the convenience function).

parent widget Which window to place the message box on top of.
When the dialog is closed, the focus is returned to
the parent window.

title string Message box title.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1164-data-entry.htm (6 of 6) [3/29/2003 12:45:21 AM]

Dialog Windows

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 10. Dialog Windows
Table of Contents
Grid Layouts
Validating Data

While the standard dialogs described in the previous section may be sufficient for many simpler
applications, most larger applications require more complicated dialogs. For example, to set
configuration parameters for an application, you will probably want to let the user enter more than one
value or string in each dialog.

Basically, creating a dialog window is no different from creating an application window. Just use the
Toplevel widget, stuff the necessary entry fields, buttons, and other widgets into it, and let the user
take care of the rest. (By the way, don't use the ApplicationWindow class for this purpose; it will only
confuse your users).

But if you implement dialogs in this way, you may end up getting both your users and yourself into
trouble. The standard dialogs all returned only when the user had finished her task and closed the
dialog; but if you just display another toplevel window, everything will run in parallel. If you're not
careful, the user may be able to display several copies of the same dialog, and both she and your
application will be hopelessly confused.

In many situations, it is more practical to handle dialogs in a synchronous fashion; create the dialog,
display it, wait for the user to close the dialog, and then resume execution of your application. The
wait_window method is exactly what we need; it enters a local event loop, and doesn't return until the
given window is destroyed (either via the destroy method, or explicitly via the window manager):

 widget.wait_window(window)

(Note that the method waits until the window given as an argument is destroyed; the only reason this is a
method is to avoid namespace pollution).

In the following example, the MyDialog class creates a Toplevel widget, and adds some widgets to it.
The caller then uses wait_window to wait until the dialog is closed. If the user clicks OK, the entry
field's value is printed, and the dialog is then explicitly destroyed.

Example 10-1. Creating a simple dialog

File: dialog1.py

from Tkinter import *

class MyDialog:

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (1 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

 def __init__(self, parent):

 top = self.top = Toplevel(parent)

 Label(top, text="Value").pack()

 self.e = Entry(top)
 self.e.pack(padx=5)

 b = Button(top, text="OK", command=self.ok)
 b.pack(pady=5)

 def ok(self):

 print "value is", self.e.get()

 self.top.destroy()

root = Tk()
Button(root, text="Hello!").pack()
root.update()

d = MyDialog(root)

root.wait_window(d.top)

If you run this program, you can type something into the entry field, and then click OK, after which the
program terminates (note that we didn't call the mainloop method here; the local event loop handled
by wait_window was sufficient). But there are a few problems with this example:

● The root window is still active. You can click on the button in the root window also when the
dialog is displayed. If the dialog depends on the current application state, letting the users mess
around with the application itself may be disastrous. And just being able to display multiple
dialogs (or even multiple copies of one dialog) is a sure way to confuse your users.

● You have to explicitly click in the entry field to move the cursor into it, and also click on the OK
button. Pressning Enter in the entry field is not sufficient.

● There should be some controlled way to cancel the dialog (and as we learned earlier, we really
should handle the WM_DELETE_WINDOW protocol too).

To address the first problem, Tkinter provides a method called grab_set, which makes sure that no
mouse or keyboard events are sent to the wrong window.

The second problem consists of several parts; first, we need to explicitly move the keyboard focus to the
dialog. This can be done with the focus_set method. Second, we need to bind the Enter key so it calls
the ok method. This is easy, just use the bind method on the Toplevel widget (and make sure to
modify the ok method to take an optional argument so it doesn't choke on the event object).

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (2 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

The third problem, finally, can be handled by adding an additional Cancel button which calls the
destroy method, and also use bind and protocol to do the same when the user presses Escape or
explicitly closes the window.

The following Dialog class provides all this, and a few additional tricks. To implement your own
dialogs, simply inherit from this class and override the body and apply methods. The former should
create the dialog body, the latter is called when the user clicks OK.

Example 10-2. A dialog support class

File: tkSimpleDialog.py

from Tkinter import *
import os

class Dialog(Toplevel):

 def __init__(self, parent, title = None):

 Toplevel.__init__(self, parent)
 self.transient(parent)

 if title:
 self.title(title)

 self.parent = parent

 self.result = None

 body = Frame(self)
 self.initial_focus = self.body(body)
 body.pack(padx=5, pady=5)

 self.buttonbox()

 self.grab_set()

 if not self.initial_focus:
 self.initial_focus = self

 self.protocol("WM_DELETE_WINDOW", self.cancel)

 self.geometry("+%d+%d" % (parent.winfo_rootx()+50,
 parent.winfo_rooty()+50))

 self.initial_focus.focus_set()

 self.wait_window(self)

 #
 # construction hooks

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (3 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

 def body(self, master):
 # create dialog body. return widget that should have
 # initial focus. this method should be overridden

 pass

 def buttonbox(self):
 # add standard button box. override if you don't want the
 # standard buttons

 box = Frame(self)

 w = Button(box, text="OK", width=10, command=self.ok, default=ACTIVE)
 w.pack(side=LEFT, padx=5, pady=5)
 w = Button(box, text="Cancel", width=10, command=self.cancel)
 w.pack(side=LEFT, padx=5, pady=5)

 self.bind("<Return>", self.ok)
 self.bind("<Escape>", self.cancel)

 box.pack()

 #
 # standard button semantics

 def ok(self, event=None):

 if not self.validate():
 self.initial_focus.focus_set() # put focus back
 return

 self.withdraw()
 self.update_idletasks()

 self.apply()

 self.cancel()

 def cancel(self, event=None):

 # put focus back to the parent window
 self.parent.focus_set()
 self.destroy()

 #
 # command hooks

 def validate(self):

 return 1 # override

 def apply(self):

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (4 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

 pass # override

The main trickery is done in the constructor; first, transient is used to associate this window with a
parent window (usually the application window from which the dialog was launched). The dialog won't
show up as an icon in the window manager (it won't appear in the task bar under Windows, for
example), and if you iconify the parent window, the dialog will be hidden as well. Next, the constructor
creates the dialog body, and then calls grab_set to make the dialog modal, geometry to position the
dialog relative to the parent window, focus_set to move the keyboard focus to the appropriate widget
(usually the widget returned by the body method), and finally wait_window.

Note that we use the protocol method to make sure an explicit close is treated as a cancel, and in the
buttonbox method, we bind the Enter key to OK, and Escape to Cancel. The default=ACTIVE call
marks the OK button as a default button in a platform specific way.

Using this class is much easier than figuring out how it's implemented; just create the necessary widgets
in the body method, and extract the result and carry out whatever you wish to do in the apply method.
Here's a simple example (we'll take a closer look at the grid method in a moment).

Example 10-3. Creating a simple dialog, revisited

File: dialog2.py

import tkSimpleDialog

class MyDialog(tkSimpleDialog.Dialog):

 def body(self, master):

 Label(master, text="First:").grid(row=0)
 Label(master, text="Second:").grid(row=1)

 self.e1 = Entry(master)
 self.e2 = Entry(master)

 self.e1.grid(row=0, column=1)
 self.e2.grid(row=1, column=1)
 return self.e1 # initial focus

 def apply(self):
 first = string.atoi(self.e1.get())
 second = string.atoi(self.e2.get())
 print first, second # or something

And here's the resulting dialog:

Figure 10-1. running the dialog2.py script

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (5 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

Note that the body method may optionally return a widget that should receive focus when the dialog is
displayed. If this is not relevant for your dialog, simply return None (or omit the return statement).

The above example did the actual processing in the apply method (okay, a more realistic example
should probably to something with the result, rather than just printing it). But instead of doing the
processing in the apply method, you can store the entered data in an instance attribute:

 def apply(self):
 first = int(self.e1.get())
 second = int(self.e2.get())
 self.result = first, second

 d = MyDialog(root)
 print d.result

Note that if the dialog is cancelled, the apply method is never called, and the result attribute is never
set. The Dialog constructor sets this attribute to None, so you can simply test the result before doing
any processing of it. If you wish to return data in other attributes, make sure to initialize them in the
body method (or simply set result to 1 in the apply method, and test it before accessing the other
attributes).

Grid Layouts
While the pack manager was convenient to use when we designed application windows, it may not be
that easy to use for dialogs. A typical dialog may include a number of entry fields and check boxes, with
corresponding labels that should be properly aligned. Consider the following simple example:

Figure 10-2. Simple Dialog Layout

To implement this using the pack manager, we could create a frame to hold the label "first:", and the
corresponding entry field, and use side=LEFT when packing them. Add a corresponding frame for the
next line, and pack the frames and the checkbutton into an outer frame using side=TOP. Unfortunately,
packing the labels in this fashion makes it impossible to get the entry fields lined up, and if we use
side=RIGHT to pack the entry field instead, things break down if the entry fields have different width.

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (6 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

By carefully using width options, padding, side and anchor packer options, etc., we can get
reasonable results with some effort. But there's a much easier way: use the grid manager instead.

This manager splits the master widget (typically a frame) into a 2-dimensional grid, or table. For each
widget, you only have to specify where in this grid it should appear, and the grid managers takes care of
the rest. The following body method shows how to get the above layout:

Example 10-4. Using the grid geometry maanager

File: dialog3.py

def body(self, master):

 Label(master, text="First:").grid(row=0, sticky=W)
 Label(master, text="Second:").grid(row=1, sticky=W)

 self.e1 = Entry(master)
 self.e2 = Entry(master)

 self.e1.grid(row=0, column=1)
 self.e2.grid(row=1, column=1)

 self.cb = Checkbutton(master, text="Hardcopy")
 self.cb.grid(row=2, columnspan=2, sticky=W)

For each widget that should be handled by the grid manager, you call the grid method with the row and
column options, telling the manager where to put the widget. The topmost row, and the leftmost
column, is numbered 0 (this is also the default). Here, the checkbutton is placed beneath the label and
entry widgets, and the columnspan option is used to make it occupy more than one cell. Here's the
result:

Figure 10-3. Using the grid manager

If you look carefully, you'll notice a small difference between this dialog, and the dialog shown by the
dialog2.py script. Here, the labels are aligned to the left margin. If you compare the code, you'll find
that the only difference is an option called sticky.

When its time to display the frame widget, the grid geometry manager loops over all widgets, calculating
a suitable width for each row, and a suitable height for each column. For any widget where the resulting
cell turns out to be larger than the widget, the widget is centered by default. The sticky option is used

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (7 of 8) [3/29/2003 12:45:23 AM]

Dialog Windows

to modify this behavior. By setting it to one of E, W, S, N, NW, NE, SE, or SW, you can align the widget to
any side or corner of the cell. But you can also use this option to stretch the widget if necessary; if you set
the option to E+W, the widget will be stretched to occupy the full width of the cell. And if you set it to
E+W+N+S (or NW+SE, etc), the widget will be stretched in both directions. In practice, the sticky option
replaces the fill, expand, and anchor options used by the pack manager.

The grid manager provides many other options allowing you to tune the look and behavior of the
resulting layout. These include padx and pady which are used to add extra padding to widget cells, and
many others. See the Grid Geometry Manager chapter for details.

Back Next

http://www.pythonware.com/library/tkinter/introduction/dialog-windows.htm (8 of 8) [3/29/2003 12:45:23 AM]

Validating Data

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Validating Data
What if the user types bogus data into the dialog? In our current example, the apply
method will raise an exception if the contents of an entry field is not an integer. We could
of course handle this with a try/except and a standard message box:

 def apply(self):
 try:
 first = int(self.e1.get())
 second = int(self.e2.get())
 dosomething((first, second))
 except ValueError:
 tkMessageBox.showwarning(
 "Bad input",
 "Illegal values, please try again"
)

There's a problem with this solution: the ok method has already removed the dialog from
the screen when the apply method is called, and it will destroy it as soon as we return.
This design is intentional; if we carry out some potentially lengthy processing in the
apply method, it would be very confusing if the dialog wasn't removed before we
finished. The Dialog class already contain hooks for another solution: a separate
validate method which is called before the dialog is removed.

In the following example, we simply moved the code from apply to validate, and
changed it to store the result in an instance attribute. This is then used in the apply
method to carry out the work.

 def validate(self):
 try:
 first= int(self.e1.get())
 second = int(self.e2.get())
 self.result = first, second
 return 1
 except ValueError:
 tkMessageBox.showwarning(

http://www.pythonware.com/library/tkinter/introduction/x1555-validating-data.htm (1 of 2) [3/29/2003 12:45:25 AM]

Validating Data

 "Bad input",
 "Illegal values, please try again"
)
 return 0

 def apply(self):
 dosomething(self.result)

Note that if we left the processing to the calling program (as shown above), we don't even
have to implement the apply method.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1555-validating-data.htm (2 of 2) [3/29/2003 12:45:25 AM]

Tkinter Reference

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

II. Tkinter Reference
The rest of the chapters describe all classes provided by Tkinter, in alphabetical order.

Table of Contents
11. The BitmapImage Class
12. The Button Widget
13. The Canvas Widget
14. The Canvas Arc Item
15. The Canvas Bitmap Item
16. The Canvas Image Item
17. The Canvas Line Item
18. The Canvas Oval Item
19. The Canvas Polygon Item
20. The Canvas Rectangle Item
21. The Canvas Text Item
22. The Canvas Window Item
23. The Checkbutton Widget
24. The DoubleVar Class
25. The Entry Widget
26. The Font Class
27. The Frame Widget
28. The Grid Geometry Manager
29. The IntVar Class
30. The Label Widget
31. The Listbox Widget
32. The Menu Widget
33. The Menubutton Widget
34. The Message Widget
35. The Pack Geometry Manager
36. The PhotoImage Class
37. The Place Geometry Manager
38. The Radiobutton Widget
39. The Scale Widget

http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm (1 of 2) [3/29/2003 12:45:26 AM]

Tkinter Reference

40. The Scrollbar Widget
41. The StringVar Class
42. The Text Widget
43. The Toplevel Widget
44. Basic Widget Methods
45. Toplevel Window Methods

Back Next

http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm (2 of 2) [3/29/2003 12:45:26 AM]

The BitmapImage Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 11. The BitmapImage
Class
Table of Contents
When to use the BitmapImage Class
Patterns
Methods
Options

When to use the BitmapImage
Class
This class is used to display images (either grayscale or true color images) in labels,
buttons, canvases, and text widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/bitmapimage.htm [3/29/2003 12:45:27 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1583-patterns.htm [3/29/2003 12:45:27 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
configure(options), config(options)

Change one or more configuration options.

cget(option) => value

Return the value of the given configuration option.

width() => integer, height() => integer

Returns the width (height) of the image, in pixels.

type() => string

Returns the string "bitmap".

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1587-methods.htm [3/29/2003 12:45:28 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The BitmapImage class supports the following options.

Table 11-1. BitmapImage Options

Option Type Description

file string Read image data from the given file.

data string Read image data from a string. If the file option is
given, this option is ignored.

width,
height

integer The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get
the actual size, use the corresponding methods.

format string If several file handlers can handle the given file, this
option can be used to specify which handler to use.
If you haven't installed extra file handlers, there's
no need to use this option.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1615-options.htm [3/29/2003 12:45:29 AM]

The Button Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 12. The Button Widget
Table of Contents
When to use the Button Widget
Patterns
Methods
Helpers
Options

The Button widget is a standard Tkinter widget used to implement various kinds of
buttons. Buttons can contain text or images, and you can associate a Python function or
method with each button. When the button is pressed, Tkinter automatically calls that
function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

When to use the Button Widget
Simply put, button widgets are used to let the user say "do this now!," where this is either
given by the text on the button, or implied by the icon displayed in the button. Buttons
are typically used in toolbars, in application windows, and to accept or dismiss data
entered into a dialog box.

For buttons suitable for data entry, see the Checkbutton and Radiobutton widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/button.htm [3/29/2003 12:45:30 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Plain buttons are pretty straightforward to use. Simply specify the button contents (text,
bitmap, or image) and a callback to call when the button is pressed:

 b = Button(master, text="OK", command=self.ok)

A button without a callback is pretty useless; it simply doesn't do anything when you press the
button. You might wish to use such buttons anyway when developing an application. In that
case, it is probably a good idea to disable the button to avoid confusing your beta testers:

 b = Button(master, text="Help", state=DISABLED)

If you don't specify a size, the button is made just large enough to hold its contents. You can
use the padx and pady option to add some extra space between the contents and the button
border. You can also use the height and width options to explicitly set the size. If you
display text in the button, these options define the size of the button in text units. If you
display bitmaps or images instead, they define the size in pixels (or other screen units). You
can actually specify the size in pixels even for text buttons, but it takes some magic. Here's
one way to do it (there are others):

 f = Frame(master, height=32, width=32)
 f.pack_propagate(0) # don't shrink
 b = Button(f, text="Sure!")
 b.pack(fill=BOTH, expand=1)

Buttons can display multiple lines of text (but only in one font). You can use newlines or the
wraplength option to make the button wrap text by itself. When wrapping text, use the
anchor, justify, and possibly padx options to make things look exactly as you wish. An
example:

 b = Button(master, text=longtext, anchor=W, justify=LEFT, padx=2)

To make an ordinary button look like it's held down, for example if you wish to implement a
toolbox of some kind, you can simply change the relief from RAISED to SUNKEN:

 b.config(relief=SUNKEN)

http://www.pythonware.com/library/tkinter/introduction/x1683-patterns.htm (1 of 2) [3/29/2003 12:45:31 AM]

Patterns

You might wish to change the background as well. Note that a possibly better solution is to
use a Checkbutton or Radiobutton with the indicatoron option set to false:

 b = Checkbutton(master, image=bold, variable=var, indicatoron=0)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1683-patterns.htm (2 of 2) [3/29/2003 12:45:31 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Button widget supports the standard Tkinter Widget interface, plus the following
methods:

flash()

Redraw the button several times, alternating between active and normal
appearance.

invoke()

Call the command associated with the button.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1708-methods.htm [3/29/2003 12:45:32 AM]

Helpers

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Helpers
The following methods are only relevant if you're implementing your own keyboard
bindings.

tkButtonDown(), tkButtonEnter(), tkButtonInvoke(), tkButtonLeave(),
tkButtonUp()

These can be used in customized event bindings. All these methods accept zero or
more dummy arguments.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1723-helpers.htm [3/29/2003 12:45:34 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Button widget supports the following options:

Table 12-1. Button Widget Options

Option Type Description

activebackground,
activeforeground

color The color to use when the button is
activated.

anchor constant Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SW, W, NW, or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

background (bg),
foreground (fg)

color The button color. The default is platform
specific.

bitmap bitmap The bitmap to display in the widget. If the
image option is given, this option is
ignored.

The following bitmaps are available on all
platforms: error, gray75, gray50,
gray25, gray12, hourglass, info,
questhead, question, and warning.

The following additional bitmaps are
available on the Macintosh only:

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (1 of 4) [3/29/2003 12:45:35 AM]

Options

document, stationery, edition,
application, accessory, folder,
pfolder, trash, floppy, ramdisk,
cdrom, preferences, querydoc, stop,
note, and caution.

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@sample.xbm".

borderwidth (bd) int The width of the button border. The default
is platform specific, but is usually 1 or 2
pixels.

command callback A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

cursor cursor The cursor to show when the mouse is
moved over the button.

default constant If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

disabledforeground color The color to use when the button is
disabled. The background is shown in the
background color.

font font The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (2 of 4) [3/29/2003 12:45:35 AM]

Options

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is typically one or two
pixels.

image image The image to display in the widget. If
specified, this takes precedence over the
text and bitmap options.

justify constant Defines how to align multiple lines of text.
Use LEFT, RIGHT, or CENTER.

padx, pady distance Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

relief constant Border decoration. Usually, the button is
SUNKEN when pressed, and RAISED
otherwise. Other possible values are
GROOVE, RIDGE, and FLAT.

state constant The button state: NORMAL, ACTIVE or
DISABLED. Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (3 of 4) [3/29/2003 12:45:35 AM]

Options

text string The text to display in the button. The text
can contain newlines. If the bitmap or
image options are used, this option is
ignored.

textvariable variable Associates a Tkinter variable (usually a
StringVar) to the button. If the variable is
changed, the button text is updated.

underline int Which character to underline, in a text
label. Default is -1, which means that no
character is underlined.

width, height distance The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

wraplength distance Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x1740-options.htm (4 of 4) [3/29/2003 12:45:35 AM]

The Canvas Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 13. The Canvas Widget
Table of Contents
When to use the Canvas Widget
Concepts
Patterns
Methods
Options

The Canvas widget provides structured graphics facilities for Tkinter. This is a highly
versatile widget which are used to draw graphs and plots, create graphics editors, and
implement various kinds of custom widgets.

To display things on the canvas, you create one or more canvas items, which are placed in
a stack. By default, new items are drawn on top of items already on the canvas. Tkinter
provides lots of methods allowing you to manipulate the items in various ways. Among
other things, you can attach (bind) event callbacks to individual items.

When to use the Canvas Widget
The canvas is a general purpose widget, which is typically used to display and edit graphs
and other drawings.

Another common use for this widget is to implement various kinds of custom widgets.
For example, you can use a canvas as a completion bar, by drawing and updating a
rectangle object.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas.htm [3/29/2003 12:45:36 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts
To be added.

Items

The Canvas widget supports the following standard items:

● arc (arc, chord, or pieslice)

● bitmap (built-in or read from XBM file)

● image (a BitmapImage or PhotoImage instance)

● line

● oval (a circle or an ellipse)

● polygon

● rectangle

● text

● window

Chords, pieslices, ovals, polygons, and rectangles are drawn as both an outline and an
interior, either of which can be made transparent (if you insist, you can make both
transparent).

Window items are used to place other Tkinter widgets on top of the canvas; for these
items, the Canvas widget simply acts like a geometry manager.

You can also write your own item types in C or C++ and plug them into Tkinter via
Python extension modules.

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (1 of 3) [3/29/2003 12:45:37 AM]

Concepts

Coordinate Systems

The Canvas widget uses two coordinate systems; the window coordinate system (with
(0, 0) in the upper left corner), and a canvas coordinate system in which the items are
drawn. By scrolling the canvas, you can specify which part of the canvas coordinate
system to show in the window.

The scrollregion option is used to limit scrolling operations for the canvas. To set
this, you can usually use something like:

 canvas.config(scrollregion=canvas.bbox(ALL))

To convert from window coordinates to canvas coordinates, use the canvasx and
canvasy methods:

 def callback(event):
 canvas = event.widget
 x = canvas.canvasx(event.x)
 y = canvas.canvasx(event.y)
 print canvas.find_closest(x, y)

Item Specifiers

The Canvas widget allows you to identify items in several ways. Everywhere a method
expects an item specifier, you can use one of the following:

● item handles

● tags

● ALL

● CURRENT

Item handles are integer values that are used to identify a specific item on the canvas.
Tkinter automatically assigns a new handle to each new item created on the canvas. Item
handles can be passed to the various canvas methods either as integers or as strings.

Tags are symbolic names attached to items. Tags are ordinary strings, and they can

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (2 of 3) [3/29/2003 12:45:37 AM]

Concepts

contain anything except whitespace.

An item can have zero or more tags associated with it, and the same tag can be used for
more than one item. However, unlike the Text widget, the Canvas widget doesn't allow
you to create bindings or otherwise configure tags for which there are no existing items.
All such operations are ignored.

You can either specify the tags via an option to the item create method, set them via the
itemconfig method, or add them using the addtag_withtag method. The tags
option take either a single string, or a tuple of strings.

 item = canvas.create_line(0, 0, 100, 100, tags="uno")
 canvas.itemconfig(item, tags=("one", "two"))
 canvas.addtag_withtag("three", "one")

To get all tags associated with a specific item, use gettags. To get all items having a
given tag, use find_withtag.

 >>> print canvas.gettags(item)
 ('one', 'two', 'three')
 >>> print canvas.find_withtag("one")
 (1,)

The Canvas widget also provides two predefined tags:

ALL (or "all") matches all items on the canvas.

CURRENT (or "current") matches the item under the mouse pointer, if any. This can be
used inside mouse event bindings to refer to the item that trigged the callback.

Printing

To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2017-concepts.htm (3 of 3) [3/29/2003 12:45:37 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2099-patterns.htm [3/29/2003 12:45:38 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The first group of methods are used to create and configure items on a canvas.

create_arc(bbox, options) => id

Create an arc canvas item. Returns the item handle.

create_bitmap(position, options) => id

Create a bitmap canvas item. Returns the item handle.

create_image(position, options) => id

Create an image canvas item. Returns the item handle.

create_line(coords, options) => id

Create a line canvas item. Returns the item handle.

create_oval(bbox, options) => id

Create an oval canvas item. Returns the item handle.

create_polygon(coords, options) => id

Create a polygon canvas item. Returns the item handle.

create_rectangle(bbox, options) => id

Create a rectangle canvas item. Returns the item handle.

create_text(position, options) => id

Create a text canvas item. Returns the item handle.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (1 of 9) [3/29/2003 12:45:39 AM]

Methods

create_window(position, options) => id

Place a Tkinter widget on the canvas. Returns the item handle.

Note that widgets are drawn on top of the canvas (that is, the canvas acts like a
geometry manager). You cannot draw other canvas items on top of a widget.

delete(items)

Delete all matching items. It is not an error to give an item specifier that doesn't
match any items.

itemcget(item, option) => string

Get the current value for an option. If item refers to more than one items, this
method returns the option value for the first item found.

itemconfig(item, options), itemconfigure(item, options)

Change one or more options for all matching items.

coords(item) => list

Return the coordinates for the given item. If item refers to more than one items,
this method returns the coordinates for the first item found.

coords(item, x0, y0, x1, y1, ..., xn, yn)

Change the coordinates for the given item. This method updates all matching
items.

bbox(items) => tuple, bbox() => tuple

Returns the bounding box for the given items. If the specifier is omitted, the
bounding box for all items are returned. Note that the bounding box is
approximate and may differ a few pixels from the real value.

canvasx(screenx) => float, canvasy(screeny) => float

Convert a window coordinate (for example, the x and y coordinates from the

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (2 of 9) [3/29/2003 12:45:39 AM]

Methods

structure passed to an event handler) to a canvas coordinate.

tag_bind(item, sequence, callback), tag_bind(item, sequence,
callback, "+")

Add an event binding to all matching items. Usually, the new binding replaces any
existing binding for the same event sequence. The second form can be used to add
the new callback to the existing binding.

Note that the new bindings are associated with the items, not the tag. For example,
if you attach bindings to all items having the movable tag, they will only be
attached to any existing items with that tag. If you create new items tagged as
movable, they will not get those bindings.

tag_unbind(item, sequence)

Remove the binding, if any, for the given event sequence. This applies to all
matching items.

type(item) => string

Return the type of the given item: "arc", "bitmap", "image", "line", "oval",
"polygon", "rectangle", "text", or "window". If item refers to more than one items,
this method returns the type of the first item found.

lift(item), tkraise(item)

Move the given item to the top of the canvas stack. If multiple items match, they
are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use lift on
the widget instance instead.

lower(item)

Move the given item to the bottom of the canvas stack. If multiple items match,
they are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use lower
on the widget instance instead.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (3 of 9) [3/29/2003 12:45:39 AM]

Methods

move(item, dx, dy)

Move all items dx canvas units to the right, and dy canvas units downwards. Both
coordinates can be negative.

scale(item, xscale, yscale, xoffset, yoffset)

Scale matching items according to the given scale factors. The coordinates for each
item are first moved by -offset, then multiplied with the scale factory, and then
moved back again. Note that this method modifies the item coordinates; you may
loose precision if you use this method several times on the same items.

Printing

postscript(options)

Generate a Postscript rendering of the canvas contents. Images and embedded
widgets are not included.

Table 13-1. Postscript Options

Option Type Description

colormap

colormode

file

fontmap

height

pageanchor

pageheight

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (4 of 9) [3/29/2003 12:45:39 AM]

Methods

pagewidth

pagex

pagey

rotate

width

x

y

Searching for Items

The following methods are used to find certain groups of items, for later processing. Note
that for each find method, there is a corresponding addtag method. Instead of
processing the individual items returned by a find method, you can often get better
performance by adding a temporary tag to a group of items, process all items with that
tag in one go, and then remove the tag.

find_above(item) => item

Returns the item just above the given item.

find_all() => tuple

Return a tuple containing the identity of all items on the canvas, with the topmost
item last (that is, if you haven't change the order using lift or lower, the items
are returned in the order you created them). This is shortcut for
find_withtag(ALL).

find_below(item) => item

Returns the item just below the given item.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (5 of 9) [3/29/2003 12:45:39 AM]

Methods

find_closest(x, y) => item

Returns the item closest to the given position. Note that the position is given in
canvas coordinates, and that this method always succeeds if there's at least one
item in the canvas. To find items within a certain distance from a position, use
find_overlapping with a small rectangle centered on the position.

find_enclosed(x1, y1, x2, y2) => tuple

Returns a tuple of all items completely enclosed by the rectangle (x1, y1, x2, y2).

find_overlapping(x1, y1, x2, y2) => tuple

Returns a tuple of all items that overlap the given rectangle, or that are completely
enclosed by it.

find_withtag(item) => tuple

Returns a tuple of all items having the given specifier.

Manipulating Tags

The following methods are used to manipulate the tags, rather than the items themselves.

addtag_above(newtag, item)

Add newtag to the item just above the given item.

addtag_all(newtag)

Add newtag to all items on the canvas. This is shortcut for
addtag_withtag(newtag, ALL).

addtag_below(newtag, item)

Add newtag to the item just below the given item.

addtag_closest(newtag, x, y)

Add newtag to the item closest to the given coordinate. See find_closest for

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (6 of 9) [3/29/2003 12:45:39 AM]

Methods

more information.

addtag_enclosed(newtag, x1, y1, x2, y2)

Add newtag to all items enclosed by the given rectangle. See find_enclosed for
more information.

addtag_overlapping(newtag, x1, y1, x2, y2)

Add newtag to all items overlapping the given rectangle. See find_overlapping
for more information.

addtag_withtag(newtag, tag)

Add newtag to all items having the given tag.

dtag(item, tag)

Remove the given tag from all matching items. If the tag is omitted, all tags are
removed from the matching items. It is not an error to give a specifier that doesn't
match any items.

gettags(item) => tuple

Return all tags associated with the item.

Special Methods for Text Items

The following methods can be used with text items, as well as with any extension item
type that supports a keyboard focus and an insertion cursor.

dchars(item, index), dchars(item, first, last)

For all matching items, delete the given character (or the characters in the given
range).

focus(item), focus() => item

Set (get) the keyboard focus. If item is an empty string, remove the focus from the
current item.

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (7 of 9) [3/29/2003 12:45:39 AM]

Methods

icursor(item, index)

Move the insertion cursor.

index(item, index) => integer

Return the numerical index corresponding to the given index.

insert()

FIXME

select_adjust(item, index)

FIXME

select_clear()

FIXME

select_from(item, index)

FIXME

select_item()

FIXME

select_to(item, index)

FIXME

Scrolling

The following methods are used to scroll the canvas in various ways. The scan methods
can be used to implement fast mouse pan/roam operations, while the xview and yview
methods are used with standard scrollbars.

scan_mark(x, y)

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (8 of 9) [3/29/2003 12:45:39 AM]

Methods

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x, y)

Scrolls the widget contents according to the given mouse coordinate. The contents
are moved 10 times the distance between the scanning anchor and the new
position.

xview(MOVETO, offset), yview(MOVETO, offset)

Adjust the canvas so that the given offset is at the left (top) edge of the canvas.
Offset 0.0 is the beginning of the scrollregion, 1.0 the end. These methods are
used by the Scrollbar bindings.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility,
use the string "moveto" instead.

xview(SCROLL, step, what), yview(SCROLL, step, what)

Scroll the canvas horizontally (vertically) by the given amount. The what argument
can be either UNITS (lines) or PAGES. These methods are used by the Scrollbar
bindings.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use
the strings "scroll", "units", and "pages" instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2102-methods.htm (9 of 9) [3/29/2003 12:45:39 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Table 13-2. Canvas Options

Option Type Description

background (bg) color

borderwidth (bd) distance

closeenough

confine

cursor cursor

height distance

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (1 of 3) [3/29/2003 12:45:40 AM]

Options

highlightthickness distance Controls the width of the focus highlight
border. Default is one or two pixels.

Note that the focus highlight border is
drawn on top of the canvas coordinate
systems; if you don't use scrollbars, a one
pixel border covers items drawn at canvas
coordinate (0, 0).

insertbackground color Color used for the insertion cursor.

insertborderwidth distance Borderwidth for the insertion cursor.

insertofftime,
insertontime

time Controls cursor blinking.

insertwidth distance Width of the insertion cursor.

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAISED,
GROOVE, and RIDGE.

Note that to show the border, you need to
change the borderwidth from it's default
value of 0. Also note that the border is
drawn on top of the canvas coordinate
system.

scrollregion 4-tuple The bounding box of the scrollable area. If
this option is not set, the scrolling is not
bounded.

selectbackground color

selectborderwidth distance

selectforeground color

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (2 of 3) [3/29/2003 12:45:40 AM]

Options

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the canvas accepts
focus only if it has any keyboard bindings
(default is off, in other words).

width distance

xscrollcommand callback

xscrollincrement distance

yscrollcommand callback

yscrollincrement distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2600-options.htm (3 of 3) [3/29/2003 12:45:40 AM]

The Canvas Arc Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 14. The Canvas Arc
Item
Table of Contents
Methods
Options

An arc item is a section of oval, delimited by two angles (start and extent). An arc
item can be drawn in one of three ways:

● pieslice (lines are drawn from the perimeter to the oval's center)

● chord (the ends are connected with a straight line)

● arc (only the perimeter section is drawn)

 xy = 20, 20, 300, 180
 canvas.create_arc(xy, start=0, extent=270, fill="red")
 canvas.create_arc(xy, start=270, extent=60, fill="blue")
 canvas.create_arc(xy, start=330, extent=30, fill="green")

Pieslices and chords can be filled.

Figure 14-1. Pieslice Example

http://www.pythonware.com/library/tkinter/introduction/canvas-arc.htm (1 of 2) [3/29/2003 12:45:42 AM]

The Canvas Arc Item

Methods
The following methods are used to create and configure arc items:

create_arc(x0, y0, x1, y1, options...) => id, create_arc(box,
options...) => id

Create a arc item enclosed by the given rectangle. The start and extent options
control which section to draw. If they are set to 0.0 and 360.0, a full oval is drawn
which touches the rectangle's four edges.

delete(item)

Delete an arc item.

coords(item, x0, y0, x1, y1)

Change the enclosing rectangle for one or more arc items.

itemconfigure(item, options...)

Change the options for one or more arc items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-arc.htm (2 of 2) [3/29/2003 12:45:42 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The arc item supports the following options, via the create_arc method, and the
itemconfig and itemcget configuration methods.

Table 14-1. Canvas Arc Options

Option Type Description

style constant Specifies how to draw the arc item (see above).
Use one of PIESLICE, CHORD, or ARC. The default
is PIESLICE.

These constants are not defined in Python 1.5.2
and earlier. For compatibility, use the strings
"pieslice", "chord", and "arc" instead.

start, extent angle The arc is drawn from the start angle (measured
counter-clockwise from three o'clock) to the start
angle plus the extent. Both angles are given in
degrees, and can be negative.

By default, the arc starts at 0.0 degrees (three
o'clock), and extends 90.0 degrees counter-
clockwise (twelve o'clock).

fill color The color to use for the arc's interior. If an empty
string is given, the interior is not drawn. Note that
arc's having the arc style cannot be filled. Default
is empty (transparent).

http://www.pythonware.com/library/tkinter/introduction/x2861-options.htm (1 of 2) [3/29/2003 12:45:43 AM]

Options

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the arc's interior. Typical
values are "gray12", "gray25", "gray50", or
"gray75". Default is a solid brush (no bitmap).

As of Tk 8.0p2, the stipple option is ignored on
the Windows platform. To draw stippled pieslices
or chords, you have to create corresponding
polygons.

outline color The color to use for the arc's outline. If an empty
string is given, the outline is not drawn. Default is
"black".

outlinestipple bitmap The name of a bitmap which is used as a stipple
brush when drawing the arc's outline. Typical
values are "gray12", "gray25", "gray50", or
"gray75". Default is a solid brush (no bitmap).

width distance The width of the arc's outline. Default is 1 pixel.

tags tuple One or more tags to associate with this item. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x2861-options.htm (2 of 2) [3/29/2003 12:45:43 AM]

The Canvas Bitmap Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 15. The Canvas Bitmap Item
Table of Contents
Bitmaps
Methods
Options

The bitmap item draws a bitmap on the canvas.

 item = canvas.create_bitmap(100, 100, bitmap="info", foreground="gold")

You can use either a builtin bitmap, such as "hourglass", "info", "question", or "warning", or load a
bitmap from an XBM file.

Figure 15-1. Bitmap Example

For more flexible image support, use create_image instead (with a Tkinter BitmapImage instance,
or an instance of the corresponding Python Imaging Library class).

Bitmaps
The following bitmaps are available on all platforms: "error", "gray75", "gray50", "gray25", "gray12",

http://www.pythonware.com/library/tkinter/introduction/canvas-bitmap.htm (1 of 2) [3/29/2003 12:45:44 AM]

The Canvas Bitmap Item

"hourglass", "info", "questhead", "question", and "warning".

The following additional bitmaps are available on the Macintosh only: "document", "stationery",
"edition", "application", "accessory", "folder", "pfolder", "trash", "floppy", "ramdisk", "cdrom",
"preferences", "querydoc", "stop", "note", and "caution".

You can also load the bitmap from an XBM file. Just prefix the filename with an at-sign, for example
"@sample.xbm".

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-bitmap.htm (2 of 2) [3/29/2003 12:45:44 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The following methods are used to create and configure bitmap items:

create_bitmap(x0, y0, options...) => id

Create a bitmap item placed relative to the given position.

delete(item)

Delete a bitmap item.

coords(item, x0, y0)

Move one or more bitmap items.

itemconfigure(item, options...)

Change the options for one or more bitmap items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3017-methods.htm [3/29/2003 12:45:45 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The bitmap item supports the following options, via the create_bitmap method, and
the itemconfig and itemcget configuration methods.

Table 15-1. Canvas Bitmap Options

Option Type Description

bitmap bitmap The name of the bitmap.

anchor constant Specifies which part of the bitmap that should be
placed at the given position. Use one of N, NE, E, SE,
S, SW, W, NW, or CENTER. Default is CENTER.

foreground color The color to use for the bitmap's foreground pixels
(that is, non-zero pixels). If an empty string is
given, the foreground pixels are not drawn. Default
is "black".

background color The color to use for the bitmap's background pixels
(that is, zero pixels). If an empty string is given, the
background pixels are not drawn. Default is empty
(transparent).

tags tuple One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3042-options.htm [3/29/2003 12:45:46 AM]

The Canvas Image Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 16. The Canvas Image
Item
Table of Contents
Methods
Options

The image item draws an image on the canvas.

 photo = PhotoImage(file="sample.gif")
 item = canvas.create_image(10, 10, anchor=NW, image=photo)

Methods
The following methods are used to create and configure image items:

create_image(x0, y0, options...) => id

Create a image item placed relative to the given position. Note that the image itself
is given by the image option.

[FIXME: add note on image ownership]

delete(item)

Delete an image item.

coords

coords(item, x0, y0). Move one or more image items.

itemconfigure

http://www.pythonware.com/library/tkinter/introduction/canvas-image.htm (1 of 2) [3/29/2003 12:45:47 AM]

The Canvas Image Item

itemconfigure(item, options...). Change the options for one or more image (or
other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-image.htm (2 of 2) [3/29/2003 12:45:47 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The image item supports the following options, via the create_image method, and the
itemconfig and itemcget configuration methods.

Table 16-1. Canvas Image Options

Option Type Description

image image The image object (a Tkinter PhotoImage or
BitmapImage instance, or instances of the
corresponding Python Imaging Library classes).

anchor constant Specifies which part of the image that should be
placed at the given position. Use one of N, NE, E,
SE, S, SW, W, NW, or CENTER. Default is
CENTER.

tags tuple One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3145-options.htm [3/29/2003 12:45:48 AM]

The Canvas Line Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 17. The Canvas Line
Item
Table of Contents
Methods
Options

Methods
create_line(x0, y0, x1, y1, ..., xn, yn, options...) => id

Create a line item.

delete(item)

Delete a line item.

coords(item, x0, y0, x1, y1, ..., xn, yn)

Change the coordinates for one or more line items.

itemconfigure(item, options...)

Change the options for one or more line items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-line.htm [3/29/2003 12:45:48 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The line item supports the following options, via the create_line method, and the
itemconfig and itemcget configuration methods.

Table 17-1. Canvas Line Options

Option Type Description

width distance The width of the line. Default is 1 pixel.

fill color The color to use for the line. Default is "black".

stipple bitmap The name of a bitmap which is used as a stipple
brush when drawing the line. Typical values are
"gray12", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

arrow constant If set to a value other than NONE, the line is drawn
as an arrow. The option value defines where to
draw the arrow head: FIRST, LAST, or BOTH.
Default is NONE.

The FIRST and LAST constants are not defined in
Python 1.5.2 and earlier. For compatibility, use the
strings "first" and "last" instead.

arrowshape 3-tuple Controls the shape of the arrow. Default is (8, 10,
3).

http://www.pythonware.com/library/tkinter/introduction/x3228-options.htm (1 of 2) [3/29/2003 12:45:49 AM]

Options

capstyle constant For wide lines, this option controls how to draw the
line ends. Use one of BUTT, PROJECTING, ROUND.
Default is BUTT.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "butt",
"projecting", and "round" instead.

joinstyle const For wide lines, this option controls how to draw the
joins between edges. Use one of BEVEL, MITER, or
ROUND. Default is ROUND.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "bevel",
"miter", and "round" instead.

smooth flag If non-zero, the given coordinates are interpreted as
b-spline vertices.

splinesteps int The number of steps to use when smoothing this
line. Default is 12.

tags tags One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3228-options.htm (2 of 2) [3/29/2003 12:45:49 AM]

The Canvas Oval Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 18. The Canvas Oval
Item
Table of Contents
Methods
Options

Methods
create_oval(x0, y0, options...) => id

Create a oval item at the given position, using the given options. Note that the oval
string itself is given by the oval option.

delete(item)

Delete an oval item.

coords(item, x0, y0)

Move one or more oval items.

itemconfigure(item, options...)

Change the options for one or more oval (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-oval.htm [3/29/2003 12:45:50 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The oval item supports the following options, via the create_oval method, and the
itemconfig and itemcget configuration methods.

Table 18-1. Canvas Oval Options

Option Type Description

fill color The color to use for the interior. If an empty string
is given, the interior is not drawn. Default is empty
(transparent).

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the oval's interior. Typical values
are "gray12", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

As of Tk 8.0, the stipple option is ignored on the
Windows platform. To draw stippled ovals, you
have to create corresponding polygons.

outline color The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is "black".

width distance The width of the outline. Default is 1 pixel.

tags tuple One or more tags to associate with this item. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3387-options.htm [3/29/2003 12:45:51 AM]

The Canvas Polygon Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 19. The Canvas Polygon
Item
Table of Contents
Methods
Options

Methods
The following methods are used to create and configure polygon items:

create_polygon(xy, options...) => id, create_polygon(x0, y0, x1,
y1, x2, y2, ..., xn, yn, options...) => id

Create a polygon item. You must specify at least 3 vertices when you create a new
polygon.

delete(item)

Delete a polygonitem.

coords(item, x0, y0, x1, y1, x2, y2, ..., xn, yn)

Change the coordinates for one or more polygon items. Note that the coordinates
must be given as separate arguments; you cannot use a sequence as with
create_polygon.

itemconfigure(item, options...)

Change the options for one or more polygon items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-polygon.htm [3/29/2003 12:45:52 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The polygon item supports the following options, via the create_polygon method, and
the itemconfig and itemcget configuration methods.

Table 19-1. Canvas Polygon Options

Option Type Description

fill None The color to use for the polygon interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the polygon's interior. Typical
values are "gray12", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

outline None The color to use for the polygon outline. If an empty
string is given, the outline is not drawn. Default is
"black".

width distance The width of the polygon's outline. Default is 1
pixel.

smooth None If non-zero, the given coordinates are interpreted as
b-spline vertices.

splinesteps None The number of steps to use when smoothing the
polygon outline. Default is 12.

http://www.pythonware.com/library/tkinter/introduction/x3485-options.htm (1 of 2) [3/29/2003 12:45:53 AM]

Options

tags tuple One or more tags to associate with the polygon. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3485-options.htm (2 of 2) [3/29/2003 12:45:53 AM]

The Canvas Rectangle Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 20. The Canvas
Rectangle Item
Table of Contents
Methods
Options

Methods
The following methods are used to create and configure rectangle items:

create_rectangle(x0, y0, x1, y1, options...) => id

Create a rectangle item between the given coordinates. The rectangle item is
created with the given options.

delete(item)

Delete a rectangle item.

coords(item, x0, y0, x1, y1)

Change the coordinates for one or more rectangle items. The item argument can
match one or more rectangle items, rectangles, or any other item taking exactly
four coordinates.

itemconfigure(item, options...)

Change the options for one or more rectangle items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-rectangle.htm [3/29/2003 12:45:55 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The rectangle item supports the following options, via the create_rectangle method,
and the itemconfig and itemcget configuration methods.

Table 20-1. Canvas Rectangle Options

Option Type Description

fill None The color to use for the rectangle interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

outline None The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is "black".

stipple None The name of a bitmap which is used as a stipple
brush when filling the rectangle's interior. Typical
values are "gray12", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

tags None One or more tags to associate with the rectangle. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

width distance The width of the rectangle's outline. Default is 1
pixel.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3596-options.htm [3/29/2003 12:45:56 AM]

The Canvas Text Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 21. The Canvas Text
Item
Table of Contents
Methods
Options

Methods
The following methods are used to create and configure text items:

create_text(x0, y0, options...) => id

Create a text item at the given position, using the given options. Note that the text
string itself is given by the text option.

delete(item)

Delete a text item.

coords(item, x0, y0)

Move one or more text items.

itemconfigure(item, options...)

Change the options for one or more text (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-text.htm [3/29/2003 12:45:57 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The text item supports the following options, via the create_text method, and the
itemconfig and itemcget configuration methods.

Table 21-1. Canvas Text Options

Option Type Description

anchor constant Specifies which part of the text (the text's bounding
box, more exactly) that should be placed at the
given position. Use one of N, NE, E, SE, S, SW, W, NW,
or CENTER. Default is CENTER.

fill color The color to use for the text. If an empty string is
given, the text is not drawn. Default is empty
(transparent).

font font

justify constant

stipple bitmap

tags tuple One or more tags to associate with the text. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

text string The text string.

width distance

http://www.pythonware.com/library/tkinter/introduction/x3691-options.htm (1 of 2) [3/29/2003 12:45:57 AM]

Options

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3691-options.htm (2 of 2) [3/29/2003 12:45:57 AM]

The Canvas Window Item

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 22. The Canvas Window
Item
Table of Contents
Methods
Options

Methods
The following methods are used to create and configure window items:

create_window(x0, y0, options...) => id

Embed a window at the given position, using the given options. Note that the
widget to use is given by the window option.

delete(item)

Delete a window item.

coords(item, x0, y0)

Move one or more window items.

itemconfigure(item, options...)

Change the options for one or more window (or other) items.

Back Next

http://www.pythonware.com/library/tkinter/introduction/canvas-window.htm [3/29/2003 12:45:58 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The window item supports the following options, via the create_window method, and
the itemconfig and itemcget configuration methods.

Table 22-1. Canvas Window Options

Option Type Description

window window The widget to embed in the canvas.

anchor constant Specifies which part of the window that should be
placed at the given position. Use one of N, NE, E, SE,
S, SW, W, NW, or CENTER. Default is CENTER.

height,
width

distance The height and width of the window. If omitted, the
height and width defaults to the actual window size.

tags tuple One or more tags to associate with the window. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3815-options.htm [3/29/2003 12:45:59 AM]

The Checkbutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 23. The Checkbutton
Widget
Table of Contents
When to use the Checkbutton Widget
Patterns
Methods
Options

The Checkbutton widget is a standard Tkinter widgets used to implement on-off
selections. Checkbuttons can contain text or images, and you can associate a Python
function or method with each button. When the button is pressed, Tkinter automatically
calls that function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

Each Checkbutton widget should be associated with a variable.

When to use the Checkbutton
Widget
The checkbutton widget is choose between two distinct values (usually switching
something on or off). Groups of checkbuttons can be used to implement "many-of-many"
selections.

To handle "one-of-many" choices, use Radiobutton and Listbox widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/checkbutton.htm [3/29/2003 12:46:00 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
(Also see the Button patterns).

To use a Checkbutton, you must create a Tkinter variable:

 var = IntVar()
 c = Checkbutton(master, text="Expand", variable=var)

By default, the variable is set to 1 if the button is selected, and 0 otherwise. You can change
these values using the onvalue and offvalue options. The variable doesn't have to be an
integer variable:

 var = StringVar()
 c = Checkbutton(
 master, text="Color image", variable=var,
 onvalue="RGB", offvalue="L"
)

If you need to keep track of both the variable and the widget, you can simplify your code
somewhat by attaching the variable to the widget reference object.

 v = IntVar()
 c = Checkbutton(master, text="Don't show this again", variable=v)
 c.var = v

If your Tkinter code is already placed in a class (as it should be), it is probably cleaner to store
the variable in an attribute, and use a bound method as callback:

 def __init__(self, master):
 self.var = IntVar()
 c = Checkbutton(master, text="Enable Tab",
 variable=self.var, command=self.cb)
 c.pack()

 def cb(self, event):
 print "variable is", self.var.get()

http://www.pythonware.com/library/tkinter/introduction/x3897-patterns.htm (1 of 2) [3/29/2003 12:46:01 AM]

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3897-patterns.htm (2 of 2) [3/29/2003 12:46:01 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Checkbutton widgets support the standard Tkinter Widget interface, plus the
following methods:

deselect()

Deselect the button.

flash()

Redraw the button several times, alternating between active and normal
appearance.

invoke()

Call the command associated with the button.

select()

Select the button.

toggle()

Toggle the selection state.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3913-methods.htm [3/29/2003 12:46:02 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Checkbutton widgets support the following options:

Table 23-1. Checkbutton Options

Option Type Description

activebackground,
activeforeground

color The color to use when the button is
activated.

anchor constant Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SW, W, NW, or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

background,
foreground

color The button color. The default is platform
specific.

bitmap bitmap The bitmap to display in the widget. If the
image option is given, this option is
ignored.

The following bitmaps are available on all
platforms: "error", "gray75", "gray50",
"gray25", "gray12", "hourglass", "info",
"questhead", "question", and "warning".

The following additional bitmaps are

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (1 of 5) [3/29/2003 12:46:03 AM]

Options

available on the Macintosh only:
"document", "stationery", "edition",
"application", "accessory", "folder",
"pfolder", "trash", "floppy", "ramdisk",
"cdrom", "preferences", "querydoc", "stop",
"note", and "caution".

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@sample.xbm".

borderwidth (bd) int The width of the button border. The default
is platform specific.

command callback A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

cursor cursor The cursor to show when the mouse is
moved over the button.

default int If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

disabledforeground color The color to use when the button is
disabled. The background is shown in the
background color.

font font The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (2 of 5) [3/29/2003 12:46:03 AM]

Options

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is typically one or two
pixels.

image image The image to display in the widget. If
specified, this takes precedence over the
text and bitmap options.

indicatoron bool Controls if the indicator should be drawn or
not. This is on by default.

Setting this option to false means that the
relief will be used as the indicator. If the
button is selected, it is drawn as SUNKEN
instead of RAISED.

justify constant Defines how to align multiple lines of text.
Use LEFT, RIGHT, or CENTER.

offvalue, onvalue value The values corresponding to a non-checked
or checked button, respectively. Defaults
are 0 and 1.

padx, paxy distance Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

relief constant Border decoration. This is usually FLAT for
checkbuttons, unless they use the border as
indicator (via the indicatoron option).

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (3 of 5) [3/29/2003 12:46:03 AM]

Options

selectcolor color Color to use for the selector.

selectimage image Graphic image to use for the selector.

state constant The button state: NORMAL, ACTIVE or
DISABLED. Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

text string The text to display in the button. The text
can contain newlines. If the bitmap or
image options are used, this option is
ignored.

textvariable variable Associates a Tkinter variable (usually a
StringVar) to the button. If the variable is
changed, the button text is updated.

Also see the variable option.

underline int Default is -1 (don't underline).

variable variable Associates a Tkinter variable to the button.
When the button is pressed, the variable is
toggled between offvalue and onvalue.
Explicit changes to the variable are
automatically reflected by the buttons.

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (4 of 5) [3/29/2003 12:46:03 AM]

Options

width, height distance The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

wraplength distance Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x3943-options.htm (5 of 5) [3/29/2003 12:46:03 AM]

The DoubleVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 24. The DoubleVar
Class
Table of Contents
When to use the DoubleVar Class
Patterns
Methods

When to use the DoubleVar
Class
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/doublevar.htm [3/29/2003 12:46:04 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4260-patterns.htm [3/29/2003 12:46:08 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
get() => float, set(float)

FIXME

trace(mode, callback), trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() => list

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4263-methods.htm [3/29/2003 12:46:10 AM]

The Entry Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 25. The Entry Widget
Table of Contents
When to use the Entry Widget
Concepts
Patterns
Methods
Options

The Entry widget is a standard Tkinter widget used to enter or display a single line of
text.

When to use the Entry Widget
The entry widget is used to enter text strings. This widget allows the user to enter one line
of text, in a single font.

To enter multiple lines of text, use the text widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/entry.htm [3/29/2003 12:46:11 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts

Indexes

The Entry widget allows you to specify character positions in a number of ways:

● Numerical indexes

● ANCHOR

● END

● INSERT

● Mouse coordinates

Numerical indexes work just like Python list indexes. The characters in the string are
numbered from 0 and upwards. You specify ranges just like you slice lists in Python; for
example, (0, 5) corresponds to the first five characters in the entry widget.

ANCHOR (or "anchor") corresponds to the start of the selection, if any. You can use the
select_from method to change this from the program.

END (or "end") corresponds to the position just after the last character in the entry
widget. The range (0, END) corresponds to all characters in the widget.

INSERT (or "insert") corresponds to the current position of the text cursor. You can use
the icursor method to change this from the program.

Finally, you can use the mouse position for the index, using the following syntax:

 "@%d" % x

where x is given in pixels relative to the left edge of the entry widget.

http://www.pythonware.com/library/tkinter/introduction/x4300-concepts.htm (1 of 2) [3/29/2003 12:46:11 AM]

Concepts

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4300-concepts.htm (2 of 2) [3/29/2003 12:46:11 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4334-patterns.htm [3/29/2003 12:46:13 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Entry widget support the standard Tkinter Widget interface, plus the following
methods:

insert(index, text)

Insert text at the given index. Use insert(INSERT, text) to insert text at the cursor,
insert(END, text) to append text to the widget.

delete(index), delete(from, to)

Delete the character at index, or within the given range. Use delete(0, END) to
delete all text in the widget.

icursor(index)

Move the insertion cursor to the given index. This also sets the INSERT index.

get() => string

Get the current contents of the entry field.

index(index) => index

Return the numerical position corresponding to the given index.

Selection Methods

selection_adjust(index), select_adjust(index)

Adjust the selection to include also the given character. If index is already selected,
do nothing.

selection_clear(), select_clear()

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (1 of 3) [3/29/2003 12:46:14 AM]

Methods

Clear the selection.

selection_from(index), select_from(index)

Starts a new selection. This also sets the ANCHOR index.

selection_present() => flag, select_present() => flag

Returns true (non-zero) if some part of the text is selected.

selection_range(start, end), select_range(start, end)

Explicitly set the selection. Start must be smaller than end. Use
selection_range(0, END) to select all text in the widget.

selection_to(index), select_to(index)

Select all text between ANCHOR and the given index.

Scrolling Methods

These methods are used to scroll the entry widget in various ways. The scan methods
can be used to implement fast mouse panning operations (they are bound to the middle
mouse button, if available), while the xview method is used with a standard scrollbar
widget.

scan_mark(x)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x)

Scroll the widget contents sideways according to the given mouse coordinate. The
text is moved 10 times the distance between the scanning anchor and the new
position.

xview(index)

Make sure the given index is visible. The widget is scrolled if necessary.

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (2 of 3) [3/29/2003 12:46:14 AM]

Methods

xview_moveto(fraction), xview_scroll(number, what)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4338-methods.htm (3 of 3) [3/29/2003 12:46:14 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Entry widget support the following options:

Table 25-1. Entry Options

Option Type Description

background (bg) color Widget background.

borderwidth (bd) distance Border width.

cursor cursor Widget cursor. The default is a text
insertion cursor (typically an "I beam"
cursor, e.g. xterm).

exportselection flag If true, selected text is automatically
exported to the clipboard. Default is true.

font font Widget font. The default is system specific.

foreground (fg) color Text color.

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (1 of 3) [3/29/2003 12:46:15 AM]

Options

highlightthickness distance Controls the width of the focus highlight
border. Default is typically one or two
pixels.

insertbackground color Color used for the insertion cursor.

insertborderwidth color

insertofftime,
insertontime

int Controls cursor blinking.

insertwidth int Width of the insertion cursor.

justify const

relief const Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAISED,
GROOVE, and RIDGE.

selectbackground color Selection background color. The default is
system and display specific.

selectborderwidth int Selection border width. The default is
system specific.

selectforeground color Selection text color. The default is system
and display specific.

show character Controls how to display the contents of the
widget. If non-empty, the widget displays a
string of characters instead of the actual
contents. To get a password entry widget,
use "*".

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (2 of 3) [3/29/2003 12:46:15 AM]

Options

state const One of NORMAL or DISABLED. Default is
NORMAL. Note that if you set this to
DISABLED, calls to insert or delete are
ignored.

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the canvas accepts
focus only if it has any keyboard bindings
(default is on, in other words).

textvariable variable

width int

xscrollcommand callback

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4447-options.htm (3 of 3) [3/29/2003 12:46:15 AM]

The Font Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 26. The Font Class
Table of Contents
Patterns
Methods
Functions
Options

Patterns
Back Next

http://www.pythonware.com/library/tkinter/introduction/font.htm [3/29/2003 12:46:16 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
copy() => font object

Return a distinct copy of the current font.

actual() => dictionary, actual(option) => value

Return actual font attributes. If no option is given, returns all actual font attribtues
as a dictionary.

cget(option) => string

Get configured font attribute.

config() => dictionary, configure() => dictionary

Get full set of configured font attributes as a dictionary.

config(options), configure(options...)

Modify one or more font attributes.

measure(text) => integer

Return text width.

metrics() => dictionary, metrics(options...) => value

Return one or more font metrics. If no arguments are given, all metrics are
returned as a dictionary.

For best performance, make sure that this font is in use before calling this method.
If necessary, you can create a dummy widget using the font.

http://www.pythonware.com/library/tkinter/introduction/x4671-methods.htm (1 of 2) [3/29/2003 12:46:17 AM]

Methods

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4671-methods.htm (2 of 2) [3/29/2003 12:46:17 AM]

Functions

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Functions
families() => list

Get a list of available font families.

names() => list

Get a list of the names of names of all user-defined fonts.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4718-functions.htm [3/29/2003 12:46:18 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The constructor and the config method supports the following options.

Table 26-1. Font Options

Option Type Description

font font Font specifier. This can be a font name, a system
font name, or a (family, size, style)-tuple.

family string Font family.

size integer Font size in points. To give the size in pixels, use a
negative value.

weight constant Font thickness. Use one of NORMAL or BOLD.
Default is NORMAL.

Note that these constants are defined in the
tkFont module.

slant constant Font slant. Use one of NORMAL or ITALIC. Default
is NORMAL.

Note that these constants are defined in the
tkFont module.

underline flag Font underlining. If 1 (true), the font is underlined.
Default is 0 (false).

http://www.pythonware.com/library/tkinter/introduction/x4731-options.htm (1 of 2) [3/29/2003 12:46:19 AM]

Options

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is 0 (false).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4731-options.htm (2 of 2) [3/29/2003 12:46:19 AM]

The Frame Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 27. The Frame Widget
Table of Contents
When to use the Frame Widget
Patterns
Methods
Options

A frame is rectangular region on the screen. The frame widget is mainly used as a
geometry master for other widgets, or to provide padding between other widgets.

When to use the Frame Widget
Frame widgets are used to group other widgets into complex layouts. They are also used
for padding, and as a base class when implementing compound widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/frame.htm [3/29/2003 12:46:20 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
The frame widget can be used as a place holder for video overlays and other external
processes.

To use a frame widget in this fashion, set the background color to an empty string (this
prevents updates, and leaves the color map alone), pack it as usual, and use the
window_id method to get the window handle corresponding to the frame.

 frame = Frame(width=768, height=576, bg="", colormap="new")
 frame.pack()
 video.attach_window(frame.window_id())

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4822-patterns.htm [3/29/2003 12:46:21 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
Except for the standard widget interface (config, etc), the Frame widget has no
methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4828-methods.htm [3/29/2003 12:46:22 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Frame widget supports the following options:

Table 27-1. Frame Options

Option Type Description

height, width distance Frame size.

background (bg) color The background color to use in this frame.
This defaults to the application background
color. To prevent updates, set the color to
an empty string.

colormap window Some displays support only 256 colors
(some use even less). Such displays usually
provide a color map to specify which 256
colors to use. This option allows you to
specify which color map to use for this
frame, and its child widgets.

By default, a new frame uses the same color
map as its parent. Using this option, you
can reuse the color map of another window
instead (this window must be on the same
screen and have the same visual
characteristics). You can also use the value
"new" to allocate a new color map for this
frame.

You cannot change this option once you've
created the frame.

http://www.pythonware.com/library/tkinter/introduction/x4833-options.htm (1 of 2) [3/29/2003 12:46:23 AM]

Options

cursor cursor The cursor to show when the mouse pointer
is placed over the button widget. Default is a
system specific arrow cursor.

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAISED,
GROOVE, and RIDGE.

Note that to show the border, you need to
change the borderwidth from it's default
value of 0.

borderwidth (bd) distance Border width. Defaults to 0 (no border).

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the frame accepts
focus only if it has any keyboard bindings
(default is off, in other words).

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When any child to the frame has
focus, the border is drawn in the
highlightcolor color. Otherwise, it is
drawn in the highlightbackground
color. The defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4833-options.htm (2 of 2) [3/29/2003 12:46:23 AM]

The Grid Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 28. The Grid Geometry
Manager
Table of Contents
When to use the Grid Manager
Patterns
Methods
Options

The Grid geometry manager puts the widgets in a 2-dimensional table. The master
widget is split into a number of rows and columns, and each "cell" in the resulting table
can hold a widget.

When to use the Grid Manager
The grid manager is the most flexible of the geometry managers in Tkinter. If you don't
want to learn how and when to use all three managers, you should at least make sure to
learn this one.

The grid manager is especially convenient to use when designing dialog boxes. If you're
using the packer for that purpose today, you'll be surprised how much easier it is to use
the grid manager instead. Instead of using lots of extra frames to get the packing to work,
you can in most cases simply pour all the widgets into a single container widget (I tend to
use two; one for the dialog body, and one for the button box at the bottom), and use the
grid manager to get them all where you want them.

Consider the following example:

http://www.pythonware.com/library/tkinter/introduction/grid.htm (1 of 2) [3/29/2003 12:46:24 AM]

The Grid Geometry Manager

Creating this layout using the pack manager is possible, but it takes a number of extra
frame widgets, and a lot of work to make things look good. If you use the grid manager
instead, you only need one call per widget to get everything laid out properly (see next
section for the code needed to create this layout).

Warning

Never mix grid and pack in the same master window. Tkinter will happily spend the
rest of your lifetime trying to negotiate a solution that both managers are happy with.
Instead of waiting, kill the application, and take another look at your code. A common
mistake is to use the wrong parent for some of the widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/grid.htm (2 of 2) [3/29/2003 12:46:24 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Using the grid manager is easy. Just create the widgets, and use the grid method to tell
the manager in which row and column to place them. You don't have to specify the size of
the grid beforehand; the manager automatically determines that from the widgets in it.

 Label(master, text="First").grid(row=0)
 Label(master, text="Second").grid(row=1)

 e1 = Entry(master)
 e2 = Entry(master)

 e1.grid(row=0, column=1)
 e2.grid(row=1, column=1)

Note that the column number defaults to 0 if not given.

Running the above example produces the following window:

Figure 28-1. Figure: simple grid example

Empty rows and columns are ignored. The result would have been the same if you had
placed the widgets in row 10 and 20 instead.

Note that the widgets are centered in their cells. You can use the sticky option to
change this; this option takes one or more values from the set N, S, E, W. To align the
labels to the left border, you could use W (west):

 Label(master, text="First").grid(row=0, sticky=W)
 Label(master, text="Second").grid(row=1, sticky=W)

 e1 = Entry(master)

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (1 of 3) [3/29/2003 12:46:26 AM]

Patterns

 e2 = Entry(master)

 e1.grid(row=0, column=1)
 e2.grid(row=1, column=1)

Figure 28-2. Figure: using the sticky option

You can also have the widgets span more than one cell. The columnspan option is used
to let a widget span more than one column, and the rowspan option lets it span more
than one row. The following code creates the layout shown in the previous section:

 label1.grid(sticky=E)
 label2.grid(sticky=E)

 entry1.grid(row=0, column=1)
 entry2.grid(row=1, column=1)

 checkbutton.grid(columnspan=2, sticky=W)

 image.grid(row=0, column=2, columnspan=2, rowspan=2,
 sticky=W+E+N+S, padx=5, pady=5)

 button1.grid(row=2, column=2)
 button2.grid(row=2, column=3)

There are plenty of things to note in this example. First, no position is specified for the
label widgets. In this case, the column defaults to 0, and the row to the first unused row
in the grid. Next, the entry widgets are positioned as usual, but the checkbutton widget is
placed on the next empty row (row 2, in this case), and is configured to span two
columns. The resulting cell will be as wide as the label and entry columns combined. The
image widget is configured to span both columns and rows at the same time. The
buttons, finally, is packed each in a single cell:

Figure 28-3. Figure: using column and row spans

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (2 of 3) [3/29/2003 12:46:26 AM]

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4951-patterns.htm (3 of 3) [3/29/2003 12:46:26 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

Widget Methods

The following methods are available on widgets managed by the grid manager:

grid(option=value, ...), grid_configure(option=value, ...)

Place the widget in a grid as described by the options (see below).

grid_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by
grid or any other manager.

grid_info() => dictionary

Return a dictionary containing the current options.

grid_remove()

Remove the widget. The widget is not destroyed, and can be displayed again by
grid or any other manager.

Manager Methods

The following methods are available on widgets that are used as grid managers (that is,
the geometry masters for widgets managed by the grid manager).

columnconfigure(column, option=value, ...), rowconfigure(row,
option=value, ...)

Set options for the given column (or row).

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (1 of 3) [3/29/2003 12:46:27 AM]

Methods

To change this for a given widget, you have to call this method on the widget's
parent.

Table 28-1. Grid Manager Options

Option Type Description

minsize integer Defines the minimum size for the column (row).
Note that if a column or row is completely empty, it
will not be displayed, even if this option is set.

pad integer Padding to add to the size of the largest widget in
the column (row) when setting the size of the whole
column.

weight integer A relative weight used to distribute additional space
between columns (rows). A column with the weight
2 will grow twice as fast as a column with weight 1.
The default is 0, which means that the column will
not grow at all.

grid_location(x, y) => tuple

Returns the grid cell under (or closest to) the given pixel coordinate. The result is a
2-tuple: (column, row).

grid_propagate(flag)

Enables or disables geometry propagation. When enabled, the grid manager
attempts to change the size of the geometry master when a child widget changes
size. Propagation is always enabled by default.

grid_size() => tuple

Returns the current grid size. This is defined as indexes of the first empty column
and row in the grid, in that order. The result is a 2-tuple: (column, row).

grid_slaves() => list

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (2 of 3) [3/29/2003 12:46:27 AM]

Methods

Returns a list of the "slave" widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x4982-methods.htm (3 of 3) [3/29/2003 12:46:27 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The following options can be used with the grid and grid_configure methods:

Table 28-2. Grid Manager Options

Option Type Description

column integer Insert the widget at this column. Column numbers
start with 0. If omitted, defaults to 0.

columnspan integer If given, indicates that the widget cell should span
more than one column.

in (in_) widget Place widget inside to the given widget. You can
only place a widget inside its parent, or in any
decendant of its parent. If this option is not given, it
defaults to the parent.

Note that in is a reserved word in Python. To use it
as a keyword option, append an underscore (in_).

ipadx, ipady distance Optional internal padding. Works like padx and
pady, but the padding is added inside the widget
borders. Default is 0.

padx, pady distance Optional padding to place around the widget in a
cell. Default is 0.

row integer Insert the widget at this row. Row numbers start
with 0. If omitted, defaults to the first empty row in
the grid.

http://www.pythonware.com/library/tkinter/introduction/x5086-options.htm (1 of 2) [3/29/2003 12:46:29 AM]

Options

rowspan integer If given, indicates that the widget cell should span
more than one row.

sticky constant Defines how to expand the widget if the resulting
cell is larger than the widget itself. This can be any
combination of the constants S, N, E, and W, or NW,
NE, SW, and SE. For example, W (west) means that
the widget should be aligned to the left cell border.
W+E means that the widget should be stretched
horizontally to fill the whole cell. W+E+N+S means
that the widget should be expanded in both
directions. Default is to center the widget in the cell.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5086-options.htm (2 of 2) [3/29/2003 12:46:29 AM]

The IntVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 29. The IntVar Class
Table of Contents
When to use the IntVar Class
Patterns
Methods

When to use the IntVar Class
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/intvar.htm [3/29/2003 12:46:31 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5192-patterns.htm [3/29/2003 12:46:32 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
get() => integer, set(integer)

FIXME

trace(mode, callback), trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() => list

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5195-methods.htm [3/29/2003 12:46:32 AM]

The Label Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 30. The Label Widget
Table of Contents
When to use the Label Widget
Patterns
Methods
Options

The Label widget is a standard Tkinter widget used to display a text or image on the
screen. The button can only display text in a single font, but the text may span more than
one line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut.

When to use the Label Widget
Labels are used to display texts and images. The label widget uses double buffering, so
you can update the contents at any time, without annoying flicker.

To display data that the user can manipulate in place, it's probably easier to use the
Canvas widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/label.htm [3/29/2003 12:46:33 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
To use a label, you just have to specify what to display in it (this can be text, a bitmap, or
an image):

 w = Label(master, text="Hello, world!")

If you don't specify a size, the label is made just large enough to hold its contents. You
can also use the height and width options to explicitly set the size. If you display text in
the label, these options define the size of the label in text units. If you display bitmaps or
images instead, they define the size in pixels (or other screen units). See the Button
description for an example how to specify the size in pixels also for text labels.

You can specify which color to use for the label with the foreground (or fg) and
background (or bg) options. You can also choose which font to use in the label (the
following example uses Tk 8.0 font descriptors). Use colors and fonts sparingly; unless
you have a good reason to do otherwise, you should stick to the default values.

 w = Label(master, text="Rouge", fg="red")
 w = Label(master, text="Helvetica", font=("Helvetica", 16))

Labels can display multiple lines of text. You can use newlines or use the wraplength
option to make the label wrap text by itself. When wrapping text, you might wish to use
the anchor and justify options to make things look exactly as you wish. An example:

 w = Label(master, text=longtext, anchor=W, justify=LEFT)

You can associate a variable with the label. When the contents of the variable changes,
the label is automatically updated:

 v = StringVar()
 Label(master, textvariable=v).pack()
 v.set("New Text!")

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5232-patterns.htm [3/29/2003 12:46:34 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Label widget supports the standard Tkinter Widget interface. There are no
additional methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5254-methods.htm [3/29/2003 12:46:35 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The following options can be used for the Label widget.

Table 30-1. Label Options

Option Type Description

text string The text to display in the label. The text can contain
newlines. If the bitmap or image options are used,
this option is ignored.

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.

The following bitmaps are available on all
platforms: "error", "gray75", "gray50", "gray25",
"gray12", "hourglass", "info", "questhead",
"question", and "warning".

The following additional bitmaps are available on
the Macintosh only: "document", "stationery",
"edition", "application", "accessory", "folder",
"pfolder", "trash", "floppy", "ramdisk", "cdrom",
"preferences", "querydoc", "stop", "note", and
"caution".

You can also load the bitmap from an XBM file.
Just prefix the filename with an at-sign, for
example "@sample.xbm".

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (1 of 3) [3/29/2003 12:46:36 AM]

Options

image image The image to display in the widget. If specified, this
takes precedence over the text and bitmap
options.

width,
height

int The size of the label. If the label displays text, the
size is given in text units. If the label displays an
image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the
label contents.

relief constant Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE, and
RIDGE.

Note that to show the border, you need to change
the borderwidth from it's default value of 0.

borderwidth
(bd)

dimension The width of the label border. The default is 0 (no
border).

background
(bg),
foreground
(fg)

color The label color (the foreground value is used for
text and bitmap labels only). The default is platform
specific.

font font The font to use in the label. The label can only
contain text in a single font.

justify constant Defines how to align multiple lines of text. Use
LEFT, RIGHT, or CENTER.

anchor constant Controls where in the label the text (or image)
should be located. Use one of N, NE, E, SE, S, SW, W,
NW, or CENTER. Default is CENTER.

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (2 of 3) [3/29/2003 12:46:36 AM]

Options

wraplength distance Determines when a label's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

textvariable variable Associates a Tkinter variable (usually a
StringVar) to the label. If the variable is changed,
the label text is updated.

underline int Default is -1.

cursor cursor The cursor to show when the mouse is moved over
the label.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5258-options.htm (3 of 3) [3/29/2003 12:46:36 AM]

The Listbox Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 31. The Listbox Widget
Table of Contents
When to use the Listbox Widget
Patterns
Methods
Options

The Listbox widget is a standard Tkinter widget used to display a list of alternatives.
The listbox can only contain text items, and all items must have the same font and color.
Depending on the widget configuration, the user can choose one or more alternatives
from the list.

When to use the Listbox Widget
Listboxes are used to select from a group of textual items. Depending on how the listbox
is configured, the user can select one or many items from that list.

Back Next

http://www.pythonware.com/library/tkinter/introduction/listbox.htm [3/29/2003 12:46:37 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
When you first create the listbox, it is empty. The first thing to do is usually to insert one
or more lines of text. The insert method takes an index and a string to insert. The index
is usually an item number (0 for the first item in the list), but you can also use some
special indexes, including ACTIVE, which refers to the "active" item (set when you click
on an item, or by the arrow keys), and END, which is used to append items to the list.

 listbox = Listbox(master)

 listbox.insert(END, "a list entry")

 for item in ["one", "two", "three", "four"]:
 listbox.insert(END, item)

To remove items from the list, use the delete method. The most common operation is
to delete all items in the list (something you often need to do when updating the list).

 listbox.delete(0, END)
 listbox.insert(END, newitem)

You can also delete individual items. In the following example, a separate button is used
to delete the ACTIVE item from a list.

 lb = Listbox(master)
 b = Button(master, text="Delete",
 command=lambda lb=lb: lb.delete(ANCHOR))

The listbox offers four different selection modes through the selectmode option. These
are SINGLE (just a single choice), BROWSE (same, but the selection can be moved using
the mouse), MULTIPLE (multiple item can be choosen, by clicking at them one at a time),
or EXTENDED (multiple ranges of items can be chosen, using the Shift and Control
keyboard modifiers). The default is BROWSE. Use MULTIPLE to get "checklist" behavior,
and EXTENDED when the user would usually pick only one item, but sometimes would
like to select one or more ranges of items.

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (1 of 4) [3/29/2003 12:46:38 AM]

Patterns

 lb = Listbox(selectmode=EXTENDED)

To query the selection, use curselection method. It returns a list of item indexes, but
a bug in Tkinter 1.101 (Python 1.5.1) and earlier versions causes this list to be returned as
a list of strings, instead of integers. This will most likely be fixed in later versions of
Tkinter, so you should make sure that your code is written to handle either case. Here's
one way to do that:

 items = list.curselection()
 try:
 items = map(int, items)
 except ValueError: pass

In versions before Python 1.5, use string.atoi of int.

Use the get method to get the list item corresponding to a given index.

You can also use a listbox to represent arbitrary Python objects. In the next example, we
assume that the input data is represented as a list of tuples, where the first item in each
tuple is the string to display in the list. For example, you could display a dictionary by
using the items method to get such a list.

 self.lb.delete(0, END) # clear
 for key, value in data:
 self.lb.insert(END, key)
 self.data = data

When querying the list, simply fetch the items indexed by the selection list:

 items = self.lb.curselection()
 try:
 items = map(string.atoi, items)
 except ValueError: pass
 items = map(lambda i,d=self.data: d[i], items)

Unfortunately, the listbox doesn't provide a command option allowing you to track
changes to the selection. The standard solution is to bind a double-click event to the same
callback as the OK (or Select, or whatever) button. This allows the user to either select an
alternative as usual, and click OK to carry out the operation, or to select and carry out the
operation in one go by double-clicking on an alternative. This solution works best in
BROWSE and EXTENDED modes.

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (2 of 4) [3/29/2003 12:46:38 AM]

Patterns

 lb.bind("<Double-Button-1>", self.ok)

If you wish to track arbitrary changes to the selection, you can either rebind the whole
bunch of selection related events (see the Tk manual pages for a complete list of Listbox
event bindings), or, much easier, poll the list using a timer:

 def __init__(self, master):
 self.list = Listbox(selectmode=EXTENDED)
 self.list.pack()
 self.current = None
 self.poll() # start polling the list

 def poll(self):
 now = self.list.curselection()
 if now != self.current:
 self.list_has_changed(now)
 self.current = now
 self.after(250, self.poll)

By default, the selection is exported via the X selection mechanism (or the clipboard, on
Windows). If you have more than one listbox on the screen, this really messes things up
for the poor user. If she selects something in one listbox, and then selects something in
another, the original selection disappears. It is usually a good idea to disable this
mechanism in such cases. In the following example, three listboxes are used in the same
dialog:

 b1 = Listbox(exportselection=0)
 for item in families:
 b1.insert(END, item)

 b2 = Listbox(exportselection=0)
 for item in fonts:
 b2.insert(END, item)

 b3 = Listbox(exportselection=0)
 for item in styles:
 b3.insert(END, item)

The listbox itself doesn't include a scrollbar. Attaching a scrollbar is pretty
straightforward. Simply set the xscrollcommand and yscrollcommand options of the
listbox to the set method of the corresponding scrollbar, and the command options of
the scrollbars to the corresponding xview and yview methods in the listbox. Also
remember to pack the scrollbars before the listbox. In the following example, only a

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (3 of 4) [3/29/2003 12:46:38 AM]

Patterns

vertical scrollbar is used. For more examples, see pattern section in the Scrollbar
description.

 frame = Frame(master)
 scrollbar = Scrollbar(frame, orient=VERTICAL)
 listbox = Listbox(frame, yscrollcommand=scrollbar.set)
 scrollbar.config(command=listbox.yview)
 scrollbar.pack(side=RIGHT, fill=Y)
 listbox.pack(side=LEFT, fill=BOTH, expand=1)

With some more trickery, you can use a single vertical scrollbar to scroll several lists in
parallel. This assumes that all lists have the same number of items. Also note how the
widgets are packed in the following example.

 def __init__(self, master):
 scrollbar = Scrollbar(master, orient=VERTICAL)
 self.b1 = Listbox(master, yscrollcommand=scrollbar.set)
 self.b2 = Listbox(master, yscrollcommand=scrollbar.set)
 scrollbar.config(command=self.yview)
 scrollbar.pack(side=RIGHT, fill=Y)
 self.b1.pack(side=LEFT, fill=BOTH, expand=1)
 self.b2.pack(side=LEFT, fill=BOTH, expand=1)

 def yview(self, *args):
 apply(self.b1.yview, args)
 apply(self.b2.yview, args)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5453-patterns.htm (4 of 4) [3/29/2003 12:46:38 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Listbox widget supports the standard Tkinter Widget interface, plus the following
methods:

activate(index)

Activate the given index (it will be marked with an underline). The active item can
be refered to using the ACTIVE index.

bbox(index) => tuple or None

Get the bounding box of the given item text. The bounding box is returned as a 4-
tuple giving (xoffset, yoffset, width, height). If the item is not visible, this method
returns None.

curselection() => list

Get a list of the currently selected alternatives. The list contains the indexes of the
selected alternatives (beginning with 0 for the first alternative in the list). In
Python 1.5.2 and earlier, the list contains strings instead of integers. Since this may
change in future versions, you should make sure your code can handle either case.
See the patterns section for a suggested solution.

delete(index), delete(first, last)

Delete one or more items. Use delete(0, END) to delete all items in the list.

get(index) => string, get(first, last) => list

Get one or more items from the list. This function returns the string corresponding
to the given index (or the strings in the given index range). Use get(0, END) to
get a list of all items in the list. Use ACTIVE to get the active (underlined) item.

index(index) => integer

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (1 of 4) [3/29/2003 12:46:39 AM]

Methods

Return the numerical index (0 to size()-1) corresponding to the given index. This is
typically ACTIVE, but can also be ANCHOR, or a string having the form "@x,y"
where x and y are widget-relative pixel coordinates.

insert(index, items)

Insert one or more items at given index (this works as for Python lists; index 0 is
before the first item). Use END to append items to the list. Use ACTIVE to insert
items before the the active (underlined) item.

nearest(y) => string

Return the index nearest to the given coordinate (a widget-relative pixel
coordinate).

see(index)

Make sure the given list index is visible. You can use an integer index, or END.

size() => integer

Return the number of items in the list. The valid index range goes from 0 to size()-
1.

Selection Methods

The following methods are used to manipulate the listbox selection.

select_adjust(index)

Extend the selection to include the given index.

select_anchor(index)

Set the selection anchor to the given index. The anchor can be refered to using the
ANCHOR index.

select_clear()

Clear the selection.

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (2 of 4) [3/29/2003 12:46:39 AM]

Methods

select_includes(index) => flag

Returns true (non-zero) if the given item is selected.

select_set(index), select_set(first, last)

Add one or more items to the selection.

Scrolling Methods

These methods are used to scroll the listbox widget in various ways. The scan methods
can be used to implement fast mouse scrolling operations (they are bound to the middle
mouse button, if available), while the yview method is used with a standard scrollbar
widget.

scan_mark(x, y)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x, y)

Scroll the widget contents according to the given mouse coordinate. The text is
moved 10 times the distance between the scanning anchor and the new position.

xview() => tuple, yview() => tuple

Determine which part of the full list that is visible in the horizontal (vertical)
direction. This is given as the offset and size of the visible part, given in relation to
the full size of the list (1.0 is the full list). These methods are used by the
Scrollbar bindings.

xview(column), yview(index)

Adjust the list so that the given character column (list item) is at the left (top) edge
of the listbox. To make sure that a given item is visible, use the see method
instead.

xview(MOVETO, offset), yview(MOVETO, offset)

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (3 of 4) [3/29/2003 12:46:39 AM]

Methods

Adjust the list so that the given offset is at the left (top) edge of the listbox. Offset
0.0 is the beginning of the list, 1.0 the end. These methods are used by the
Scrollbar bindings when the user drags the scrollbar slider.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility,
use the string "moveto" instead.

xview(SCROLL, step, what), yview(SCROLL, step, what)

Scroll the list horizontally (vertically) by the given amount. The what argument can
be either UNITS (lines) or PAGES. These methods are used by the Scrollbar
bindings when the user clicks on a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use
the strings "scroll", "units", and "pages" instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5513-methods.htm (4 of 4) [3/29/2003 12:46:39 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Listbox widget supports the following options:

Table 31-1. Listbox Options

Option Type Description

background (bg),
foreground (fg)

color The listbox color. The default is platform
specific.

cursor cursor The cursor to show when the mouse is placed
over the listbox.

exportselection bool If set, the list selection is automatically
exported via the X selection mechanism. The
default is on. If you have more than one list in
the same dialog, it is probably best to disable
this mechanism.

font font The font to use in the listbox. The listbox can
only contain text in a single font.

relief constant Border decoration. The default is SUNKEN.
Other possible values are FLAT, RAISED,
GROOVE, and RIDGE.

borderwidth (bd) distance The width of the listbox border. The default is
platform specific, but is usually 1 or 2 pixels.

selectbackground,
selectforeground

color Selection color settings.

http://www.pythonware.com/library/tkinter/introduction/x5675-options.htm (1 of 2) [3/29/2003 12:46:40 AM]

Options

selectborderwidth dimension Selection border width. The selection is always
raised.

selectmode constant Selection mode. One of SINGLE, BROWSE,
MULTIPLE, or EXTENDED. Default is BROWSE.
Use MULTIPLE to get checklist behavior,
EXTENDED if the user usually selects one item,
but sometimes would like to select one or more
ranges of items. See the patterns section for
more information.

setgrid bool

takefocus bool Indicates that the user can use the Tab key to
move to this widget. Default is an empty string,
which means that the listbox accepts focus only
if it has any keyboard bindings (default is on,
in other words).

width, height distance The size of the listbox, in text units.

xscrollcommand,
yscrollcommand

command Used to connect a listbox to a scrollbar. These
options should be set to the set methods of
the corresponding scrollbars.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5675-options.htm (2 of 2) [3/29/2003 12:46:40 AM]

The Menu Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 32. The Menu Widget
Table of Contents
When to use the Menu Widget
Patterns
Methods
Options

The Menu widget is used to implement toplevel, pulldown, and popup menus.

When to use the Menu Widget
This widget is used to display all kinds of menus used by an application. Since this widget
uses native code where possible, you shouldn't try to fake menus using buttons and other
Tkinter widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/menu.htm [3/29/2003 12:46:41 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Toplevel menus are displayed just under the title bar of the root or any other toplevel
windows (or on Macintosh, along the upper edge of the screen). To create a toplevel
menu, create a new Menu instance, and use add methods to add commands and other
menu entries to it.

Example 32-1. Creating a toplevel menu

menu-example-2.py

from Tkinter import *

root = Tk()

def hello():
 print "hello!"

create a toplevel menu
menubar = Menu(root)
menubar.add_command(label="Hello!", command=hello)
menubar.add_command(label="Quit!", command=root.quit)

display the menu
root.config(menu=menubar)

mainloop()

Pulldown menus (and other submenus) are created in a similar fashion. The main
difference is that they are attached to a parent menu (using add_cascade), instead of a
toplevel window.

Example 32-2. Creating toplevel and pulldown menus

menu-example-3.py

from Tkinter import *

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (1 of 4) [3/29/2003 12:46:42 AM]

Patterns

root = Tk()

def hello():
 print "hello!"

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar
filemenu = Menu(menubar, tearoff=0)
filemenu.add_command(label="Open", command=hello)
filemenu.add_command(label="Save", command=hello)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=root.quit)
menubar.add_cascade(label="File", menu=filemenu)

create more pulldown menus
editmenu = Menu(menubar, tearoff=0)
editmenu.add_command(label="Cut", command=hello)
editmenu.add_command(label="Copy", command=hello)
editmenu.add_command(label="Paste", command=hello)
menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)
helpmenu.add_command(label="About", command=hello)
menubar.add_cascade(label="Help", menu=helpmenu)

display the menu
root.config(menu=menubar)

mainloop()

Finally, a popup menu is created in the same way, but is explicitly displayed, using the
post method:

Example 32-3. Creating and displaying a popup menu

menu-example-4.py

from Tkinter import *

root = Tk()

def hello():
 print "hello!"

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (2 of 4) [3/29/2003 12:46:42 AM]

Patterns

create a popup menu
menu = Menu(root, tearoff=0)
menu.add_command(label="Undo", command=hello)
menu.add_command(label="Redo", command=hello)

create a canvas
frame = Frame(root, width=512, height=512)
frame.pack()

def popup(event):
 menu.post(event.x_root, event.y_root)

attach popup to canvas
frame.bind("<Button-3>", popup)

mainloop()

You can use the postcommand callback to update (or even create) the menu everytime it
is displayed.

Example 32-4. Updating a menu on the fly

menu-example-5.py

from Tkinter import *

counter = 0

def update():
 global counter
 counter = counter + 1
 menu.entryconfig(0, label=str(counter))

root = Tk()

menubar = Menu(root)

menu = Menu(menubar, tearoff=0, postcommand=update)
menu.add_command(label=str(counter))
menu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="Test", menu=menu)

root.config(menu=menubar)

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (3 of 4) [3/29/2003 12:46:42 AM]

Patterns

mainloop()

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5819-patterns.htm (4 of 4) [3/29/2003 12:46:42 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Menu widget supports the standard Tkinter Widget interface (with the exception of
the geometry manager methods), plus the following methods:

add(type, options...)

Add (append) an entry of the given type to the menu. The type argument can be
one of "command", "cascade" (submenu), "checkbutton", "radiobutton", or
"separator". The options are as defined in the following table:

Table 32-1. Menu Item Options

Option Type Description

activebackground color

activeforeground color

accelerator string

background color

bitmap bitmap

columnbreak flag

command callback

font font

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (1 of 3) [3/29/2003 12:46:43 AM]

Methods

foreground color

hidemargin flag

image image

indicatoron flag

label string

menu widget

offvalue value

onvalue value

selectcolor color

selectimage image

state constant

underline integer

value value

variable variable

add_cascade(options...), add_checkbutton(options...),
add_command(options...), add_radiobutton(options...),
add_separator(options...)

Convenience functions, used to add items of the given type.

insert(index, type, options...), insert_cascade(index, options...),
insert_checkbutton(index, options...), insert_command(index,

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (2 of 3) [3/29/2003 12:46:43 AM]

Methods

options...), insert_radiobutton(index, options...),
insert_separator(index, options...)

Same as add and friends, but inserts the new item at the given index.

entryconfig(index, options...), entryconfigure(index, options...)

Reconfigure the given menu entry. Only the given options are changed; the rest are
left as is.

index(index) => integer

Convert an index (of any kind) to an integer index.

delete(index), delete(start, stop)

Delete one or more menu entries.

Displaying Menus

invoke(index)

Invoke the given entry (just like if the user had clicked on it).

post(x, y)

Display the menu at the given position. The position should be given in pixels,
relative to the root window.

unpost()

Remove a posted menu.

yposition(index) => integer

Return the vertical offset for the given entry. This can be used to position a popup
menu so that a given entry is under the the mouse when the menu appears.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x5841-methods.htm (3 of 3) [3/29/2003 12:46:43 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Table 32-2. Menu Options

Option Type Description

activebackground color

activeborderwidth distance

activeforeground color

background (bg) color

borderwidth (bd) distance

cursor cursor The cursor to show when the mouse pointer is
placed over the button widget. Default is a
system specific arrow cursor.

disabledforeground color

font font

foreground (fg) color

postcommand callback If given, this callback is called whenever
Tkinter is about to display this menu. If you
have dynamic menus, use this callback to
update their contents.

http://www.pythonware.com/library/tkinter/introduction/x6118-options.htm (1 of 2) [3/29/2003 12:46:45 AM]

Options

relief constant Border decoration. The default is RAISED.
Other possible values are FLAT, SUNKEN,
GROOVE, and RIDGE.

selectcolor color

takefocus flag Indicates that the user can use the Tab key to
move to this widget. Default is an empty
string, which means that the menu accepts
focus only if it has any keyboard bindings
(default is on, in other words).

tearoff flag If set, menu entry 0 will be a "tearoff entry",
which is usually a dashed separator line. If the
user selects this entry, Tkinter creates a small
Toplevel with a copy of this menu.

This is on by default, so if you're writing code
for Windows and Macintosh, you may want to
explicitly set this option to false to make sure
the menus looks as people expect them to.

tearoffcommand callback If given, this callback is called when this menu
is teared off (that is, if the tearoff option is
set, and the user clicks on the "tearoff entry".)

title string

type constant

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6118-options.htm (2 of 2) [3/29/2003 12:46:45 AM]

The Menubutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 33. The Menubutton
Widget
Table of Contents
When to use the Menubutton Widget
Patterns
Methods
Options

The Menubutton widget displays popup or pulldown menu when activated.

This widget is not documented in this version of this document. You will probably not
miss it...

When to use the Menubutton
Widget
This widget is used to implement various kinds of menus. In earlier versions of Tkinter, it
was used to implement toplevel menus, but this is now done with the Menu widget.

Back Next

http://www.pythonware.com/library/tkinter/introduction/menubutton.htm [3/29/2003 12:46:46 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Back Next

http://www.pythonware.com/library/tkinter/introduction/x6292-patterns.htm [3/29/2003 12:46:47 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
Back Next

http://www.pythonware.com/library/tkinter/introduction/x6295-methods.htm [3/29/2003 12:46:48 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Back Next

http://www.pythonware.com/library/tkinter/introduction/x6298-options.htm [3/29/2003 12:46:49 AM]

The Message Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 34. The Message
Widget
Table of Contents
When to use the Message Widget
Patterns
Methods
Options

When to use the Message
Widget
The message widget is used to display multiple lines of text. It's very similar to a plain
Label, but can adjust its width to maintain a given aspect ratio.

Back Next

http://www.pythonware.com/library/tkinter/introduction/message.htm [3/29/2003 12:46:50 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME: To be added

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6308-patterns.htm [3/29/2003 12:46:50 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Message widget supports the standard Tkinter Widget interface. There are no
additional methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6311-methods.htm [3/29/2003 12:46:51 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Message widget support the following options:

Table 34-1. Message Options

Option Type Description

anchor constant

aspect value

background (bg) color

cursor cursor The cursor to show when the mouse pointer
is placed over the message widget. Default
is a system specific arrow cursor.

font font

foreground (fg) color

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

http://www.pythonware.com/library/tkinter/introduction/x6315-options.htm (1 of 2) [3/29/2003 12:46:52 AM]

Options

justify constant

padx, pady distance

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAISED,
GROOVE, and RIDGE.

Note that to show the border, you need to
change the borderwidth from it's default
value of 0.

borderwidth (bd) distance Border width. The default is 0 (no border).

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the message
accepts focus only if it has any keyboard
bindings (default is off, in other words).

text string

textvariable variable

width distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6315-options.htm (2 of 2) [3/29/2003 12:46:52 AM]

The Pack Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 35. The Pack Geometry
Manager
Table of Contents
When to use the Pack Manager
Patterns
Methods
Options

The Pack geometry manager packs widgets in rows or columns. You can use options like
fill, expand, and side to control this geometry manager.

When to use the Pack Manager
To be added.

Warning

Don't mix grid and pack in the same master window. Tkinter will happily spend the rest
of your lifetime trying to negotiate a solution that both managers are happy with.
Instead of waiting, kill the application, and take another look at your code. A common
mistake is to use the wrong parent for some of the widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/pack.htm [3/29/2003 12:46:55 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6484-patterns.htm [3/29/2003 12:46:56 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods

Widget Methods

The following methods are available on widgets managed by the pack manager:

pack(option=value, ...), pack_configure(option=value, ...)

Pack the widget as described by the options (see below).

pack_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by
pack or any other manager.

pack_info() => dictionary

Return a dictionary containing the current options.

Manager Methods

The following methods are available on widgets that are used as pack managers (that is,
the geometry masters for widgets managed by the pack manager).

pack_propagate(value)

Enable or disable geometry propagation.

pack_slaves() => list

Returns a list of the "slave" widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6487-methods.htm [3/29/2003 12:46:57 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The following options can be used with the pack and pack_configure methods:

Table 35-1. Pack Manager Options

Option Type Description

side constant Specifies which side to pack the widget against. To
pack widgets vertically, use TOP (default). To pack
widgets horizontally, use LEFT.

You can also pack widgets along the BOTTOM and
RIGHT edges. You can mix sides in a single
geometry manager, but the results may not be what
you expect. While you can create pretty complicated
layouts by nesting Frame widgets, you may prefer
using the grid geometry manager for all non-
trivial layouts.

fill constant Specifies whether the widget should occupy all the
space given to it by the master. If NONE (default),
keep the widget's original size. If X (horizontally), Y
(vertically), or BOTH, fill the given space along that
direction.

To make a widget fill the entire master widget, set
fill to BOTH and expand to a non-zero value.

expand flag Specifies whether the widgets should be expanded
to fill any extra space in the geometry master. If
zero (default), the widget is not expanded.

http://www.pythonware.com/library/tkinter/introduction/x6527-options.htm (1 of 2) [3/29/2003 12:46:58 AM]

Options

in (in_) widget Pack widget inside the given widget. You can only
pack a widget inside its parent, or in any decendant
of its parent. This option should usually be left out,
in which case the widget is packed inside its parent.

Note that in is a reserved word in Python. To use it
as a keyword option, append an underscore (in_).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6527-options.htm (2 of 2) [3/29/2003 12:46:58 AM]

The PhotoImage Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 36. The PhotoImage
Class
Table of Contents
When to use the PhotoImage Class
Patterns
Methods
Options

When to use the PhotoImage
Class
This class is used to display images (either grayscale or true color images) in labels,
buttons, canvases, and text widgets.

Back Next

http://www.pythonware.com/library/tkinter/introduction/photoimage.htm [3/29/2003 12:46:59 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME: To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6602-patterns.htm [3/29/2003 12:47:00 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
configure(options), config(options)

Change one or more configuration options.

cget(option) => string

Return the value of the given configuration option.

width() => integer, height() => integer

Returns the width (height) of the image, in pixels.

type() => string

Returns the string "photo".

get(x, y) => string

Fetch the pixel at the given position (where (0, 0) is in the upper left corner).

As of Python 1.5.2, this method returns a string containing one or three pixel
components. Here's how to convert this string to either an integer or a 3-tuple of
integers:

 optionvalue = im.get(x, y)
 if type(value) == type(""):
 try:
 value = int(value)
 except ValueError:
 value = tuple(map(int, string.split(value)))

put(data), put(data, bbox)

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (1 of 3) [3/29/2003 12:47:01 AM]

Methods

Write pixel data to the image.

read()

Not supported in 1.5.2 or earlier.

write(filename, options)

Save the contents of the PhotoImage to a file using the given format. The following
options can be used:

Table 36-1. PhotoImage Write Options

Option Type Description

format string Specifies the format handler to use when
writing this image. This is typically "gif" or
"ppm".

from_coords tuple Save only a part of the image. If a 2-tuple is
given, write saves the rectangle between that
position, and the lower right corner of the
image. If a 4-tuple is given, it specifies which
rectangle to save.

blank()

Clears the image. The size is left as it is, but the contents are made completely
transparent.

copy() => photoimage object

Duplicate the current PhotoImage instance.

zoom(xscale, yscale), zoom(scale)

Resize the image to (xscale*width, yscale*height) pixels, using nearest neighbor
resampling. In other words, each pixel in the source image will be expanded to
xscale*yscale pixels. If only one scale is given, it is used for both directions.

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (2 of 3) [3/29/2003 12:47:01 AM]

Methods

subsample(xscale, yscale), subsample(scale)

Resize the image to (xscale/width, yscale/height) pixels, using nearest neighbor
resampling. If only one scale is given, it is used for both directions.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6606-methods.htm (3 of 3) [3/29/2003 12:47:01 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The PhotoImage class supports the following options.

Table 36-2. PhotoImage Options

Option Type Description

file string Read image data from the given file. The file can
contain GIF, PGM (grayscale), or PPM (truecolor)
data. Transparent regions in the GIF file are made
transparent.

To handle other file formats, use the corresponding
class in the Python Imaging Library.

data string Read image data from a string. In the current
version of Tk, this only works for base64-encoded
GIF files. If the file option is given, this option is
ignored.

width,
height

integer The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get
the actual size, use the corresponding methods.

format string If several file handlers can handle the given file, this
option can be used to specify which handler to use.
If you haven't installed extra file handlers, there's
no need to use this option.

http://www.pythonware.com/library/tkinter/introduction/x6716-options.htm (1 of 2) [3/29/2003 12:47:02 AM]

Options

gamma float The image gamma. To get fully accurate colors, this
should be set to a combination of the gamma values
for the image and display. Default is 1.0 (no gamma
correction).

palette integer or string Specifies the number of palette entries to use when
displaying this image. You can either use a single
integer to display the image as a grayscale image
with that number of grayscale levels, or a string
with three numbers separated by slashes, to display
the image as a color image with that number of red,
green, and blue values. The default is system
specific.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6716-options.htm (2 of 2) [3/29/2003 12:47:02 AM]

The Place Geometry Manager

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 37. The Place Geometry
Manager
Table of Contents
When to use the Place Manager
Patterns
Methods
Options

The Place geometry manager is the simplest of the three general geometry managers
provided in Tkinter. It allows you explicitly set the position and size of a window, either
in absolute terms, or relative to another window.

You can access the place manager through the place method which is available for all
standard widgets.

When to use the Place Manager
It is usually not a good idea to use place for ordinary window and dialog layouts; its
simply to much work to get things working as they should. Use the pack or grid
managers for such purposes.

However, place has its uses in more specialized cases. Most importantly, it can be used
by compound widget containers to implement various custom geometry managers.
Another use is to position control buttons in dialogs.

Back Next

http://www.pythonware.com/library/tkinter/introduction/place.htm [3/29/2003 12:47:03 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Let's look at some usage patterns. The following command centers a widget in its parent:

 w.place(relx=0.5, rely=0.5, anchor=CENTER)

Here's another variant. It packs a Label widget in a frame widget, and then places a Button
in the upper right corner of the frame. The button will overlap the label.

 pane = Frame(master)
 Label(pane, text="Pane Title").pack()
 b = Button(pane, width=12, height=12,
 image=launch_icon, command=self.launch)
 b.place(relx=1, x=-2, y=2, anchor=NE)

The following excerpt from a Notepad widget implementation displays a notepad page
(implemented as a Frame) in the notepad body frame. It first loops over the available pages,
calling place_forget for each one of them. Note that it's not an error to "unplace" a widget
that it's not placed in the first case:

 for w in self.__pages:
 w.place_forget()
 self.__pages[index].place(in_=self.__body, x=bd, y=bd)

You can combine the absolute and relative options. In such cases, the relative option is applied
first, and the absolute value is then added to that position. In the following example, the widget
w is almost completely covers its parent, except for a 5 pixel border around the widget.

 w.place(x=5, y=5, relwidth=1, relheight=1, width=-10, height=-10)

You can also place a widget outside another widget. For example, why not place two widgets on
top of each other:

 w2.place(in_=w1, relx=0.5, y=-2, anchor=S, bordermode="outside")

Note the use of relx and anchor options to center the widgets vertically. You could also use
(relx=0, anchor=SW) to get left alignment, or (relx=1, anchor=SE) to get right alignment.

http://www.pythonware.com/library/tkinter/introduction/x6799-patterns.htm (1 of 2) [3/29/2003 12:47:04 AM]

Patterns

By the way, why not combine this way to use the packer with the launch button example shown
earlier. The following example places two buttons in the upper right corner of the pane:

 b1 = DrawnButton(pane, (12, 12), launch_icon, command=self.launch)
 b1.place(relx=1, x=-2, y=2, anchor=NE)
 b2 = DrawnButton(pane, (12, 12), info_icon, command=self.info)
 b2.place(in_=b1, x=-2, anchor=NE, bordermode="outside")

Finally, let's look at a piece of code from an imaginary SplitWindow container widget. The
following piece of code splits frame into two subframes called f1 and f2.

 f1 = Frame(frame, bd=1, relief=SUNKEN)
 f2 = Frame(frame, bd=1, relief=SUNKEN)
 split = 0.5
 f1.place(rely=0, relheight=split, relwidth=1)
 f2.place(rely=split, relheight=1.0-split, relwidth=1)

To change the split point, set split to something suitable, and call the place method again. If
you haven't changed an option, you don't have to specify it again.

 f1.place(relheight=split)
 f2.place(rely=split, relheight=1.0-split)

You could add a small frame to use as a dragging handle, and add suitable bindings to it, e.g:

 f3 = Frame(frame, bd=2, relief=RAISED, width=8, height=8)
 f3.place(relx=0.9, rely=split, anchor=E)
 f3.bind("<B1-Motion>", self.adjust)

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6799-patterns.htm (2 of 2) [3/29/2003 12:47:04 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
place(option=value, ...), place_configure(option=value, ...)

Place the widget as described by the options (see below).

place_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by
place or any other manager.

place_info() => dictionary

Return a dictionary containing the current options.

place_slaves() => list

Returns a list of the "slave" widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6836-methods.htm [3/29/2003 12:47:05 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The following options can be used with the place and place_configure methods:

Table 37-1. Place Manager Options

Option Type Description

anchor constant Specifies which part of the widget that should be
placed at the given position. Valid values are N, NE,
E, SE, SW, W, NW, or CENTER. Default is NW (the
upper left corner, that is).

bordermode constant If INSIDE, the size and position are relative to the
reference widget's inner size, excluding any border.
If OUTSIDE, it's relative to the outer size, including
the border. Default is INSIDE.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "inside"
and "outside" instead.

in (in_) widget Place widget relative to the given widget. You can
only place a widget relative to its parent, or to any
decendant of its parent. If this option is not given, it
defaults to the parent. Note that in is a reserved
word in Python. To use it as a keyword option,
append an underscore (in_).

relwidth,
relheight

float Size, relative to the reference widget.

http://www.pythonware.com/library/tkinter/introduction/x6863-options.htm (1 of 2) [3/29/2003 12:47:06 AM]

Options

relx, rely float Position, relative to the reference widget (usually
the parent, unless otherwise specified by the in
option). 0.0 is the left (upper) edge, 1.0 is the right
(lower) edge.

width,
height

integer Size, in pixels. If omitted, it defaults to the widget's
"natural" size.

x, y integer Absolute position, in pixels. If omitted, defaults to
0.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6863-options.htm (2 of 2) [3/29/2003 12:47:06 AM]

The Radiobutton Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 38. The Radiobutton
Widget
Table of Contents
When to use the Radiobutton Widget
Patterns
Methods
Options

The Radiobutton is a standard Tkinter widget used to implement one-of-many
selections. Radiobuttons can contain text or images, and you can associate a Python
function or method with each button. When the button is pressed, Tkinter automatically
calls that function or method.

The button can only display text in a single font, but the text may span more than one
line. In addition, one of the characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to move to a button widget.

Each group of Radiobutton widgets should be associated with single variable. Each
button then represents a single value for that variable.

When to use the Radiobutton
Widget
The radiobutton widget is used to implement one-of-many selections. It's almost always
used in groups, where all group members use the same variable.

Back Next

http://www.pythonware.com/library/tkinter/introduction/radiobutton.htm [3/29/2003 12:47:07 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
The Radiobutton widget is very similar to the check button. To get a proper radio behavior,
make sure to have all buttons in a group point to the same variable, and use the value option to
specify what value each button represents:

 v = IntVar()
 Radiobutton(master, text="One", variable=v, value=1).pack(anchor=W)
 Radiobutton(master, text="Two", variable=v, value=2).pack(anchor=W)

If you need to get notified when the value changes, attach a command callback to each button.

To create a large number of buttons, use a loop:

 MODES = [
 ("Monochrome", "1"),
 ("Grayscale", "L"),
 ("True color", "RGB"),
 ("Color separation", "CMYK"),
]

 v = StringVar()
 v.set("L") # initialize

 for text, mode in MODES:
 b = Radiobutton(master, text=text,
 variable=v, value=mode)
 b.pack(anchor=W)

Figure 38-1. Standard radiobuttons

http://www.pythonware.com/library/tkinter/introduction/x6969-patterns.htm (1 of 2) [3/29/2003 12:47:08 AM]

Patterns

To turn the above example into a "button box" rather than a set of radio buttons, set the
indicatoron option to 0. In this case, there's no separate radio button indicator, and the
selected button is drawn as SUNKEN instead of RAISED:

Figure 38-2. Using indicatoron=0

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6969-patterns.htm (2 of 2) [3/29/2003 12:47:08 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Radiobutton widget supports the standard Tkinter Widget interface, plus the
following methods:

deselect()

Deselect the button.

flash()

Redraw the button several times, alternating between active and normal
appearance.

invoke()

Call the command associated with the button.

select()

Select the button.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x6990-methods.htm [3/29/2003 12:47:09 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Radiobutton widget supports the following options:

Table 38-1. Radiobutton Options

Option Type Description

activebackground,
activeforeground

color The color to use when the button is
activated.

anchor constant Controls where in the button the text (or
image) should be located. Use one of N, NE,
E, SE, S, SW, W, NW, or CENTER. Default is
CENTER. If you change this, it is probably a
good idea to add some padding as well,
using the padx and/or pady options.

background (bg),
foreground (fg)

color The button color. The default is platform
specific.

bitmap bitmap The bitmap to display in the widget. If the
image option is given, this option is
ignored.

The following bitmaps are available on all
platforms: "error", "gray75", "gray50",
"gray25", "gray12", "hourglass", "info",
"questhead", "question", and "warning".

The following additional bitmaps are

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (1 of 5) [3/29/2003 12:47:10 AM]

Options

available on the Macintosh only:
"document", "stationery", "edition",
"application", "accessory", "folder",
"pfolder", "trash", "floppy", "ramdisk",
"cdrom", "preferences", "querydoc", "stop",
"note", and "caution".

You can also load the bitmap from an XBM
file. Just prefix the filename with an at-sign,
for example "@sample.xbm".

borderwidth (bd) int The width of the button border. The default
is platform specific, but is usually 1 or 2
pixels.

command callback A function or method that is called when
the button is pressed. The callback can be a
function, bound method, or any other
callable Python object.

cursor cursor The cursor to show when the mouse is
moved over the button.

default int If set, the button is a default button. Tk will
indicate this by drawing a platform specific
indicator (usually an extra border). NOTE:
The syntax has changed in 8.0b2!!!

disabledforeground color The color to use when the button is
disabled. The background is shown in the
background color.

font font The font to use in the button. The button
can only contain text in a single font.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (2 of 5) [3/29/2003 12:47:10 AM]

Options

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is typically one or two
pixels.

image image The image to display in the widget. If
specified, this takes precedence over the
text and bitmap options.

indicatoron bool Controls if the indicator should be drawn or
not. For check and radio buttons, this is on
by default. Setting this option to false
means that the relief will be used as the
indicator. If the button is selected, it is
drawn as SUNKEN instead of RAISED. For a
menu button, this is off by default. Setting it
to true draws a small indicator to the right.
This is used by the OptionMenu widget.

justify constant Defines how to align multiple lines of text.
Use LEFT, RIGHT, or CENTER.

padx, paxy distance Button padding. These options specify the
horizontal and vertical padding between the
text or image, and the button border.

relief constant Border decoration. Usually, the button is
SUNKEN when pressed, and RAISED
otherwise. Other possible values are
GROOVE, RIDGE, and FLAT.

selectcolor color Color to use for the selector.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (3 of 5) [3/29/2003 12:47:10 AM]

Options

selectimage image Graphic image to use for the selector.

state constant The button state: NORMAL, ACTIVE or
DISABLED. Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key
to move to this button. Default is an empty
string, which means that the button accepts
focus only if it has any keyboard bindings
(default is on, in other words).

text string The text to display in the button. The text
can contain newlines. If the bitmap or
image options are used, this option is
ignored.

textvariable variable Associates a Tkinter variable (usually a
StringVar) to the button. If the variable is
changed, the button text is updated.

underline int Default is -1.

value None The value to assign to the associated
variable when the button is pressed.

variable variable Associates a Tkinter variable to the button.
When the button is pressed, the variable is
set to value. Explicit changes to the
variable are automatically reflected by the
buttons.

width, height distance The size of the button. If the button displays
text, the size is given in text units. If the
button displays an image, the size is given
in pixels (or screen units). If the size is
omitted, it is calculated based on the button
contents.

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (4 of 5) [3/29/2003 12:47:10 AM]

Options

wraplength distance Determines when a button's text should be
wrapped into multiple lines. This is given in
screen units. Default is no wrapping.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7015-options.htm (5 of 5) [3/29/2003 12:47:10 AM]

The Scale Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 39. The Scale Widget
Table of Contents
When to use the Scale Widget
Patterns
Methods
Options

When to use the Scale Widget
To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/scale.htm [3/29/2003 12:47:11 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
Back Next

http://www.pythonware.com/library/tkinter/introduction/x7305-patterns.htm [3/29/2003 12:47:12 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
get() => integer or float

Get the current scale value. Tkinter returns an integer if possible, otherwise a
floating point value.

set(value)

Set the scale value.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7308-methods.htm [3/29/2003 12:47:13 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Table 39-1. Scale Options

Option Type Description

activebackground color

background (bg) color

bigincrement value

command callback

cursor cursor The cursor to show when the mouse pointer
is placed over the scale widget. Default is a
system specific arrow cursor.

digits value

font font

foreground (fg) color

from (from_) value

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (1 of 3) [3/29/2003 12:47:14 AM]

Options

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

label string

length distance

orient constant

relief constant Border decoration. The default is FLAT.
Other possible values are SUNKEN, RAISED,
GROOVE, and RIDGE.

borderwidth (bd) distance The width of the button border. The default
is platform specific, but is usually 1 or 2
pixels.

repeatdelay time

repeatinterval time

resolution value

showvalue flag

sliderlength distance

sliderrelief constant

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (2 of 3) [3/29/2003 12:47:14 AM]

Options

state constant

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the scale accepts
focus only if it has any keyboard bindings
(default is off, in other words).

tickinterval time

to value

troughcolor color

variable variable

width distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7321-options.htm (3 of 3) [3/29/2003 12:47:14 AM]

The Scrollbar Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 40. The Scrollbar
Widget
Table of Contents
When to use the Scrollbar Widget
Patterns
Methods
Options

When to use the Scrollbar
Widget
This widget is used to implement scrolled listboxes, canvases, and text fields.

Back Next

http://www.pythonware.com/library/tkinter/introduction/scrollbar.htm [3/29/2003 12:47:15 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
The Scrollbar widget is almost always used in conjunction with a Listbox, Canvas,
or Text widget. Horizontal scrollbars can also be used with the Entry widget.

To connect a vertical scrollbar to such a widget, you have to do two things:

1. Set the widget's yscrollcommand callbacks to the set method of the scrollbar.

2. Set the scrollbar's command to the yview method of the widget.

Example 40-1. Connecting a scrollbar to a listbox

scrollbar-example-1.py

from Tkinter import *

root = Tk()

scrollbar = Scrollbar(root)
scrollbar.pack(side=RIGHT, fill=Y)

listbox = Listbox(root, yscrollcommand=scrollbar.set)
for i in range(1000):
 listbox.insert(END, str(i))
listbox.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=listbox.yview)

mainloop()

When the widget view is modified, the widget notifies the scrollbar by calling the set
method. And when the user manipulates the scrollbar, the widget's yview method is
called with the appropriate arguments.

Adding a horizontal scrollbar is as simple. Just use the xscrollcommand option, and
the xview method.

http://www.pythonware.com/library/tkinter/introduction/x7583-patterns.htm (1 of 2) [3/29/2003 12:47:16 AM]

Patterns

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7583-patterns.htm (2 of 2) [3/29/2003 12:47:16 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
get() => lo, hi

Returns the relative offset for the upper (leftmost) and lower (rightmost) end of
the scrollbar slider. Offset 0.0 means that the slider is in its topmost (or leftmost)
position, and offset 1.0 means that it is in its bottommost (or rightmost) position.

set(lo, hi)

Moves the slider to a new position.

delta(deltax, deltay) => float

Returns a floating point number that should be added to the current slider offsets
in order to move the slider the given number of pixels. This is typically used by the
mouse bindings to figure out how to move the slider when the user is dragging it
around.

fraction(x, y)

Returns a floating point value which gives the offset corresponding to the given
mouse position.

identify(x, y) => string

Returns a string describing what's under the mouse pointer. This is typically one of
"arrow1" (top/left arrow), "trough1", "slider", "trough2" or "arrow2"
(bottom/right).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7610-methods.htm [3/29/2003 12:47:17 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Scrollbar widget supports the following options.

Note that most options are ignored on Windows and Macintosh, where the scrollbar is
drawn via the native UI toolkit. For best results, use only the command and orient
options in your programs.

Table 40-1. Scrollbar Options

Option Type Description

orient constant Defines how to draw the scrollbar. Use one
of HORIZONTAL or VERTICAL. Default is
VERTICAL.

command callback Used to update the associated widget. This
is typically the xview or yview method of
the scrolled widget.

If the user drags the scrollbar slider, the
command is called as callback(MOVETO,
offset), where offset 0.0 means that the
slider is in its topmost (or leftmost)
position, and offset 1.0 means that it is in its
bottommost (or rightmost) position.

If the user clicks the arrow buttons, or clicks
in the trough, the command is called as
callback(SCROLL, step, what). The
second argument is either "-1" or "1"
depending on the direction, and the third
argument is UNITS to scroll lines (or other
units relevant for the scrolled widget), or
PAGES to scroll full pages.

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (1 of 3) [3/29/2003 12:47:18 AM]

Options

These constants are not defined in Python
1.5.2 and earlier. For compatibility, use the
strings "moveto", "scroll", "units", and
"pages"instead.

activebackground color

activerelief constant

background (bg) color

cursor cursor The cursor to show when the mouse pointer
is placed over the scrollbar widget. Default
is a system specific arrow cursor.

elementborderwidth distance

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

Note that this option is ignored under
Windows.

jump constant

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (2 of 3) [3/29/2003 12:47:18 AM]

Options

relief constant Border decoration. The default is SUNKEN.
Other possible values are FLAT, RAISED,
GROOVE, and RIDGE.

Note that this option is ignored under
Windows.

borderwidth (bd) distance Border width. The default is 0 (no border).

Note that this option is ignored under
Windows.

repeatdelay time

repeatinterval time

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the scrollbar
accepts focus only if it has any keyboard
bindings (default is off, in other words).

troughcolor color

width distance

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7648-options.htm (3 of 3) [3/29/2003 12:47:18 AM]

The StringVar Class

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 41. The StringVar Class
Table of Contents
When to use the StringVar Class
Patterns
Methods

When to use the StringVar Class
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/stringvar.htm [3/29/2003 12:47:19 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7846-patterns.htm [3/29/2003 12:47:20 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
get() => string, set(string)

FIXME

trace(mode, callback), trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() => list

FIXME

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7849-methods.htm [3/29/2003 12:47:21 AM]

The Text Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 42. The Text Widget
Table of Contents
When to use the Text Widget
Concepts
Patterns
Methods
Options

The Text widget provides formatted text display. It allows you to display and edit text
with various styles and attributes. The widget also supports embedded images and
windows.

When to use the Text Widget
The text widget is used to display text documents, containing either plain text or
formatted text (using different fonts, embedded images, and other embellishments). The
text widget can also be used as a text editor.

Back Next

http://www.pythonware.com/library/tkinter/introduction/text.htm [3/29/2003 12:47:22 AM]

Concepts

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Concepts
The text widget stores and displays lines of text.

The text body can consist of characters, marks, and embedded windows or images.
Different regions can be displayed in different styles, and you can also attach event
bindings to regions.

By default, you can edit the text widget's contents using the standard keyboard and
mouse bindings. To disable editing, set the state option to DISABLED (but if you do
that, you'll also disable the insert and delete methods).

Indexes

Indexes are used to point to positions within the text handled by the text widget. Like
Python sequence indexes, text widget indexes correspond to positions between the actual
characters.

Tkinter provides a number of different index types:

● line/column ("line.column")

● line end ("line.end")

● INSERT

● CURRENT

● END

● user-defined marks

● user-defined tags ("tag.first", "tag.last")

● selection (SEL_FIRST, SEL_LAST)

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (1 of 9) [3/29/2003 12:47:23 AM]

Concepts

● window coordinate ("@x,y")

● embedded object name (window, images)

● expressions

Lines and columns

line/column indexes are the basic index type. They are given as strings consisting of a
line number and column number, separated by a period. Line numbers start at 1, while
column numbers start at 0, like Python sequence indexes. You can construct indexes
using the following syntax:

 "%d.%d" % (line, column)

It is not an error to specify line numbers beyond the last line, or column numbers beyond
the last column on a line. Such numbers correspond to the line beyond the last, or the
newline character ending a line.

Note that line/column indexes may look like floating point values, but it's seldom
possible to treat them as such (consider position 1.25 vs. 1.3, for example). I sometimes
use 1.0 instead of "1.0" to save a few keystrokes when referring to the first character in
the buffer, but that's about it.

You can use the index method to convert all other kinds of indexes to the corresponding
line/column index string.

Line endings

A line end index is given as a string consisting of a line number directly followed by the
text ".end". A line end index correspond to the newline character ending a line.

Named indexes

INSERT (or "insert") corresponds to the insertion cursor.

CURRENT (or "current") corresponds to the character closest to the mouse pointer.
However, it is only updated if you move the mouse without holding down any buttons (if
you do, it will not be updated until you release the button).

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (2 of 9) [3/29/2003 12:47:23 AM]

Concepts

END (or "end") corresponds to the position just after the last character in the buffer.

User-defined marks are named positions in the text. INSERT and CURRENT are
predefined marks, but you can also create your own marks. See below for more
information.

User-defined tags represent special event bindings and styles that can be assigned to
ranges of text. For more information on tags, see below.

You can refer to the beginning of a tag range using the syntax "tag.first" (just before
the first character in the text using that tag), and "tag.last" (just after the last character
using that tag).

 "%s.first" % tagname
 "%s.last" % tagname

If the tag isn't in use, Tkinter raises a TclError exception.

The selection is a special tag named SEL (or "sel") that corresponds to the current
selection. You can use the constants SEL_FIRST and SEL_LAST to refer to the selection.
If there's no selection, Tkinter raises a TclError exception.

Coordinates

You can also use window coordinates as indexes. For example, in an event binding, you
can find the character closest to the mouse pointer using the following syntax:

 "@%d,%d" % (event.x, event.y)

Embedded objects

Embedded object name can be used to refer to windows and images embedded in the text
widget. To refer to a window, simply use the corresponding Tkinter widget instance as an
index. To refer to an embedded image, use the corresponding Tkinter PhotoImage or
BitmapImage object.

Expressions

Expressions can be used to modify any kind of index. Expressions are formed by taking
the string representation of an index (use str if the index isn't already a string), and

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (3 of 9) [3/29/2003 12:47:23 AM]

Concepts

appending one or more modifiers from the following list:

● "+ count chars" moves the index forward. The index will move over newlines, but
not beyond the END index.

● "- count chars" moves the index backwards. The index will move over newlines,
but not beyond index "1.0".

● "+ count lines" and "- count lines" moves the index full lines forward (or
backwards). If possible, the index is kept in the same column, but if the new line is
too short, the index is moved to the end of that line.

● "linestart" moves the index to the first position on the line.

● "lineend" the index to the last position on the line (the newline, that is).

● "wordstart" and "wordend" moves the index to the beginning (end) of the
current word. Words are sequences of letters, digits, and underline, or single non-
space characters.

The keywords can be abbreviated and spaces can be omitted as long as the result is not
ambigous. For example, "+ 5 chars" can be shortened to "+5c".

For compatibility with implementations where the constants are not ordinary strings,
you may wish to use str or formatting operations to create the expression string. For
example, here's how to remove the character just before the insertion cursor:

 def backspace(event):
 event.widget.delete("%s-1c" % INSERT, INSERT)

Marks

Marks are (usually) invisible objects embedded in the text managed by the widget. Marks
are positioned between character cells, and moves along with the text.

● user-defined marks

● INSERT

● CURRENT

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (4 of 9) [3/29/2003 12:47:23 AM]

Concepts

You can use any number of user-defined marks in a text widget. Mark names are
ordinary strings, and they can contain anything except whitespace (for convenience, you
should avoid names that can be confused with indexes, especially names containing
periods). To create or move a mark, use the mark_set method.

Two marks are predefined by Tkinter, and have special meaning:

INSERT (or "insert") is a special mark that is used to represent the insertion cursor.
Tkinter draws the cursor at this mark's position, so it isn't entirely invisible.

CURRENT (or "current") is a special mark that represents the character closest to the
mouse pointer. However, it is only updated if you move the mouse without holding down
any buttons (if you do, it will not be updated until you release the button).

Special marks can be manipulated as other user-defined marks, but they cannot be
deleted.

If you insert or delete text before a mark, the mark is moved along with the other text. To
remove a mark, you must use the mark_unset method. Deleting text around a mark
doesn't remove the mark itself.

If you insert text at a mark, it may be moved to the end of that text or left where it was,
depending on the mark's gravity setting (LEFT or RIGHT; default is RIGHT). You can use
the mark_gravity method to change the gravity setting for a given mark.

In the following example, the "sentinel" mark is used to keep track of the original
position for the insertion cursor.

 text.mark_set("sentinel", INSERT)
 text.mark_gravity("sentinel", LEFT)

You can now let the user enter text at the insertion cursor, and use
text.get("sentinel", INSERT) to pick up the result.

Tags

Tags are used to associated a display style and/or event callbacks with ranges of text.

● user-defined tags

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (5 of 9) [3/29/2003 12:47:23 AM]

Concepts

● SEL

You can define any number of user-defined tags. Any text range can have multiple tags,
and the same tag can be used for many different ranges. Unlike the Canvas widget, tags
defined for the text widget are not tightly bound to text ranges; the information
associated with a tag is kept also if there is no text in the widget using it.

Tag names are ordinary strings, and they can contain anything except whitespace.

SEL (or "sel") is a special tag which corresponds to the current selection, if any. There
should be at most one range using the selection tag.

The following options are used with tag_config to specify the visual style for text using
a certain tag.

Table 42-1. Text Tag Options

Option Type Description

background color The background color to use for text having this tag.

Note that the bg alias cannot be used with tags; it is
interpreted as bgstipple rather than
background.

bgstipple (or
bg)

bitmap The name of a bitmap which is used as a stipple
brush when drawing the background. Typical
values are "gray12", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

borderwidth distance The width of the text border. The default is 0 (no
border).

Note that the bd alias cannot be used with tags.

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (6 of 9) [3/29/2003 12:47:23 AM]

Concepts

fgstipple (or
fg)

bitmap The name of a bitmap which is used as a stipple
brush when drawing the text. Typical values are
"gray12", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

font font The font to use for text having this tag.

foreground color The color to use for text having this tag.

Note that the fg alias cannot be used with tags; it is
interpreted as fgstipple rather than
foreground.

justify constant Controls text justification (the first character on a
line determines how to justify the whole line). Use
one of LEFT, RIGHT, or CENTER. Default is LEFT.

lmargin1 distance The left margin to use for the first line in a block of
text having this tag. Default is 0 (no left margin).

lmargin2 distance The left margin to use for every line but the first in
a block of text having this tag. Default is 0 (no left
margin).

offset distance Controls if the text should be offset from the
baseline. Use a positive value for superscripts, a
negative value for subscripts. Default is 0 (no
offset).

overstrike flag If non-zero, the text widget draws a line over the
text that has this tag. For best results, you should
use overstrike fonts instead.

relief constant The border style to use for text having this tag. Use
one of SUNKEN, RAISED, GROOVE, RIDGE, or FLAT.
Default is FLAT (no border).

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (7 of 9) [3/29/2003 12:47:23 AM]

Concepts

rmargin distance The right margin to use for blocks of text having
this tag. Default is 0 (no right margin).

spacing1 distance Spacing to use above the first line in a block of text
having this tag. Default is 0 (no extra spacing).

spacing2 distance Spacing to use between the lines in a block of text
having this tag. Default is 0 (no extra spacing).

spacing3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is 0 (no extra spacing).

tabs string

underline flag If non-zero, the text widget underlines the text that
has this tag. For example, you can get the standard
hyperlink look with (foreground="blue",
underline=1). For best results, you should use
underlined fonts instead.

wrap constant The word wrap mode to use for text having this tag.
Use one of NONE, CHAR, or WORD.

If you attach multiple tags to a range of text, style options from the most recently created
tag override options from earlier tags. In the following example, the resulting text is blue
on a yellow background.

 text.tag_config("n", background="yellow", foreground="red")
 text.tag_config("a", foreground="blue")
 text.insert(contents, ("n", "a"))

Note that it doesn't matter in which order you attach tags to a range; it's the tag creation
order that counts.

You can change the tag priority using the tag_raise and tag_lower. If you add a
text.tag_lower("a") to the above example, the text becomes red.

The tag_bind method allows you to add event bindings to text having a particular tag.

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (8 of 9) [3/29/2003 12:47:23 AM]

Concepts

Tags can generate mouse and keyboard events, plus <Enter> and <Leave> events. For
example, the following code snippet creates a tag to use for any hypertext links in the
text:

 text.tag_config("a", foreground="blue", underline=1)
 text.tag_bind("a", "<Enter>", show_hand_cursor)
 text.tag_bind("a", "<Leave>", show_arrow_cursor)
 text.tag_bind("a", "<Button-1>", click)
 text.config(cursor="arrow")

 text.insert(INSERT, "click here!", "a")

Back Next

http://www.pythonware.com/library/tkinter/introduction/x7883-concepts.htm (9 of 9) [3/29/2003 12:47:23 AM]

Patterns

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Patterns
When you create a new text widget, it has no contents. To insert text into the widget, use the
insert method and insert text at the INSERT or END indexes:

 text.insert(END, "hello, ")
 text.insert(END, "world")

You can use an optional third argument to the insert method to attach one or more tags to
the newly inserted text:

 text.insert(END, "this is a ")
 text.insert(END, "link", ("a", "href"+href))

To insert embedded objects, use the window_create or image_create methods:

 button = Button(text, text="Click", command=click)
 text.window_create(INSERT, window=button)

To delete text, use the delete method. Here's how to delete all text from the widget (this
also deletes embedded windows and images, but not marks):

 text.delete(1.0, END)

To delete a single character (or an embedded window or image), you can use delete with
only one argument:

 text.delete(INSERT)
 text.delete(button)

To make the widget read-only, you can change the state option from NORMAL to
DISABLED:

 text.config(state=NORMAL)
 text.delete(1.0, END)
 text.insert(END, text)
 text.config(state=DISABLED)

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (1 of 3) [3/29/2003 12:47:24 AM]

Patterns

Note that you must change the state back to NORMAL before you can modify the widget
contents from within the program. Otherwise, calls to insert and delete will be silently
ignored.

To fetch the text contents of the widget, use the get method:

 contents = text.get(1.0, END)

FIXME: add material on the dump method, and how to use it on 1.5.2 and earlier

Here's a simple way to keep track of changes to the text widget:

 import md5
 def getsignature(contents):
 return md5.md5(contents).digest()

 text.insert(END, contents) # original contents
 signature = getsignature(contents)

 ...

 contents = text.get(1.0, END)
 if signature != getsignature(contents):
 print "contents have changed!"

FIXME: modify to handle ending linefeed added by text widget

The index method converts an index given in any of the supported formats to a
line/column index. Use this if you need to store an "absolute" index.

 index = text.index(index)

However, if you need to keep track of positions in the text even after other text is inserted or
deleted, you should use marks instead.

 text.mark_set("here", index)
 text.mark_unset("here")

The following function converts any kind of index to a (line, column)-tuple. Note that you
can directly compare positions represented by such tuples.

 def getindex(text, index):
 return tuple(map(int, string.split(text.index(index), ".")))

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (2 of 3) [3/29/2003 12:47:24 AM]

Patterns

 if getindex(text, INSERT) < getindex(text, "sentinel"):
 text.mark_set(INSERT, "sentinel")

The following example shows how to enumerate all regions in the text that has a given tag.

 ranges = text.tag_ranges(tag)
 for i in range(0, len(ranges), 2):
 start = ranges[i]
 stop = ranges[i+1]
 print tag, repr(text.get(start, stop))

The search method allows you to search for text. You can search for an exact match
(default), or use a Tcl-style regular expression (call with the regexp option set to true).

 text.insert(END, "hello, world")

 start = 1.0
 while 1:
 pos = text.search("o", start, stopindex=END)
 if not pos:
 break
 print pos
 start = pos + "+1c"

Given an empty text widget, the above example prints 1.4 and 1.8 before it stops. If you
omit the stopindex option, the search wraps around if it reaches the end of the text.

To search backwards, set the backwards option to true (to find all occurences, start at END,
set stopindex to 1.0 to avoid wrapping, and use "-1c" to move the start position).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8309-patterns.htm (3 of 3) [3/29/2003 12:47:24 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
The Text widget supports the standard Tkinter Widget interface, plus the following
methods:

insert(index, text), insert(index, text, tags)

Insert text at the given position (typically INSERT or END). If you provide one or
more tags, they are attached to the new text.

If you insert text on a mark, the mark is moved according to its gravity setting.

delete(index), delete(start, stop)

Delete the character (or embedded object) at the given position, or all text in the
given range. Any marks within the range are moved to the beginning of the range.

get(index), get(start, stop)

Return the character at the given position, or all text in the given range.

dump(index, options...), dump(start, stop, options...)

Return a list of widget contents at the given position, or for all text in the given
range. This includes tags, marks, and embedded objects. Not implemented in
Python 1.5.2 and earlier.

see(index), yview(index)

If necessary, scroll the text widget to make sure the text at the given position is
visible. The see method scrolls the widget only if the given position isn't visible at
all, while yview always scrolls the widget to move the given position to the top of
the window.

index(index)

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (1 of 12) [3/29/2003 12:47:26 AM]

Methods

Return the "line.column" index corresponding to the given index.

compare(index1, op, index2)

Compare the two positions, and return true if the condition held. The op argument
is one of "<", "<=", "==", ">=", ">", or "!=" (Python's "<>" syntax is not
supported).

Methods for Marks

The following methods are used to manipulate builtin as well as user-defined marks.

mark_set(mark, index)

Move the mark to the given position. If the mark doesn't exist, it is created (with
gravity set to RIGHT). You also use this method to move the predefined INSERT
and CURRENT marks.

mark_unset(mark)

Remove the given mark from the widget. You cannot remove the builtin INSERT
and CURRENT marks.

index(mark)

Return the line/column position corresponding to the given mark (or any other
index specifier; see above).

mark_gravity(mark)

Return the current gravity setting for the given mark (LEFT or RIGHT).

mark_gravity(mark, gravity)

Sets the gravity for the given mark. The gravity setting controls how to move the
mark if text is inserted exactly on the mark. If LEFT, the mark is not moved if text
is inserted at the mark (that is, the text is inserted just after the mark). If RIGHT,
the mark is moved to the right end of the text (that is, the text is inserted just
before the mark). The default gravity setting is RIGHT.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (2 of 12) [3/29/2003 12:47:26 AM]

Methods

mark_names()

Return a tuple containing the names of all marks used in the widget. This includes
the INSERT and CURRENT marks (but not END, which is a special index, not a
mark).

Methods for Embedded Windows

The Text widget allows you to embed windows into the widget. Embedded windows
occupy a single character position, and moves with the text flow.

window_create(index, options...)

Insert a widget at the given position. You can either create the widget (which
should be a child of the text widget itself) first, and insert it using the window
option, or provide a callback which is called when the window is first displayed.

Table 42-2. Text Window Options

Option Type Description

align constant Defines how to align the window on the line. Use
one of TOP, CENTER, BOTTOM, or BASELINE. The
last alignment means that the bottom of the
window is aligned with the text baseline - that is,
the same alignment that is used for all text on the
line).

create callback This callback is called when the window is first
displayed by the text widget. It should create the
window (as a child to the text widget), and return
the resulting widget instance.

padx, pady distance Adds horizontal (vertical) padding between the
window and the surrounding text. Default is 0 (no
padding).

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (3 of 12) [3/29/2003 12:47:26 AM]

Methods

stretch flag If zero (or OFF), the window will be left as is also if
the line is higher than the window. If non-zero (or
ON), the window is stretched to cover the full line
(in this case, the alignment is ignored).

window widget Gives the widget instance to insert into the text.

index(window)

Return the line/column position corresponding to the given window (or any other
index specifier; see above).

delete(window)

Remove the given window from the text widget, and destroy it.

window_cget(index, option)

Return the current value of the given option. If there's no window on the given
position, this method raises a TclError exception.

window_config(index, options...), window_configure(index,
options...)

Modifies one or more options. If there's no window on the given position, this
method raises a TclError exception.

window_names()

Return a tuple containing all windows embedded in the text widget. In 1.5.2 and
earlier, this method returns the names of the widgets, rather than the widget
instances. This will most likely be fixed in future versions.

Here's how to convert the names to a list of widget instances in a portable fashion:

 windows = text.window_names()
 try:
 windows = map(text._nametowidget, windows)
 except TclError: pass

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (4 of 12) [3/29/2003 12:47:26 AM]

Methods

Methods for Embedded Images

The Text widget allows you to embed images into the widget. Embedded images occupy
a single character position, and moves with the text flow.

Note that the image interface is not available in early version of Tkinter (it's not
implemented by Tk versions before 8.0). For such platforms, you can display images by
embedding Label widgets instead.

image_create

image_create(index, options...). Insert an image at the given position. The
image is given by the image option, and must be a Tkinter PhotoImage or
BitmapImage instance (or an instance of the corresponding PIL classes).

This method doesn't work with Tk versions before 8.0.

Table 42-3. Text Image Options

Option Type Description

align constant Defines how to align the image on the line. Use one
of TOP, CENTER, BOTTOM, or BASELINE. The last
alignment means that the bottom of the image is
aligned with the text baseline -- that is, the same
alignment that is used for all text on the line).

image image Gives the image instance to insert into the text.

name string Gives the name to use when referring to this image
in the text widget. The default is the name of the
image object (which is usually generated by
Tkinter).

padx, pady distance Adds horizontal (vertical) padding between the
image and the surrounding text. Default is 0 (no
padding).

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (5 of 12) [3/29/2003 12:47:26 AM]

Methods

index

index(image). Return the line/column position corresponding to the given image (or
any other index specifier; see above).

delete

delete(image). Remove the given image from the text widget, and destroy it.

image_cget

image_cget(index, option). Return the current value of the given option. If there's
no image on the given position, this method raises a TclError exception. Not
implemented in Python 1.5.2 and earlier.

image_config

image_config(index, options...), image_configure(index,
options...). Modifies one or more options. If there's no image on the given position,
this method raises a TclError exception. Not implemented in Python 1.5.2 and earlier.

image_names

image_names(). Return a tuple containing the names of all images embedded in the
text widget. Tkinter doesn't provide a way to get the corresponding PhotoImage or
BitmapImage objects, but you can keep track of those yourself using a dictionary (using
str(image) as the key).

This method is not implemented in Python 1.5.2 and earlier.

Methods for Tags

The following methods are used to manipulate tags and tag ranges.

tag_add

tag_add(tag, index), tag_add(tag, start, top). Add tag to the character at

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (6 of 12) [3/29/2003 12:47:26 AM]

Methods

the given position, or to the given range.

tag_remove

tag_remove(tag, index), tag_remove(tag, start, stop). Remove the tag
from the character at the given position, or from the given range. The information
associated with the tag is not removed (not even if you use tag_remove(1.0, END)).

tag_delete

tag_delete(tag), tag_delete(tags...). Remove the given tags from the widget.
All style and binding information associated with the tags are also removed.

tag_config

tag_config(tag, options...), tag_configure(tag, options...). Set style
options for the given tag. If the tag doesn't exist, it is created.

Note that the style options are associated with tags, not text ranges. Any text having a
given tag will be rendered according to its style options, even if it didn't exist when the
binding was created. If a text range has several tags associated with it, the Text widget
combines the style options for all tags. Tags towards the top of the tag stack (created
later, or raised using tag_raise) have precedence.

tag_cget

tag_cget(tag, option). Get the current value for the given option.

tag_bind

tag_bind(tag, sequence, func), tag_bind(tag, sequence, func, "+").
Add an event binding to the given tag. Tag bindings can use mouse- and keyboard-related
events, plus <Enter> and <Leave>. If the tag doesn't exist, it is created. Usually, the
new binding replaces any existing binding for the same event sequence. The second form
can be used to add the new callback to the existing binding.

Note that the new bindings are associated with tags, not text ranges. Any text having the
tag will fire events, even if it didn't exist when the binding was created. To remove
bindings, use tag_remove or tag_unbind.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (7 of 12) [3/29/2003 12:47:26 AM]

Methods

tag_unbind

tag_unbind(tag, sequence). Remove the binding, if any, for the given tag and
event sequence combination.

tag_names

tag_names(). Return a tuple containing all tags used in the widget. This includes the
SEL selection tag.

tag_names(index). Return a tuple containing all tags used by the character at the
given position.

tag_nextrange

tag_nextrange(tag, index), tag_nextrange(tag, start, stop). Find the
next occurence of the given tag, starting at the given index. If two indexes are given,
search only from start to stop. Note that this method looks for the start of a range, so
if you happen to start on a character that has the given tag, this method will return that
range only if that character is the first in the range. Otherwise, the current range is
skipped.

tag_prevrange

tag_prevrange(tag, index), tag_prevrange(tag, start, stop). Find the
next occurence of the given tag, starting at the given index and searching towards the
beginning of the text. If two indexes are given, search from start to stop. As for
nextrange, this method looks for the start of a range, beginning at the start index. So if
you start on a character that has the given tag, this method will return that range unless
the search started on the first character in that tag range.

tag_lower

tag_lower(tag), tag_lower(tag, below). Move the given tag to the bottom of the
tag stack (or place it just under the below tag). If multiple tags are defined for a range of
text, options defined by tags towards the top of the stack have precedence.

tag_raise

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (8 of 12) [3/29/2003 12:47:26 AM]

Methods

tag_raise(tag), tag_raise(tag, above). Move the given tag to the top of the tag
stack (or place it just over the above tag).

tag_ranges

tag_ranges(tag). Return a tuple with start- and stop-indexes for each occurence of
the given tag. If the tag doesn't exist, this method returns an empty tuple. Note that the
tuple contains two items for each range.

Methods for Selections

To manipulate the selection, use tag methods like tag_add and tag_remove on the SEL
tag. There are no selection-specific methods provided by the Text widget.

But if you insist, here's how how to emulate the Entry widget selection methods:

 def selection_clear(text):
 text.tag_remove(SEL, 1.0, END)

 def selection_from(text, index):
 text._anchor = index

 def selection_present(text):
 return len(text.tag_ranges(SEL)) != 0

 def selection_range(text, start, end):
 text.tag_remove(SEL, 1.0, start)
 text.tag_add(SEL, start, end)
 text.tag_remove(SEL, end, END)

 def selection_to(text, index):
 if text.compare(index, "<", text._anchor):
 selection_range(text, index, text._anchor)
 else:
 selection_range(text, text._anchor, index)

Methods for Rendering

The following methods only work if the text widget is updated. To make sure this is the
case, call the update_idletasks method before you use any of these.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (9 of 12) [3/29/2003 12:47:26 AM]

Methods

bbox

bbox(index). Returns the bounding box for the given character, as a 4-tuple: (x, y,
width, height). If the character is not visible, this method returns None.

dlineinfo

dlineinfo(index). Returns the bounding box for the line containing the given
character, as a 5-tuple: (x, y, width, height, offset). The last tuple member is
the offset from the top of the line to the baseline. If the line is not visible, this method
returns None.

Methods for Printing

The Text widget doesn't contain any builtin support for printing. To print the contents,
use get or dump and pass the resulting text to a suitable output device.

If you have a Postscript printer, you can use PIL's PSDraw module.

Methods for Searching

search

search(pattern, index, options...). Search for text in the widget. Returns the
first matching position if successful, or an empty string if there was no match.

Table 42-4. Text Search Options

Option Type Description

forwards,
backwards

flag Search from the given position towards the end of
the buffer (forwards), or the beginning
(backwards). Default is forwards.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (10 of 12) [3/29/2003 12:47:26 AM]

Methods

exact,
regexp

flag Interpret the pattern as a literal string (exact), or
a Tcl-style regular expression (regexp). Default is
exact.

nocase flag Enable case-insensitive search. Default is case
sensitive.

stopindex index Don't search beyond this position. Default is to
search the whole buffer, and wrap around if the
search reaches the end of the buffer. To prevent
wrapping, set stopindex to END when searching
forwards, and 1.0 when searching backwards.

count variable Return the length of the match in the given
variable. If given, this variable should be a Tkinter
IntVar.

Methods for Scrolling

These methods are used to scroll the text widget in various ways. The scan methods can
be used to implement fast mouse pan/roam operations (they are bound to the middle
mouse button, if available), while the xview and yview methods are used with standard
scrollbars.

scan_mark, scan_dragto

scan_mark(x, y), scan_dragto(x, y). scan_mark sets the scanning anchor for
fast horizontal scrolling to the given mouse coordinate. scan_dragto scrolls the widget
contents sideways according to the given mouse coordinate. The text is moved 10 times
the distance between the scanning anchor and the new position.

xview, yview

xview(), yview(). Returns a tuple containing two values; the first value corresponds
to the relative offset of the first visible line (column), and the second corresponds to the
relative offset of the line (column) just after the last one visible on the screen. Offset 0.0
is the beginning of the text, 1.0 the end.

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (11 of 12) [3/29/2003 12:47:26 AM]

Methods

xview, yview

xview(MOVETO, offset), yview(MOVETO, offset). Adjust the text widget so that
the given offset is at the left (top) edge of the text. Offset 0.0 is the beginning of the text,
1.0 the end. These methods are used by the Scrollbar bindings when the user drags the
scrollbar slider.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use
the string "moveto" instead.

xview, yview

xview(SCROLL, step, what), yview(SCROLL, step, what). Scroll the text
widget horizontally (vertically) by the given amount. The what argument can be either
UNITS (lines, characters) or PAGES. These methods are used by the Scrollbar bindings
when the user clicks at a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings "scroll", "units", and "pages" instead.

yview_pickplace

yview_pickplace(index). Same as see, but only handles the vertical position
correctly. New code should use see instead.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8369-methods.htm (12 of 12) [3/29/2003 12:47:26 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
The Text widget supports the following options.

FIXME: sort in relevance order

Table 42-5. Text Options

Option Type Description

background (bg) color The background color for this widget.
Default is system specific (usually "white").
If you change the background color, you
should make sure to change the foreground
color as well.

borderwidth (bd) distance Border width. Default is platform
dependent, but is usually one or two pixels.

cursor cursor The cursor to show when the mouse pointer
is placed over the text widget. The default is
a text insertion cursor (typically an "I beam"
cursor, such as xterm).

exportselection flag If true, selected text is automatically
exported to the clipboard. Default is true.

font font Widget font. The default is system specific
(usually "black").

foreground (fg) color Text color.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (1 of 4) [3/29/2003 12:47:27 AM]

Options

height distance Widget height, in text units.

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When the widget has focus, the
border is drawn in the highlightcolor
color. Otherwise, it is drawn in the
highlightbackground color. The
defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

insertbackground color

insertborderwidth distance

insertofftime,
insertontime

time

insertwidth distance Controls cursor blinking and style. It's
usually best to leave these as they are.

padx, pady distance Extra padding between the widget's inner
border and the text body. Default is 0 (no
padding).

relief constant Border decoration. The default is SUNKEN.
Other possible values are FLAT, RAISED,
GROOVE, and RIDGE.

selectbackground color Selection background color. The default is
system and display specific.

selectborderwidth distance Selection border width. The default is
system specific.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (2 of 4) [3/29/2003 12:47:27 AM]

Options

selectforeground color Selection text color. The default is system
and display specific.

setgrid flag If true, Tkinter attempts to resize the
window containing the text widget in full
character steps (based on the font option).

spacing1 distance Spacing to use above the first line in a block
of text. Default is 0 (no extra spacing).

spacing2 distance Spacing to use between the lines in a block
of text wrapped by the widget. Default is 0
(no extra spacing).

spacing3 distance Spacing to use after the last line of text in a
block of text having this tag. Default is 0 (no
extra spacing).

state constant One of NORMAL or DISABLED. Default is
NORMAL. Note that if you set this to
DISABLED, calls to insert or delete are
ignored.

tabs string

takefocus flag If true, you can use Tab to move focus to
this widget (but not from it; the default
bindings for the Text widget insert the tab
character). Default is an empty string,
which means that the text widget accepts
focus only if it has any keyboard bindings
(default is on, in other words).

width distance Widget width, in text units.

wrap constant Word wrap mode. Use one of NONE, CHAR,
or WORD. Default is NONE.

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (3 of 4) [3/29/2003 12:47:27 AM]

Options

xscrollcommand,
yscrollcommand

callback Scrollbar callbacks. These options should be
set to the set method for the corresponding
scrollbar.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x8896-options.htm (4 of 4) [3/29/2003 12:47:27 AM]

The Toplevel Widget

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 43. The Toplevel Widget
Table of Contents
When to use the Toplevel Widget
Methods
Options

The Toplevel widget work pretty much like Frame, but it is displayed in a separate, top-
level window. Such windows usually have title bars, borders, and other "window
decorations".

When to use the Toplevel
Widget
To be added.

Back Next

http://www.pythonware.com/library/tkinter/introduction/toplevel.htm [3/29/2003 12:47:28 AM]

Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Methods
Except for the standard widget interface (config, etc), the Toplevel widget has no
methods.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9172-methods.htm [3/29/2003 12:47:29 AM]

Options

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Options
Table 43-1.

Option Type Description

height, width distance Toplevel window size.

background (bg) color The background color to use in this toplevel.
This defaults to the application background
color. To prevent updates, set the color to
an empty string.

colormap widget Some displays support only 256 colors
(some use even less). Such displays usually
provide a color map to specify which 256
colors to use. This option allows you to
specify which color map to use for this
toplevel window, and its child widgets.

By default, a new toplevel window uses the
same color map as the root window. Using
this option, you can reuse the color map of
another window instead (this window must
be on the same screen and have the same
visual characteristics). You can also use the
value "new" to allocate a new color map for
this window.

You cannot change this option once you've
created the window.

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (1 of 3) [3/29/2003 12:47:30 AM]

Options

menu widget A menu to associate with this toplevel
window. On Unix and Windows, the menu
is placed at the top of the toplevel window
itself. On Macs, the menu is displayed at the
top of the screen when the toplevel window
is selected.

cursor cursor The cursor to show when the mouse pointer
is placed over the toplevel widget. Default is
a system specific arrow cursor.

relief constant Border decoration: either FLAT, SUNKEN,
RAISED, GROOVE, or RIDGE. The default
is FLAT.

borderwidth (bd) distance Width of the 3D border. Defaults to 0 (no
border).

takefocus flag Indicates that the user can use the Tab key
to move to this widget. Default is an empty
string, which means that the toplevel
accepts focus only if it has any keyboard
bindings (default is off, in other words).

highlightbackground,
highlightcolor

color Controls how to draw the focus highlight
border. When any child to the toplevel
window has focus, the border is drawn in
the highlightcolor color. Otherwise, it is
drawn in the highlightbackground color.
The defaults are system specific.

highlightthickness distance Controls the width of the focus highlight
border. Default is 0 (no border).

class (class_) class

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (2 of 3) [3/29/2003 12:47:30 AM]

Options

visual visual Controls the "visual" type to use for this
window. This option should usually be
omitted. In that case, the visual type is
inherited from the root window.

Some more advanced displays support
"mixed visuals". This typically means that
the root window is a 256-color display (the
"pseudocolor" visual type), but that
individual windows can be displayed as true
24-bit color (the "truecolor" visual type). On
such displays, you may wish to explicitly set
the visual option to "truecolor" for any
windows used to display full-color images.

Other possible values include "directcolor",
"staticcolor", "grayscale", or "staticgray".
See your X window documentation for
details.

You cannot change this option once you've
created the window.

screen screen

container container

use widget

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9177-options.htm (3 of 3) [3/29/2003 12:47:30 AM]

Basic Widget Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 44. Basic Widget
Methods
Table of Contents
Configuration
Event processing
Event callbacks
Alarm handlers and other non-event callbacks
Window management
Window Related Information
Miscellaneous
Tkinter Interface Methods
Option Database

The following methods are provided by all widgets (including the root window). In the
method descriptions, self refer to the widget via which you reached the method.

The root window and other Toplevel windows provide additional methods. See the
Window Methods section for more information.

Configuration

config

config(options...), configure(options...). Change one or more options for
self.

config

config(), configure(). Return a dictionary containing the current settings for all
widget options. For each option key in the dictionary, the value is either a five-tuple
(option, option database key, option database class, default value, current value), or a two-

http://www.pythonware.com/library/tkinter/introduction/basic-widget-methods.htm (1 of 2) [3/29/2003 12:47:31 AM]

Basic Widget Methods

tuple (option alias, option). The latter case is used for aliases like bg (background) and
bd (borderwidth).

Note that the value fields aren't correctly formatted for some option types. See the
description of the keys method for more information, and a workaround.

cget

cget(option). Return the current value for the given option.

Note that option values are always returned as strings (also if you gave a nonstring value
when you configured the widget). Use int and float where appropriate.

keys

keys(). Return a tuple containing the options available for this widget. You can use cget
to get the corresponding value for each option.

Note that the tuple currently include option aliases (like bd, bg, and fg). To avoid this,
you can use config instead. On the other hand, config doesn't return valid option values
for some option types (such as font names), so the best way is to use a combination of
config and cget:

 for item in w.config():
 if len(item) == 5:
 option = item[0]
 value = w.cget(option)
 print option, value

Back Next

http://www.pythonware.com/library/tkinter/introduction/basic-widget-methods.htm (2 of 2) [3/29/2003 12:47:31 AM]

Event processing

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Event processing

mainloop

mainloop(). Enter Tkinter's main event loop. To leave the event loop, use the quit
method. Event loops can be nested; it's ok to call mainloop from within an event handler.

quit

quit(). Leaves Tkinter's main event loop. Note that you can have nested event loops;
each call to quit terminates the outermost event loop.

update

update(). Process all pending events, call event callbacks, complete any pending
geometry management, redraw widgets as necessary, and call all pending idle tasks. This
method should be used with care, since it may lead to really nasty race conditions if
called from the wrong place (from within an event callback, for example, or from a
function that can in any way be called from an event callback, etc.)

update_idletasks

update_idletasks(). Call all pending idle tasks, without processing any other events.
This can be used to carry out geometry management and redraw widgets if necessary,
without calling any callbacks.

focus_set

focus_set(), focus(). Move keyboard focus to self. This means that all keyboard
events sent to the application will be routed to self.

focus_displayof
http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (1 of 4) [3/29/2003 12:47:32 AM]

Event processing

focus_displayof().

focus_force

focus_force(). Force keyboard focus to self.

FIXME: what's the difference between "moving" and "forcing"?

focus_get

focus_get().

focus_lastfor

focus_lastfor().

tk_focusNext

tk_focusNext(). Return the next widget (following self) that should have focus. This is
used by the default bindings for the Tab key.

tk_focusPrev

tk_focusPrev(). Return the previous widget (preceding self) that should have focus.
This is used by the default bindings for the Shift-Tab key.

grab_current

grab_current().

grab_release

grab_release(). Release the event grab.

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (2 of 4) [3/29/2003 12:47:32 AM]

Event processing

grab_set

grab_set(). Route all events for this application to self.

grab_set_global

grab_set_global(). Route all events for the entire screen to self.

This should only be used in very special circumstances, since it blocks all other
applications running on the same screen. And that probably includes your development
environment, so you better make sure your application won't crash or lock up until it has
properly released the grab.

grab_status

grab_status().

wait_variable

wait_variable(variable). Wait for the given Tkinter variable to change. This
method enters a local event loop, so other parts of the application will still be responsive.
The local event loop is terminated when the variable is updated (setting it to it's current
value also counts).

wait_visibility

wait_visibility(widget). Wait for the given widget to become visible. This is
typically used to wait until a new toplevel window appears on the screen. Like
wait_variable, this method enters a local event loop, so other parts of the application
will still work as usual.

wait_window

wait_window(widget). Wait for the given widget to be destroyed. This is typically
used to wait until a destroyed window disappears from the screen. Like wait_variable
and wait_visibility, this method enters a local event loop, so other parts of the
application will still work as usual.

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (3 of 4) [3/29/2003 12:47:32 AM]

Event processing

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9374-event-processing.htm (4 of 4) [3/29/2003 12:47:32 AM]

Event callbacks

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Event callbacks
All event callbacks take one argument; an event descriptor. See the introduction for more
information on this descriptor.

bind

bind(sequence, callback), bind(sequence, callback, "+"). Add an event
binding to self. Usually, the new binding replaces any existing binding for the same event
sequence. The second form can be used to add the new callback to the existing binding.

unbind

unbind(sequence). Remove any bindings for the given event sequence, for self.

bind_all

bind_all(sequence, callback), bind_all(sequence, callback, "+").
Add an event binding to the application level. Usually, the new binding replaces any
existing binding for the same event sequence. The second form can be used to add the
new callback to the existing binding.

unbind_all

unbind_all(sequence). Remove any bindings for the given event sequence, on the
application level.

bind_class

bind_class(class, sequence, func), bind_class(class, sequence,
func, "+"). Add an event binding to the given widget class. Usually, the new binding
replaces any existing binding for the same event sequence. The second form can be used

http://www.pythonware.com/library/tkinter/introduction/x9466-event-callbacks.htm (1 of 2) [3/29/2003 12:47:33 AM]

Event callbacks

to add the new callback to the existing binding.

unbind_class

unbind_class(class, sequence). Remove any bindings for the given event
sequence, for the given binding class.

bindtags

bindtags(). Return a tuple containing the binding search order used for self. By
default, this tuple contains the self's widget name (str(self)), the widget class (e.g.
Button), the root window's name, and finally the special name all which refers to the
application level.

bindtags

bindtags(bindings). Modify the binding search order for self.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9466-event-callbacks.htm (2 of 2) [3/29/2003 12:47:33 AM]

Alarm handlers and other non-event callbacks

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Alarm handlers and other non-
event callbacks

after

after(delay_ms, callback, args...). Register an alarm callback that is called
after the given number of milliseconds (Tkinter only guarantees that the callback will not
be called earlier than that; if the system is busy, the actual delay may be much longer).
The callback is only called once for each call to after. To keep calling the callback, you
need to reregister the callback inside itself:

 class App:
 def __init__(self, master):
 self.master = master
 self.poll() # start polling

 def poll(self):
 ...
 self.master.after(100, self.poll)

You can provide one or more arguments which are passed to the callback. This method
returns an alarm id which can be used with after_cancel to cancel the callback.

after_cancel

after_cancel(id). Cancels the given alarm callback.

after

after(delay_ms). Wait for the given number of milliseconds. Note that in the current
version, this also blocks the event loop. In practice, this means that you might as well do:

 time.sleep(delay_ms*0.001)

http://www.pythonware.com/library/tkinter/introduction/x9507-alarm-handlers-and-other.htm (1 of 2) [3/29/2003 12:47:34 AM]

Alarm handlers and other non-event callbacks

after_idle

after_idle(callback, args...). Register an idle callback which is called when
the system is idle (that is, when there are no more events to process in the mainloop).
The callback is only called once for each call to after_idle.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9507-alarm-handlers-and-other.htm (2 of 2) [3/29/2003 12:47:34 AM]

Window management

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Window management

lift

lift(), tkraise(), lift(above), tkraise(above). Move self to the top of the
window stack. If self is a child window, it is moved to the top of it's toplevel window. If
self is a toplevel window (the root or a Toplevel window), it is moved in front of all other
windows on the display. If an argument is given, the widget (or window) is moved so it's
just above the given widget (window).

lower

lower(), lower(below). Same as lift, but moves the widget to the bottom of the stack
(or places it just under the below widget).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9531-window-management.htm [3/29/2003 12:47:35 AM]

Window Related Information

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Window Related Information
This group of methods provide information related to the widget (self) to which the
method belongs.

winfo_cells

winfo_cells(). Return the number of "cells" in the color map for self. This is typically
a value between 2 and 256 (also for true color displays, by some odd reason).

winfo_children

winfo_children(). Return a list containing widget instances for all children of self.
The windows are returned in stacking order from bottom to top. If the order doesn't
matter, you can get the same information from the children widget attribute (it's a
dictionary mapping Tk widget names to widget instances, so widget.children.values()
gives you a list of instances).

winfo_class

winfo_class(). Returns the Tkinter widget class name for self. If self is a Tkinter base
widget, widget.winfo_class() is the same as widget.__class__.__name__.

winfo_colormapfull

winfo_colormapfull(). Return true if the color map for self is full.

winfo_containing

winfo_containing(x, y). Return the widget at the given position, or None if there is
no such window, or it isn't owned by this application. The coordinates are given relative
to the screen's upper left corner.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (1 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

winfo_depth

winfo_depth(). Return the bit depth used to display self. This is typically 8 for a 256-
color display device, 15 or 16 for a "hicolor" display, and 24 or 32 for a true color display.

winfo_exists

winfo_exists(). Return true if there is Tk window corresponding to self. Unless
you've done something really strange, this method should always return true.

winfo_pixels

winfo_pixels(distance), winfo_fpixels(distance). Convert the given
distance (in any form accepted by Tkinter) to the corresponding number of pixels.
winfo_pixels returns an integer value, winfo_fpixels a floating point value.

winfo_geometry

winfo_geometry(). Returns a string describing self's "geometry". The string has the
following format:

 "%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

winfo_width, winfo_height

winfo_width(), winfo_height(). Return the width (height) of self, in pixels. Note
that if the window isn't managed by a geometry manager, these methods returns 1. To
you get the real value, you may have to call update_idletasks first. You can also use
winfo_reqheight to get the widget's requested height (that is, the "natural" size as
defined by the widget itself based on it's contents).

winfo_id

winfo_id(). Return a string containing a system-specific window identifier

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (2 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

corresponding to self. For Unix, this is the X window identifier. For Windows, this is the
HWND cast to a long integer.

winfo_ismapped

winfo_ismapped(). Return true if there is window corresponding to self in the
underlying window system (an X window, a Windows HWND, etc).

winfo_manager

winfo_manager(). Return the name of the geometry manager used to keep manage
self (typically one of grid, pack, place, canvas, or text).

FIXME: this is not implemented by Tkinter (or is it, in 1.5.2?)

winfo_name

winfo_name(). Return the Tk widget name. This is the same as the last part of the full
widget name (which you can get via str(widget)).

winfo_parent

winfo_parent(). Return the full widget name of self's parent, or an empty string if self
doesn't have a parent (if self is the root window, that is).

To get the widget instance instead, you can simply use the master attribute instead of
calling this method (the master attribute is None for the root window). Or if you insist,
use _nametowidget to map the full widget name to an instance.

winfo_pathname

winfo_pathname(id). Return the full window name for the window having the given
identity (see winfo_id for details). If the window doesn't exist, or it isn't owned by this
application, Tkinter raises a TclError exception.

To convert the full name to a widget instance, use _nametowidget.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (3 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

winfo_reqheight, winfo_reqwidth

winfo_reqheight(), winfo_reqwidth(). Return the "natural" height (width) for
self. The natural size is the minimal size needed to display the widget's contents,
including padding, borders, etc. This size is calculated by the widget itself, based on the
given options. The actual widget size is then determined by the widget's geometry
manager, based on this value, the size of the widget's master, and the options given to the
geometry manager.

winfo_rootx, winfo_rooty

winfo_rootx(), winfo_rooty(). Return the pixel coordinates for self's upper left
corner, relative to the screen's upper left corner.

winfo_screen

winfo_screen(). Return the X window screen name for the current window. The
string has the following format:

 ":%d.%d" % (display, screen)

On Windows and Macintosh, this is always ":0.0".

winfo_screencells

winfo_screencells(). Returns the number of "cells" in the default color map for
self's screen.

winfo_screendepth

winfo_screendepth(). Return the default bit depth for self's screen.

winfo_screenwidth, winfo_screenheight

winfo_screenwidth(), winfo_screenheight(). Return the width (height) of self's
screen, in pixels.

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (4 of 5) [3/29/2003 12:47:36 AM]

Window Related Information

winfo_screenmmwidth,
winfo_screenmmheight

winfo_screenmmwidth(), winfo_screenmmheight(). Return the width (height) of
self's screen, in millimetres. This may not be accurate on all platforms.

FIXME: does this take the logical resolution into account on Windows?

winfo_screenvisual

winfo_screenvisual(). Return the "visual" type used for self. This is typically
"pseudocolor" (for 256-color displays) or "truecolor" (for 16- or 24-bit displays).

Other possible values (on X window systems only) include "directcolor", "staticcolor",
"grayscale", or "staticgray".

winfo_toplevel

winfo_toplevel(). Return the toplevel window (or root) window for self, as a widget
instance.

winfo_visual

winfo_visual(). Return a string describing the display type (the X window "visual")
for self's screen. This is one of staticgray, grayscale, staticcolor, psuedocolor,
directcolor, or truecolor. For most display devices, this is either psuedocolor (an 8-bit
colormapped display), or truecolor (a 15- or 24-bit truecolor display).

winfo_x, winfo_y

winfo_x(), winfo_y(). Return the pixel coordinates for self's upper left corner,
relative to its parent's upper left corner.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9548-window-related-information.htm (5 of 5) [3/29/2003 12:47:36 AM]

Miscellaneous

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Miscellaneous

bell

bell(). Generate a system-dependent sound (typically a short beep).

clipboard_append

clipboard_append(string). Add text to the clipboard.

clipboard_clear

clipboard_clear(). Clear the clipboard.

selection_clear

selection_clear().

selection_get

selection_get().

selection_handle

selection_handle(command).

selection_own

selection_own().

http://www.pythonware.com/library/tkinter/introduction/x9708-miscellaneous.htm (1 of 2) [3/29/2003 12:47:37 AM]

Miscellaneous

selection_own_get

selection_own_get().

tk_focusFollowsMouse

tk_focusFollowsMouse().

tk_strictMotif

tk_strictMotif(flag). Under Unix, this method can be called to enforce strict Motif
look and feel. To use this, create a root window by calling the Tk constructor, and then
call this method with flag set to 1 before you create any other widgets. This method has
no effect on other platforms.

winfo_rgb

winfo_rgb(color). Convert a color string (in any form accepted by Tkinter) to a 3-
tuple containing the corresponding red, green, and blue component. Note that the tuple
contains 16-bit values (0..65535).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9708-miscellaneous.htm (2 of 2) [3/29/2003 12:47:37 AM]

Tkinter Interface Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Tkinter Interface Methods
The following methods are used by Tkinter's inner workings. Don't use these unless you
know exactly what you are doing, and why you should do that.

getboolean

getboolean(s). Convert a string to a boolean (flag) value, using Tcl's conventions.

getdouble

getdouble(s). Convert a string to a floating point value, using Tcl's conventions. In
practice, this is equivalent to float and string.atof.

getint

getint(s). Convert a string to an integer point value, using Tcl's conventions. In
practice, this is equivalent to int and string.atoi.

register

register(callback). Register a Tcl to Python callback. Returns the name of a Tcl
wrapper procedure. When that procedure is called from a Tcl program, it will call the
corresponding Python function with the arguments given to the Tcl procedure. Values
returned from the Python callback are converted to strings, and returned to the Tcl
program.

winfo_atom

winfo_atom(string). Map the given to a unique integer. Everytime you call this
method with the same string, the same integer will be returned.

http://www.pythonware.com/library/tkinter/introduction/x9755-tkinter-interface-methods.htm (1 of 2) [3/29/2003 12:47:38 AM]

Tkinter Interface Methods

winfo_atomname

winfo_atomname(id). Return the string corresponding to the given integer (obtained
by a call to winfo_atom). If the integer isn't in use, Tkinter raises a TclError exception.
Note that Tkinter predefines a bunch of integers (typically 1-80 or so). If you're curious,
you can use winfo_atomname to find out what they are used for.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9755-tkinter-interface-methods.htm (2 of 2) [3/29/2003 12:47:38 AM]

Option Database

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Option Database
Not yet documented.

option_add

option_add(pattern, value).

option_clear

option_clear().

option_get

option_get(name, className).

option_readfile

option_readfile(fileName).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9789-option-database.htm [3/29/2003 12:47:39 AM]

Toplevel Window Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Chapter 45. Toplevel Window
Methods
Table of Contents
Visibility Methods
Style Methods
Window Geometry Methods
Icon Methods
Property Access Methods

This group of methods are used to communicated with the window manager. They are
available on the root window (Tk), as well as on all Toplevel instances.

Note that different window managers behave in different ways. For example, some
window managers don't support icon windows, some don't support window groups, etc.

Visibility Methods

deiconify

deiconify(). Display the window. New windows are displayed by default, so you only
have to use this method if you have used iconify or withdraw to remove the window from
the screen.

iconify

iconify(). Turn the window into an icon (without destroying it). To redraw the
window, use deiconify. Under Windows, the window will show up in the taskbar.

When the window has been iconified, the state method returns "iconic".

http://www.pythonware.com/library/tkinter/introduction/toplevel-window-methods.htm (1 of 2) [3/29/2003 12:47:40 AM]

Toplevel Window Methods

withdraw

withdraw(). Remove the window from the screen (without destroying it). To redraw
the window, use deiconify.

When the window has been withdrawn, the state method returns "withdrawn".

state

state(). Returns the current state of self. This is one of the values "normal", "iconic"
(see iconify), "withdrawn" (see withdraw) or "icon" (see iconwindow).

Back Next

http://www.pythonware.com/library/tkinter/introduction/toplevel-window-methods.htm (2 of 2) [3/29/2003 12:47:40 AM]

Style Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Style Methods

title

title(string), title(). Set (get) the window title.

group

group(window). Adds self to the window group controlled by the given window. A
group member is usually hidden when the group owner is iconified or withdrawn (the
exact behavior depends on the window manager in use).

transient

transient(master). Make self a transient window for the given master (if omitted,
master defaults to self's parent). A transient window is always drawn on top of its master,
and is automatically hidden when the master is iconified or withdrawn. Under Windows,
transient windows don't show show up in the task bar.

overrideredirect

overrideredirect(flag), overrideredirect(). Set (get) the override redirect
flag. If non-zero, this prevents the window manager from decorating the window. In
other words, the window will not have a title or a border, and it cannot be moved or
closed via ordinary means.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9843-style-methods.htm [3/29/2003 12:47:41 AM]

Window Geometry Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Window Geometry Methods

geometry

geometry(). Returns a string describing self's "geometry". The string has the following
format:

 "%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

geometry

geometry(geometry). Change the geometry for self. The string format is as described
above.

aspect

aspect(minNumer, minDenom, maxNumer, maxDenom), aspect(). Control the
aspect ratio (the relation between width and height) of this window. The aspect ratio is
constrained to lie between minNumer/minDenom and maxNumer/maxDenom.

If no arguments are given, this method returns the current constraints as a 4-tuple, if
any.

maxsize

maxsize(width, height), maxsize(). Set (get) the maximum size for this window.

minsize

minsize(width, height), minsize(). Set (get) the minimum size for this window.

http://www.pythonware.com/library/tkinter/introduction/x9867-window-geometry-methods.htm (1 of 2) [3/29/2003 12:47:42 AM]

Window Geometry Methods

resizable

resizable(width, height), resizable(). Set (get) the resize flags. The width flag
controls whether the window can be resized horizontally by the user. The height flag
controls whether the window can be resized vertically.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9867-window-geometry-methods.htm (2 of 2) [3/29/2003 12:47:42 AM]

Icon Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Icon Methods

iconbitmap

iconbitmap(bitmap), iconbitmap(). Set (get) the icon bitmap to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

Note that this method can only be used to display monochrome icons. To display a color
icon, put it in a Label widget and display it using the iconwindow method instead (see
below).

iconmask

iconmask(bitmap), iconmask(). Set (get) the icon bitmap mask to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

iconname

iconname(newName=None), iconname(). Set (get) the icon name to use when this
window is iconified. This method are ignored by some window managers (including
Windows).

iconposition

iconposition(x, y), iconposition(). Set (get) the icon position hint to use when
this window is iconified. This method are ignored by some window managers (including
Windows).

iconwindow

http://www.pythonware.com/library/tkinter/introduction/x9905-icon-methods.htm (1 of 2) [3/29/2003 12:47:43 AM]

Icon Methods

iconwindow(window), iconwindow(). Set (get) the icon window to use as an icon
when this window is iconified. This method are ignored by some window managers
(including Windows).

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9905-icon-methods.htm (2 of 2) [3/29/2003 12:47:43 AM]

Property Access Methods

pythonware.com ::: library ::: An Introduction to Tkinter

Back Next

Property Access Methods

client

client(name), client(). Set (get) the WM_CLIENT_MACHINE property. This
property is used by window managers under the X window system. It is ignored on other
platforms.

To remove the property, set it to an empty string.

colormapwindows

colormapwindows(wlist...), colormapwindows(). Set (get) the
WM_COLORMAP_WINDOWS property. This property is used by window managers
under the X window system. It is ignored on other platforms.

command

command(value), command(). Set (get) the WM_COMMAND property. This property
is used by window managers under the X window system. It is ignored on other
platforms.

To remove the property, set it to an empty string.

focusmodel

focusmodel(model), focusmodel(). Set (get) the focus model.

frame

frame(). Return a string containing a system-specific window identifier corresponding
to self's outermost parent. For Unix, this is the X window identifier. For Windows, this is

http://www.pythonware.com/library/tkinter/introduction/x9935-property-access-methods.htm (1 of 2) [3/29/2003 12:47:44 AM]

Property Access Methods

the HWND cast to a long integer.

Note that if the window hasn't been reparented by the window manager, this method
returns the window identifier corresponding to self.

positionfrom

positionfrom(who), positionfrom(). Set (get) the position controller.

protocol

protocol(name, function). Register function as a callback which will be called for
the given protocol. The name argument is typically one of BWM_DELETE_WINDOW
(the window is about to be deleted), WM_SAVE_YOURSELF (called by X window
managers when the application should save a snapshot of its working set) or
WM_TAKE_FOCUS (called by X window managers when the application receives focus).

sizefrom

sizefrom(who), sizefrom(). Set (get) the size controller.

Back Next

http://www.pythonware.com/library/tkinter/introduction/x9935-property-access-methods.htm (2 of 2) [3/29/2003 12:47:44 AM]

Index

pythonware.com ::: library ::: An Introduction to Tkinter

Back

Index
Back

http://www.pythonware.com/library/tkinter/introduction/book-index.htm [3/29/2003 12:47:44 AM]

