#####

A beginners guide to TCL with focus on Eggdrop.

Please note this document was optimized for eggdrop 1.1.x

MBTI [Made by The |mmortaL] - asn@cdc.net (see section X for more credits)

Date Completed: xx/xx/97

#####

This document is made to help explain how to make TCL scripts for the eggdrop.

It covers BASIC concepts, and programming. I suggest that you have a copy of

tcl-commands.doc handy, for this document will refer to it many a time. I

hope this helps in learning TCL, and good luck!

Outline:

I - Triggers for code (Events/Binds)

II - Procedures explained.

III - Variables, If statements

IV - String manipulation commands (string & l commands)

V - Loops

VI - User-get/User-set

VII - Return command

VIII - Good Programming Habits

IX - Commands, in sample code & explained.

X - Credits

I - Triggers for code (Events/Binds)

Eggdrop operates on an event based system. If I type 'hello' to the channel,

the eggdrop matches that text against a list of events (referred to as binds)

for channel commands. The eggdrop contains many events: pubm (public text

matching), mode (channel mode changes), nick (nick changes), join (joins to

the channel), part (parts of the channel), and many others; they may be found

in tcl-commands.doc.

Syntax for bind:

 bind <type> <flags> <match> <proc name>

Example:

 bind join - * join:join

The type of bind is triggered when some one joins a channel, the '-' stands

for any flag (you could have put an 'o' to signify to only execute the

procedure when he has Op Access) and the match matches the

address/nick/channel (This accepts wild cards, explain further in section IV).

The procedure 'join:join' is the part of code which it executes if the bind is

matched up correctly.

Another Example:

 bind dcc O sayhi dcc:sayhi

If someone in DCC chat party line, with channel op access (and console is to

that channel), or global op access types '.sayhi' it will execute the

procedure 'dcc:sayhi'. In Eggdrop 1.1.x the default binds are prefixed with

the type of bind then a ':' then the name; in this document I will also follow

that form.

A list of flags may be obtained via .help whois in DCC chat

II - Procedures Explained

A procedure is a section of code which may be called by anything in a program.

For Eggdrop's use, this where all the code goes for on events. When an action

takes place and a bind is triggered it calls a procedure to take action. For

example if you wanted to write your own auto-op script, when ever a person

with op access joins the channel it would call a procedure and then the

procedure would send the command to give ops.

Syntax for procedures:

 proc <name of procedure> { <needed variables> } { body }

When a bind is triggered it gives certain information to the procedure that is

required to do any thing, information such as nicks, hosts, handles, and any

other arguments needed. This was taken from tcl-commands.doc from the info of

the bind pubm.

 procname <nick> <user@host> <handle> <channel> <text>

What this says is when ever a pubm bind is triggered you need variablesto put

these 5 pieces of information. You can call the variables any thing you

choose, it could be a, b, c, d and e. I suggest using something short, and to

the point; such as nick, host, hand, chan, and text. Example of a bind, and a

procedure:

 bind pubm - hello pubm:hello

 proc pubm:hello {nick host handle chan text} {

 putserv "PRIVMSG $chan :Hello $nick"

 }

The Bind

 public match (pubm)

 flags needed to trigger: None (- means none)

 triggered by: hello

 procedure to be called: pubm:hello

The Procedure

 putserv is a command which sends text to the server.

 PRIVMSG is a server command for sending private msgs.

 $chan is the variable that will contain the channel which it occurred on

 $nick is the variable that will contain the nickname of who said "hello"

!!!PLEASE NOTE!!!: When using RAW IRC commands you need to put a ':' in front

of text that has more than one word, such as the message of a msg.

The same thing can also be accomplished with this

 bind pubm - hello pubcommand_hello

 proc pubcommand_hello {n uh h chan t} {

 puthelp "PRIVMSG $n :Hello $n!"

 }

The bind is basically the same I just changed the name of the procedure. In

the procedure I changed the name of the variables, I used 'n' instead of

'nick' and so on. However I did use a different command. Puthelp is a

Eggdrop command which queues the text the not to flood the bot. I HIGHLY

SUGGEST USING THIS! =)

(*) Use putserv when: U need some thing to happen instantaneously. Like a

 kick, or a ban.

(*) Use pushmode when you want modes to stack to be send as groups to the

 server (e.g '+ooo |mmortal Ernst Ec|ipse'), and instantaneous speed is not

 necessary.

(*) Use puthelp when messaging people, or channels.

puthelp Syntax

 puthelp "<RAW IRC COMMAND> <Arguments>"

Example:

 puthelp "NOTICE $nick :Hi there $nick!"

If you notice <message> is only one space, that's why you need the ""'s

(quotes). If you do not put the quotes there you get the error msg: TCL

error: called "puthelp" with too many arguments. So you put the quotes to

show that it belongs only in one spot.

Procedures can also call themselves, without the need for a bind. For

instance if there is one particular thing you must have done in ALL of your

procedures; and don't feel like writing it. In this example you have to send

a msg too the person every time he does a command, here is some sample code:

 bind pubm - kick pubm:kick

 proc pubm:kick {nick host hand chan text} {

 noaccess $nick

 }

 proc noaccess {who} {

 puthelp "PRIVMSG $who :Sorry $who, you do not have access to that command"

 }

noaccess is accessable by any procedure in the bot, so any time you want to

say some one doesn't have access, just call noaccess.

!!!PLEASE NOTE!!!: I've seen this question about 100 times, and even asked it

my self once. Never use 'args' as a variable in procedures it does strange

things. It puts brackets ({}'s) around the variables and causes big problems

if one does not know how to use it.

III - Variables, If statements

Variables

A variable is where you assign a symbol, or word (such as $nick) a value.

This value can be a string (words, or sentences) or a numeral. In TCL there

are 2 main types of variables: global, and private. A global variable is when

you want to store information in it, and wish other procedures to use. A

private variable could be a variable that you use in a procedure, which does

not need to be used outside of that procedure.

Syntax for setting a variable

 set <variable> <data>

Example:

 set name "The |mmortaL"

To unset a variable, simply use the command unset.

Syntax for unsetting a variable:

 unset <variable>

Example:

 unset name

When using the variable, put a '$' infront of it so the procedure understands

it is a variable. So the variable 'name' would be used in the code as

'$name'.

Additional Notes: To distinguish between a global, and private variable simply

use a 'global' command at the top of the proc. When setting the variable, or

using a global statement the '$' is not needed.

Syntax for global:

 global <variable names separated by spaces>

Example:

 proc test {a b c d e} {

 global name owner botnick

 }

Eggdrop has some pre-set global variables, such as the bot's nick ($botnick).

They are (taken from tcl-commands.doc):

 botnick

 current nickname the bot is using, ie 'Valis' or 'Valis0', etc

 botname

 current nick!user@host that the server sees, ie 'Valis!valis@crappy.com'

 server

 current server the bot is using, ie 'irc.math.ufl.edu:6667'

 version

 current bot version (ie: "1.1.2+pl1 1010201 pl1");

 first item is the text version, second item is a numerical version,

 and any following items are the names of patches that have been added

 uptime

 unixtime value for when the bot was started

To use them inside a proc, you must declare them as global at the beginning of

your proc (e.g 'global botnick'). You'll see better uses for variables in the

section IV

If Statement

One of the most important aspects of a programming language is an 'if'

statement. It will return a TRUE, or FALSE statement and execute the commands

with such association. If statement use a logic type of approach; like:

 If 1 is equal to 1 times 1 then do this <> or else do this <>.

There is the syntax

 if {v1 <operator> v2} {do this if true} else {do this if false (optional) }

These are some of the operators avaliable:

 == (equal)

 != (not equal)

 <= (Greater than/equal to)

 >= (Less than/equal to)

 < (Greater than)

 > (Less than)

Example:

 if {$nick == $botnick} {

 putmsg $chan "I am $nick!!!"

 } else {

 putmsg $chan "I am NOT $nick"

 }

This says if the value of $nick is the same as the value of botnick then it

sends a msg to the chan saying "I am $nick", and if not saying "I'm not

$nick".

!!!PLEASE NOTE!!!: IT IS CASE SENSITIVE

!!!PLEASE NOTE!!!: IT IS CASE SENSITIVE

!!!PLEASE NOTE!!!: IT IS CASE SENSITIVE

!!!PLEASE NOTE!!!: IT IS CASE SENSITIVE

Did you get that? Maybe once more

!!!PLEASE NOTE!!!: IT IS CASE SENSITIVE

Case Sensitive Defined: Where the CaPs MaTtErs. Such as 'HELLO' is not the

same as 'hello'.

Now this is where TCL starts to differ from other programming languages that

I've encountered. Lets say you want to write a check to see if $nick is an op

on $chan. Well some languages could use an operator like if $nick isop $chan.

Not TCL...

There is a procedure called 'isop'.

This was taken from tcl-commands.doc

 isop <nickname> <channel>

 returns: "1" if someone by that nickname is on the channel and has chop;

 "0" otherwise

How do you use this in a if statement? This is how

Example:

 if {[isop $nick $chan] == 1} {

 putmsg $chan "$nick is an op on $chan"

 } else {

 putmsg $chan "$nick is NOT an op on $chan"

 }

Now the same can also be written like this:

 if {[isop $nick $chan] == 0} {

 putmsg $chan "$nick is NOT an on $chan"

 }

and so on.

Or like this:

 if {[isop $nick $chan] != 1} bla bla bla

or

 if {[isop $nick $chan != 0} bla bla bla

As you can see you have many choices here, I suggest, since an else statement

is optional, you use the if statement where the statement is true or false and

execute the code, and don't use an else statement. What I mean by this is

lets say you want the following: if the bot isn't an op then msg the chan and

ask for ops.

You can do this 2 ways, here is the harder way:

 if {[botisop $chan] == 1} {

 } else {

 putmsg $chan "Please opme!

 }

As you can see I didn't want anything to happen if he does have ops, so you

could change the first line to some thing like:

 if {[botisop $chan] != 1} { putmsg $chan "Please opme!" }

or

 if {[botisop $chan == 0} { putmsg $chan "Please opme!" }

TCL will interpert

 if {[botision $chan] == 1} {}

the same as

 if {[botisop $chan]} {}

If the statement is true it executes the the {}. So there is no need for a == 1

As will

 if {[botisop $chan] == 0} {}

 if {![botisop $chan]} {}

! is the negate of whats in the []

Either one would suit you fine.

There are 100's more commands like this for anything from checking flags, to

doing ANY THING with the eggdrop. Again all in tcl-commands.doc (it almost

sounds like I'm doing a commercial for tcl-command.doc dosn't it?).

IV- String Manipulation Commands (string and l commands)

You want to make a public kick program, so ops can type !kick <nick> <reason>.

One problem, how do you extract those arguments from $text (or equivalent

variable)? lindex, and lrange.

These are core tcl commands so they won't be found in tcl-commands.doc here is

there descriptions: (from the TCL help file).

NAME

lindex - Retrieve an element from a list

SYNOPSIS

lindex list index

DESCRIPTION

This command treats list as a Tcl list and returns the index'th element from

it (0 refers to the first element of the list). In extracting the element,

lindex observes the same rules concerning braces and quotes and backslashes as

the Tcl command interpreter; however, variable substitution and command

substitution do not occur. If index is negative or greater than or equal to

the number of elements in value, then an empty string is returned. If index

has the value end, it refers to the last element in the list.

Example:

 [lindex "0 1 2 3 4 5 6 7 8 9 10" 5]

would return 5

 [lindex "a b c d e f g h I" 2]

would return c (0 is the first parameter in the string!)

Now here is the public kick program:

 bind pub O !kick pub:kick

 proc pub:kick {nick host hand chan text} {

 set whom [lindex $text 0]

 putserv "KICK $chan $whom :$nick told me so!"

 }

The Bind

 public command (pub)

 flags needed to trigger: Channel Specific/Global Operator

 command to trigger: !kick <person>

 procedure to be called: pub:kick

The Procedure

 whom is a private variable and will be erased when the proc is finished.

 The lindex takes the first parameter in $text (which is the person) and

 sets it to whom the putserv kicks the person.

What if you wanted to add a definable kick msg? Make the program a little

more fancy. The command is lrange, it takes the parameters from N'th index to

N'th index. Here it is from the TCL help file:

NAME

lrange - Return one or more adjacent elements from a list

SYNOPSIS

lrange list first last

DESCRIPTION

List must be a valid Tcl list. This command will return a new list consisting

of elements first through last, inclusive. First or last may be end (or any

abbreviation of it) to refer to the last element of the list. If first is

less than zero, it is treated as if it were zero. If last is greater than or

equal to the number of elements in the list, then it is treated as if it were

end. If first is greater than last then an empty string is returned. Note:

"lrangelist first first" does not always produce the same result as

"lindexlist first" (although it often does for simple fields that aren't

enclosed in braces); it does, however, produce exactly the same results as

"list [lindexlist first]"

So you would need to take parameter 1 for text, and to the end...

This is how you would do it:

 bind pub O !kick pub:kick

 proc pub:kick {nick host hand chan text} {

 set whom [lindex $text 0]

 set reason [lrange $text 1 end]

 putserv "KICK $chan $whom :$reason"

 }

Lets make it even more spoofy, what about if $nick isn't on the channel? Well

we need an if statement don't we? Look in tcl-commands.doc for the command.

Here is the program:

 bind pub O !kick pub:kick

 proc pub:kick {nick host hand chan text} {

 set whom [lindex $text 0]

 set reason [lrange $text 1 end]

 if {[onchan $whom $chan]} {

 putserv "KICK $chan $whom :$reason"

 } else {

 puthelp$chan "$nick: $whom is not on $chan"

 }

 }

This is from the TCL help file, I'll give examples for a few, but I'm sure you

can figure it out

NAME

string - Manipulate strings

SYNOPSIS

string option arg ?arg ...?

DESCRIPTION

Performs one of several string operations, depending on option. The legal

options (which may be abbreviated) are:

string compare string1 string2

 Perform a character-by-character comparison of strings string1 and string2

 in the same way as the C strcmp procedure. Return -1, 0, or 1, depending

 on whether string1 is lexicographically less than, equal to, or greater

 than string2.

string first string1 string2

 Search string2 for a sequence of characters that exactly match the

 characters in string1. If found, return the index of the first character

 in the first such match within string2. If not found, return -1.

string index string charIndex

 Returns the charIndex'th character of the string argument. A charIndex of

 0 corresponds to the first character of the string. If charIndex is less

 than 0 or greater than or equal to the length of the string then an empty

 string is returned.

string last string1 string2

 Search string2 for a sequence of characters that exactly match the

 characters in string1. If found, return the index of the first character

 in the last such match within string2. If there is no match, then return

 -1.

string length string

 Returns a decimal string giving the number of characters in string.

string match pattern string

 See if pattern matches string; return 1 if it does, 0 if it doesn't.

 Matching is done in a fashion similar to that used by the C-shell. For

 the two strings to match, their contents must be identical except that the

 following special sequences may appear in pattern:

 *
 Matches any sequence of characters in string, including a null

 string.

 ? Matches any single character in string.

 [chars]
Matches any character in the set given by chars. If a sequence of

 the form x-y appears in chars, then any character between x and y,

 inclusive, will match.

 \x
 Matches the single character x. This provides a way of avoiding the

 special interpretation of the characters *?[]\ in pattern.

string range string first last

 Returns a range of consecutive characters from string, starting with the

 character whose index is first and ending with the character whose index

 is last. An index of 0 refers to the first character of the string. An

 index of end (or any abbreviation of it) refers to the last character of

 the string. If first is less than zero then it is treated as if it were

 zero, and if last is greater than or equal to the length of the string

 then it is treated as if it were end. If first is greater than last then

 an empty string is returned.

string tolower string

 Returns a value equal to string except that all upper case letters have

 been converted to lower case.

string toupper string

 Returns a value equal to string except that all lower case letters have

 been converted to upper case.

string trim string ?chars?

 Returns a value equal to string except that any leading or trailing

 characters from the set given by chars are removed. If chars is not

 specified then white space is removed (spaces, tabs, newlines, and

 carriage returns).

string trimleft string ?chars?

 Returns a value equal to string except that any leading characters from

 the set given by chars are removed. If chars is not specified then white

 space is removed (spaces, tabs, newlines, and carriage returns).

 This is usefull for creating bans!!!

 Here is a sample kick ban script I wrote...

 proc pubm:kickban {nick host hand chan text} {

 set whom [lindex $text 0]

 set mask [trimleft [maskhost [getchanhost $whom $chan]] *!]

 set mask *!*$mask

 putmsg $chan "* Kick and Ban $nick ($mask) because [lrange $text 1 end]"

 putserv "MODE -o+b $whom $mask"

 putserv "KICK $whom :[lrange $text 1 end]

 }

 Notice I had to extract the person who is getting KB'd from text. I then

 had to get his host from the command getchanhost (tcl-commands.doc), and

 then make it a usable mask host for bans. However maskhost returns it's

 value in *!user@*.machine.end I need a *!*, so I used 'trimleft' and it

 did my job.

string trimright string ?chars?

 Returns a value equal to string except that any trailing characters from

 the set given by chars are removed. If chars is not specified then white

 space is removed (spaces, tabs, newlines, and carriage returns).

string wordend string index

 Returns the index of the character just after the last one in the word

 containing character index of string. A word is considered to be any

 contiguous range of alphanumeric or underscore characters, or any single

 character other than these.

string wordstart string index

 Returns the index of the first character in the word containing character

 index of string. A word is considered to be any contiguous range of

 alphanumeric or underscore characters, or any single character other than

 these.

V - Loops

This section follows the following loops: foreach, for, and while (thanxs for

the help from the people on the Doc Project List).

Foreach a list of items, and goes through each setting it as a var then

executing commands, and goes to the next.

This proc will deop any one on the chan who doesn't have +o.

foreach nick [chanlist $chan] {

 if {([isop $nick $chan]) AND (![matchattr $nick o]) AND \

 (![matchchanattr $nick o $chan])} { pushmode $chan -o $nick }

}

chanlist gives a list of people on the chan.

The Procedure

 It first checks to make sure he's an op

 Then checks to see if he's a global op

 Then checks to see if he's a chan op

 If all work out, he is deoped, if not nothing happens

 while {![botisop $chan]} {

 puthelp "PRIVMSG $chan :Opme!!!"

 }

That will flood the bot off but you get the idea?

It will execute body until the operator changes value

 for {set x 0} {$x > 5} {incr x} {

 puthelp "PRIVMSG $chan $x"

 }

First of all this script will count from 1 to 6

The first set of {}'s happens only when U execute the for statement the second

{}'s is the stopper. When that is true it will stop the body the third {} is

every time you complete body, do it, then do body again

VI - User-get/User-set

Each user on eggdrop has a special field called "xtra" which lets you store

whatever you like about users. The field size is limited so don't get too

excited. :)

It is a line where you (and your scripts) can store things the way you want

to, just like the "comment" line each user has. But to improve it's

functionality, there are two procedures which come with the "toolkit.tcl"

(comes in eggdrops scripts dir) to access this field in a more organized way.

The best thing is to *only* access the xtra field using these two procedures.

Make sure no other script is accessing it another way (simple way to check

this is to 'grep setxtra *' and 'grep getxtra *' in your scripts directory).

The procs to use:

 user-set handle fieldname 'value...'

 user-get handle fieldname

You can have any fieldname you like, like 'url' to store the users homepage,

'birthday', etc (check out 'set whois-fields' in eggdrops config file, which

makes use of exactly these fields!).

You name the field, set the value with user-set and don't have to worry

anymore. And retore the value with user-get afterwards, as in:

 if {[user-get Ernst url] == ""} { putlog "Ernst has no url set" }

VII - Return command

The return command has two uses. The first is to stop the current proc. The

second, and most usefull is the the abiity to return a number, or text.

Heres an example:

 if {[chkaccess $nick]} {

 pushmode $nick +o $chan

 }

chkaccess would return a 0, or 1 and then it would op them based on the

return.

This is from tcl-commands.doc:

 Several bindings pay attention to the value you return from the proc

 (using "return $value"). Usually they expect a 0 or 1, and failing

 to return any value is interpreted as a 0.

 Here's a list of the bindings that use the return value from procs

 they trigger:

 MSG Return 1 to make the command get logged like so:

 (nick!user@host) !handle! command

 DCC Return 1 to make the command get logged like so:

 #handle# command

 FIL Return 1 to make the command get logged like so:

 #handle# files: command

 PUB Return 1 to make the command get logged like so:

 <<nick>> !handle! command

 CTCP Return 1 to ask the bot not to process the CTCP command on its

 own. Otherwise it would send its own response to the CTCP

 (possibly an error message if it doesn't know how to deal with

 it).

 FILT Return 1 to indicate the text has been processed, and the bot

 should just ignore it. Otherwise it will treat the text like

 any other.

 FLUD Return 1 to ask the bot not to take action on the flood.

 Otherwise it will do its normal punishment.

 RAW Return 1 to ask the bot not to process the server text. This

 can affect the bot's performance (by causing it to miss things

 that it would normally act on) -- you have been warned.

 WALL Return 1 to make the command get logged liked so:

 !nick! msg

return syntax:

 return <numeric>

Example:

 return 0

VIII - Good Programming habits

Many people load tons of scripts at once, and they don't want conflicts!

There are a few ways to help avoid conflicts. USE RETURN 0 AS LITTLE AS

POSSIBLE or else it will stop all bind searching after your proc.. Here are

some other ideas

(1) label your procs sensable. Such as in my scripts I some times use

 proc mbti:antiidle {} {}

 Not some thing like

 proc script {} {}

(2) Same with your variables. If you use '-'s in your variables when alling

 them you must ${mbti-antiidle} some thing like that

(3) if your script uses timers make it compatable so you don't don't have too

 many of them (see examples in IX)

If you've noticed in all my procecdures I've used an indentation system, I

suggest you also use one.

<N> where N is the number of spaces

Example

 proc bla {} {

 <1> globlal testchan

 <1> if {[botisop $testchan]} {

 <1> <2> puthelp "PRIVMSG $testchan :I'm oped!

 <1> }

 }

IX - Program Examples, then explained.

I've taken some of these from programs I've written, or I just made them up =)

(Many thanxs to the people on the Doc Project Listserv for suggestions!)

###

bind pubm O !rules ab_rules

proc ab_rules {nick host hand chan text} {

 set who [lindex $text 0]

 if {$who == ""} {

Because of line warping it will not all fit on one line, but you get the idea

 putmsg $chan "There is NO Cursing, Harrasment, Abusing the bot, Flooding,

Clones, Advertising. Violation of this policy may result in a kick, and/or ban."

 return 1

 }

 putmsg $who "There is NO Cursing, Harrasment, Abusing the bot, Flooding,

Clones, Advertising. Violation of this policy may result in a kick, and/or ban."

}

The Bind

 Public Match

 Op Access on that Channel, or Global Op Access

 Trigger: !rules

 Proc Name: ab_rules

The Procedure

 If the first parameter in $text is valid it will be set to who; if it

 doesn't exists whom will be "". Now it says, if who has no value msg the

 channel the rules of the channel But if there is a a nick put a msg to

 $nick

####

###

Script name : antiidle10-mbti.tcl

Script Version: 1.0

Script Author : The |mmortaL [asn@cdc.net] (PGP Public key Avaible, put "send key" in the subject.)

Script Desc. : An Anti Idle script for 1.1.x (Probably work with 1.0 though)

Please edit the following variables: (Channel to which a msg is to be sent, How often

that message should be sent, and what to send; in that order)

set antiidlechan #lamechan

set antiidletime 5

set antiidlemsg "antiidle10-mbti.tcl - Made By The |mmortaL"

Do not change any thing under this point!

Do not change any thing under this point!

Do not change any thing under this point!

This makes all the data in $antiidlechan lower case

set antiidlechan [string tolower $antiidlechan]

This makes sure that your on the channel which you specified. String match is case

sensitive that is why I made everything lower case

putlog is a command that puts some thing in the main logs of the bot, and when the

bot rehashs, or loads up you see that message.

return 1 stops the script from loading, in the event that it isn't on that channel.

if {![string match *$antiidlechan* [string tolower [channels]]]} {

 putlog "ERROR ERROR I am not on $antiidlechan!!!!"

 return 1

}

VERY VERY VERY VERY VERY VERY VERY IMPORTANT!!

If your script is gonna cause major problems if a person .rehashs, like if you set a

timer use some thing to this equivelent:

Make a variable, like antiidleloaded, by default that variable doesn't exist. Put an if

statement of info exists (checks to see if a variable is there). And if it isn't set to 1, set

it to 1, and load the timer, if the variable is there, and set to 1, then do nothing.

if {![info exists antiidleloaded]} {

 timer $antiidletime proc:antiidle

 set antiidleloaded 1

}

proc proc:antiidle {} {

 global antiidlechan antiidletime antiidlemsg

 puthelp "PRIVMSG $antiidlechan :$antiidlemsg"

 timer $antiidletime proc:antiidle

}

This is fairly simple, put a global statement for each of the global variables, because

you need to access them. Send the msg to the channel, and then re-set the timer.

###

###

set newflag1 i

set newchanflag1 i

set newflag2 v

set newchanflag2 v

bind join i * join:mbti_autoop

bind join v * join:mbti_autovoice

bind join - * join:mbti_cautoop

bind join - * join:mbti_cautovoice

proc join:mbti_autoop {nick host hand chan} {

 pushmode $chan +o $nick

}

proc join:mbti_autovoice {nick host hand chan} {

 pushmode $chan +v $nick

}

proc join:mbti_cautoop {nick host hand chan} {

 if {[matchchanattr $hand I $chan]} {pushmode $nick +o $chan}

}

proc join:mbti_cautovoice {nick host hand chan} {

 if {[matchchanattr $hand v $chan]} {pushmode $nick +o $chan}

This is a fairly easy script, the only new thing is the newflags. Eggdrop lets you add as

many new flags as there aren't used.

Set newflag[num] z

where [num] is a number that doesn't exists...

set newchanflag[num]

Ditto :P

###

###

bind mode - *+o $botnick* mode:automode

proc mode:automode {nick host hand chan modechg} {

 foreach nick [chanlist $chan]

 set hnick [nick2hand $nick]

 if {![isop $nick $chan]} {if {([matchattr $hnick o]) || ([matchchanattr $hnick o

$chan])} {pushmode $chan +o $nick}}

 if {([isop $nick $chan]) && ([matchchanattr $hnick d $chan])} {pushmode $chan -o

$nick}

 }

}

foreach nick [chanlist $chan] basicly says do this for every one in the chan.

One check to see if he has ops, if he dosn't and he has OP access then ophim!!

Then

If he has ops, and he's supposed to be deoped them deop him!

###

X - The Credits

Author: The |mmortaL [asn@cdc.net] - 'send key' in topic for PGP public key

People who helped (Major Thanxs):

Ec|ipse - tomas@primenet.com

janni - janni@itt.org

Cold Fusion - fusion@pbcs.com

Ernesto Baschny baschneo@trick.informatik.uni-stuttgart.de

And to the rest of the Eggdrop Doc Project team!

