
Switching to Tile

Rolf Ade

April 2005

Abstract

The Tile package is probably the most thrilling and ambitious effort
to revitalize Tk so far. Tile adds new abilities to control and change the
look and feel of Tcl/Tk applications with so-called ’Themes’. Especially,
tile provides native looking widgets at Windows and Mac OSX. Plus the
package provides some additional widgets. This paper gives an overview
over tile at version 0.6.2 and tries to guide Tcl/Tk developers thru the
first steps of using it1.

1 Overview

The tile package had an astonish career. Less then two years ago, Joe English
made the first sources public avaliable. Today, although the version number
suggest, that tile is still in its early days, a few Tcl Core Team Members are
semi-official committed to push the inclusion of tile as a bundled package of the
upcoming 8.5 Tcl/Tk release2. If that should in fact happen, that wouldn’t be
a radical change. The tile package is in some sense orthogonal to the current
Tk core - just don’t use it, and you get the familiar Tk.

At the first look, tile is in short about ’eye candy’. The debate about the
look and feel of Tk has a long history. In the early days of Windows and Mac
support (version 7.5), Tk looked the same on every supported platform. Later
on (starting with 8.0), Tk used some platform specific controls under Windows
and Mac. But the world moved on. Windows XP, Mac OSX and under Linux
KDE and Gnome brought theming support on the desktop - and that renewed
the look and feel problem for Tcl/Tk application programmers. For example,
while it is possible with some effort, to write a Tcl/Tk application, which looks
nearly native on Windows 2000, this isn’t really possible on Windows XP - the
Tcl/Tk application will look ’foreign’ on this platform.

Tile aims to solve this problem by theme-able reimplementations of the core
1The author has followed the development of and discussion about tile from early states on

but he isn’t involved so far into its development. This is a report from an outside viewpoint
and like an article about using a new technology. At the Eleventh Annual Tcl/Tk Conference
2004, Joe English presented a paper more from a tile developers view point[4].

2Though there is up to now no TIP, which proposes that really officially.

1



widgets3. The basic idea of this reimplementation is, to separate the code re-
sponsible for the appearance of a widget from the other parts of the implemen-
tation. Selecting a theme means then just switching from one widget drawing
code to another behind the scene.

But from where does this code come? Well, sure, it has to be written. Much
better: that code is already written and is part of tile. For the first steps, Joe
Tcl/Tk Programmer need not to care about creating complete new themes. For
the ambitious, this is of course possible. New themes can be implemented as
add-on packages written in Tcl or in C, depending on the level of customization
required. But on windows, there is already a theme xpnative, which uses
the Windows ”Visual Styles” API to make tile widgets indistinguishable from
native controls. And on Mac OSX is the aqua theme avaliable, which uses
the Carbon Appearance Manager. The default theme has a new, streamlined
look, compared with Tks current Motif-like appearance on X11 (which is also
avaliable as theme classic). And there are more themes included4.

Beside all that ’eye candy’ it should not be forgotten, that tile provides a handful
additional (of course theme-aware) widgets. One additional gift, that tile may
bring is a new kind of meta-widget framework, but that word isn’t spoken yet.

2 Getting started

The tile sources are hosted under the umbrella of the TkTable project on
SourceForge[5]. Given, that a recent Tcl/Tk version is installed (the current
Tcl/Tk 8.4.9 will do well) building under linux and probably any other sane unix
implementation is just a matter of configure; make all; make install. For
compiling on Windows, a VC++ makefile is included. The tile download page
at SourceForge provides a multi-platform starkit. Additionally, tile binaries are
provided by (among others) ActiveStates ActiveTcl distribution[1] and Daniel
Steffens TclTk Aqua Batteries-Included distribution[8]. Since version 0.6 every
released version has an even last number. Version numbers with an odd patch
number indicate CVS snapshots. So, the next release will have at least the
version 0.6.4.

Tile is a well-behaving Tcl package. To use it, just put

package require tile

near the top of your main script. The scripted library code of the package selects
at package loading time depending on the platform the ’right’ theme (that is
xpnative on Windows XP, winnativ on other versions of Windows, aqua on
Mac OSX and the default theme on X115). There is always exactly one theme

3To do this, tile uses the Tk theme engine. Without much notice outside the tcl-core
mailing list Frédéric Bonnet laid the ground of Tk theming support with TIP 48[3]. Tile
is the first known package, which uses this theme engine. The tile developers revised and
enhanced the theme engine on the way.

4In fact, early adaptors have already written 3-party themes. Most of them are scripted
themes, but Georgios Petasis has provided the start of a new C level theme, which instruments
the Qt styling engine, to draw the widgets[7]

5If not otherwise set in the X resource database.

2



in effect at any one time. The proc tile::availableThemes returns a list of
all avaliable themes. The name of the current theme is stored in the variable
tile::currentTheme. To switch the current theme, use the helper proc6

tile::setTheme <theme name>

When you switch themes, the tile widgets are redrawn automatically with their
new look - unlike Tk, where changes to the option database with option add let
existing widgets alone and change only the appearance of newly created widgets.

The tile reimplementation of the Tk core widgets are implemented in the ttk
namespace and have the same name as their Tk counterparts. It’s a nice experi-
ment to locally override the Tk core widgets in your application’s namespace(s)
with their tile reimplementations with

namespace import ttk::*

Normally, your application should at least start in a new look and even mostly
work as normal. But in most cases it will also be obvious, that this was not
completely all work to do to switch to tile. Before we discuss the most common
problems with the migration to tile, we take a closer look at how tile works.

3 How styling works

Programming GUIs with Tk is like writing a text in a word processor as OpenOf-
fice or Microsoft Word. As the writer may change the font, foreground, back-
ground etc. of every text item, so has the Tk programmer with the help of
tons of options the control over the appearance of the Tk widgets. Tile is more
like a markup language as LATEX. Lots of appearance details like border, font,
foreground, background etc. are handled by the chosen theme. Even more: the
tile widgets doesn’t allow to change a lot of this appearance aspects with widget
options any more. Though, for compatibility reasons (to make migration eas-
ier), the tile widgets ’know’ all the options of their corresponding Tk widgets,
but they ignore some of them. Figure 1 shows this in in detail for the Tk and
tile button widgets.

As familiar from the Tk widgets, the default behavior of the tile widgets is
controlled by the widget class bindings. The tile reimplementations of the Tk
core widgets have the same class name as their counterparts, prefixed with a
’T’ (so, the tile button class is TButton, the tile entry class is TEntry and so
on). The class bindings are independent from the theme – switching themes
doesn’t affect class bindings. In Tk, only the ’container widgets’ toplevel, frame
and labelframe have a -class option, to set the widget’s class at creation time.
In tile, every widget has a -class option. That makes it easier, to create

6It is not recommended to use style theme use <theme name>, because tile::setTheme

loads the theme, if necessary and keeps the variable tile::currentTheme up to date. The
latter is necessary, because the natural [style theme use] unfortunately doesn’t return the
current theme so far.

3



Options common to Tk 8.4.9 button and tile ttk::button

-command -compound -cursor
-default -image -takefocus
-text -textvariable -underline
-width

Tile ttk:button options present for compatibility, but ignored

-activebackground -activeforeground -anchor
-background (and -bg) -bitmap -borderwidth (and -bd)
-disabledforeground -font -foreground (and -fg)
-height -highlightbackground -highlightcolor
-highlightthickness -justify -overrelief
-padx -pady -relief
-repeatdelay -repeatinterval -state
-wraplength

New tile ttk::button options

-class -padding -style

Figure 1: Tk 8.4 button options versus Tile button options

different behaving controls based on the same widget. The tile distribution has
the custom widget class Repeater (to be used for tile buttons) as an example.

The -style option of the tile widgets may be used to specify a custom widget
style.

3.1 Widget Elements

With Tk, the widgets are the ’atoms’ of the GUI. The tile widgets are not
monolithic blocks, but itself build from smaller, simpler parts, the ’quarks’ of a
widget or, as they are officially called, the widget elements. For example, the
Windows-style button has a border, a focus ring and a label, each of which are
distinct elements.

Widget elements have options very much like widgets. For example, the default
border element has -borderwidth and -relief options (in fact, most of the
options, which have disappeared from the widgets will be found as element
options).

Widget elements are usually implemented in C. The tile core provides a default
set of elements. Every theme inherits this core elements, but it may overwrite
the drawing code of a part or all elements with its own implementations (to get
a different visual representation), with more or less or other element options.
A theme may even add new elements. Elements can also be defined from Tk
images to create pixmap themes.

While

style element names

4



returns the list of elements defined in the current theme, there isn’t as of version
0.6.2 any other way than source code diving to know the valid options of that
elements7. To give an overview, Appendix A has a table of all core elements
with their valid options.

3.2 Widget layouts

Since tile widgets are composed of a collection of elements, that elements has
to be layed out somehow to build the widget — this is done by style layouts8.
Every theme may build a tile widget out of more or less elements and/or may
arrange the elements in a different way. For example, the classic theme layout
of the scrollbar widget places an arrow button on each side of the scrollbar,
while this sample code by Joe English places one arrow button on the left and
two arrow buttons on the right side:

style layout Horizontal.TScrollbar {
Scrollbar.trough -children {

Scrollbar.leftarrow -side left
Scrollbar.rightarrow -side right
Scrollbar.leftarrow -side right
Horizontal.Scrollbar.thumb -side left -sticky ew

}
}

The arrangement of elements work like a simplified version of Tk’s pack ge-
ometry manager. It’s even possible, to adjust the layout of a tile widget after
creation.

3.3 Styles and States

Under the umbrella of a style are all the settings collected, which affects the
appearance of one group of widgets, (normally) all of the same class. Styles
are named, in a hierarchical way. For example, the programmer could use
the style name Toolbar.TCheckbutton to collect all special settings needed
for checkbuttons used in a toolbar. All settings, not explicitely set by the
Toolbar.TCheckbutton style are looked up in the TCheckbutton style. If there
are still not explicitely set options, then the settings for the ’root’ style . will
be used, and that style has always a default value for every option, per imple-
mentation.

For example, to set the default relief for the example customized style Toolbar.TCheckbutton
simply use

style default Toolbar.TCheckbutton -relief flat

7The next tile release will allow to query the name of the options of a given element with
style element options <element name>.

8The layout system is one of the enhancements of the TIP 48 style engine made by the tile
developers.

5



But the value of a style option isn’t just a static value. The value of a style
option for a certain widget depends on the state of that widget. Every tile
widget has a map of several flags, currently:

• active

• disabled

• focus

• pressed

• selected

• background

• alternate

• invalid

• readonly

Every state flag is independent from each other. Every tile widget has the widget
commands state and instate to modify and query any combination of that
flags. Now, so called ’state maps’ could set specific values for every option of a
style for any possible combination of states. While this is a powerful concept,
the simple cases are easy to understand:

style map Toolbar.TCheckbutton -relief {
disabled flat
selected sunken
pressed sunken
active raised

}

If a widget state is changed, then the state map of its style is searched for the
first combination of states, that matches. If there is a match, that value is used
for the option. If there isn’t a match, the default value will be used. Widget
state changes usually happen in widget class bindings like:

bind TCheckbutton <Enter> { %w state active }

3.4 Themes

A theme is a named umbrella for widget elements, layouts and styles. The
layouts arranges the elements to widgets and styles control the visual appearance
of that widgets. At scripting level, a 3-party tile theme is an ordinary Tcl
package, with the package name ::tile::theme::<theme name>.

6



4 Migration Problems

It’s the details, that matters. While it is often quite easy to start to migrate
an application to tile (as shown above), there are also typically some issues to
solve. One really obvious problem is, that tile widgets and Tk widgets often
doesn’t look good side by side in one dialog.

Currently, tile provides reimplementations of the following Tk widgets:

• button

• checkbutton

• entry

• frame

• label

• labelframe

• menubutton

• radiobutton

• scrollbar

Also already in the code (and at least basically working) is the start of a themed
scale widget, but that isn’t currently documented. Not as a replacement (which
mimics the interface) of the Tk panedwindow, but as a similar widget there is
the ttk:paned widget.

That means, a few Tk widgets currently haven’t a theme-able tile counterpart.
There isn’t much problem with the canvas widget — it simply doesn’t need
themability. Mostly the same is valid for the text widget9. But even if we rule
this out that means, that theme-able counterparts of the menu and the spinbox
(and eventually listbox) widgets are currently missing pieces. If you have, for
example, a spinbox in your otherwise tile-ified dialog, which looks foreign like a
blain, there isn’t currently much you can do other than adjusting the spinbox
options as possible or even rewriting the dialog without the spinbox.

Unfortunately, it is as yet not easily possible, to query the styles of the current
or other themes, to get, for example, the default font for entry widgets. This
makes is harder, to adjust the option settings of Tk core widgets as close to the
current theme as it may be possible.

Probably even more important also most scripted meta-widgets (like, for exam-
ple, the popular BWidget package) and additional C coded widgets (like the
BLT toolkit[6]) will look foreign side by side with tile widgets. For the most
common non Tk core widgets like combobox and notebook widgets, tile provides
its own theme-able versions. But even if they fit feature-wise, using them means
rewriting parts of the GUI code.

9Though it may asked, why for example the font of entry widgets is controlled by the
theme, but the font of a nearby text widget is not.

7



Tile has merged the -padx and -pady options into a single ”-padding” option,
which may be a list of up to four values specifying padding on the left, top,
right, and bottom.

Another minor interface difference, which may require a bit code editing, is
that the tile label widget has -background and -foreground switches (which
overwrite the theme defaults), but the Tk shortcuts -bg and -fg are only present
as unused backward compatibility switches.

For all tile widgets with a -compound option the the -width option always
specifies the width in characters to allocate for the text string. In Tk, it’s
either the width in characters, or in screen units, depending on the value of
’-compound’, for the widget.

Even the widget commands of the tile widgets are only mostly compatible with
the corresponding Tk widgets. A few widget commands are not implemented
yet. Figure 2 has the complete list. Really important are probably only the
missing checkbutton and radiobutton widget commands. The obvious work-
around is, to use the -variable option and then to change the associated vari-
able value.

Widget Missing widget commands

button flash

checkbutton deselect
flash
select
toggle

radiobutton deselect
flash
select

scrollbar activate

Figure 2: Tk widget subcommands not yet implemented by tile

We’ve already discussed a few times, that the tile widget’s appearance isn’t
specified on a per-widget base with options but is controlled by the settings
of the current theme. That means, if you had, for example, an important red
button somewhere in your application with the help of the -background option,
this button looks like any other button in your application, if you use the tile
button widget. This isn’t a bad thing. It’s a good basic rule for standard
applications, to use standard controls and a standard appearance - and red
buttons are not really common. Tile enforces this principle by design10. But
what, if this is all good and well for you, but you need for whatever reason just
that red button? A solution is, to sub-class the style of your widget:

style default Red.TButton -background red
::ttk::button .redbutton -text "The Red Button" -style Red.TButton

10Although, tile allows you also to give your application a special visual ’branding’, which
emphasis how outstanding your work is, by creating your own theme.

8



Depending on the style you sub-class you may also need to adjust the style map
of your new style.

5 Additional widgets

Beside the styled counterparts of some of the core widgets, the tile package
provides a few additional widgets. None of them is really novel. In fact, most of
them are desired by Tcl/Tk developers since years and therefor there are (often
several) alternative Tcl scripted meta-widget or even C coded implementations
avaliable.

For the early adaptors, which are already switching an existing code base to tile
or writing a new application with it, especially the tile combobox, notebook and
progressbar widgets are very helpful, because the current avaliable scripted
counterparts doesn’t fit well into an otherwise tile-ified GUI. With the classic
or default theme, the additional widgets are well usable within an otherwise
’pure classic’ Tk application.

The tile combobox is, well, an entry field with an associated pop-down single-
selection listbox. It seems to be thought-out comparatively mature. The tile
demo directory even has a simple version of an inline auto-completion code. The
tile notebook widget is a simple, single-tier notebook widget, similar to BWidget
notebook. The progressbar widget supports two modes. The determinate mode
shows the amount completed relative to the total amount of work to be done,
and the indeterminate mode provides an animated display to let the user know
that something is happening.

Figure 3: A screen-shot of the treeview demo script demobrowser.tcl

The tile separator widget is a simple Widget, very much like the BWidget

9



separator (and probably any other separator) widget. By default, it has no be-
havior in response to the user and just displays a horizontal or vertical separator
bar. It is typically used for visual grouping of toolbars, but the tile demo has
also an example for using it to visually structuring a dialog. The tile treeview
widget (see Figure 3) is at the moment a much simple widget, than the also
C coded TkTreeCtrl widget[2] or, for the tree part, the scripted BWidget tree
widget. It can be used like a pure tree widget (without headings and columns).
If it fits feature wise, its simple interface is an advantage. On a recent computer,
this widget is able to handle up to a few hundred thousand tree nodes in fairly
low time and with moderate memory needs. That means, it is able to handle a
lot bigger trees than BWidget tree. The treeview widget currently support only
-yscrollcommand, there is no -xscrollcommand. Multi-line entries in a treeview
column cell doesn’t really work as yet.

A Tile Core Elements

Tile Core Element Options

Checkbutton.indicator -background
-borderwidth
-indicatorcolor
-indicatordiameter
-indicatormargin
-indicatorrelief

Labelframe.text -background
-embossed
-font
-foreground
-justify
-text
-underline
-width
-wraplength

Menubutton.indicator -background
-borderwidth
-indicatorheight
-indicatormargin
-indicatorrelief
-indicatorwidth

Progress.bar -background
-borderwidth
-orient
-sliderlength
-sliderrelief
-width

Radiobutton.indicator -background

10



-borderwidth
-indicatorcolor
-indicatordiameter
-indicatormargin
-indicatorrelief

Treeheading.cell -background
-rownumber

Treeitem.indicator -diameter
-foreground
-indicatormargins

Treeitem.row -background
-rownumber

arrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

background -background

border -background
-borderwidth
-relief

client -background
-borderwidth

downarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

field -borderwidth
-fieldbackground

focus -focuscolor
-focusthickness

hsash -sashthickness

hseparator -background
-orient

image -background
-image
-stipple

label -anchor
-background
-background
-compound
-embossed
-font

11



-foreground
-image
-justify
-space
-stipple
-text
-underline
-width
-wraplength

leftarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

padding -padding
-relief
-shiftrelief

pbar -background
-barsize
-borderwidth
-orient
-pbarrelief
-thickness

rightarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

separator -background
-orient

slider -background
-borderwidth
-orient
-sliderlength
-sliderrelief
-width

tab -background
-borderwidth

text -background
-embossed
-font
-foreground
-justify
-text
-underline
-width

12



-wraplength

textarea -font
-width

thumb -background
-borderwidth
-orient
-relief
-width

trough -borderwidth
-troughcolor
-troughrelief

uparrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

vsash -sashthickness

vseparator -background
-orient

References

[1] ActiveState. Activetcl.
http://www.activestate.com/Products/ActiveTcl.

[2] Tim Baker. Tktreectrl.
http://sourceforge.net/projects/tktreectrl.

[3] Frédéric Bonnet. Tip 48: Tk widget styling support.
http://www.tcl.tk/cgi-bin/tct/tip/48.

[4] Joe English. The tile widget set.
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf, 2004.
The so far only published paper about tile from one of the main tile makers.

[5] Joe English Pat Thoyts et al. The tile package.
http://tktable.sourceforge.net/tile/.

[6] George A. Howlett. Blt toolkit.
http://blt.sourceforge.net.

[7] Georgios Petasis. The tile-qt theme.
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/
tile-qt/.

[8] Daniel Steffen. Tcltk aqua batteries-included.
http://tcltkaqua.sourceforge.net.

13

http://www.activestate.com/Products/ActiveTcl
http://sourceforge.net/projects/tktreectrl
http://www.tcl.tk/cgi-bin/tct/tip/48
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf
http://tktable.sourceforge.net/tile/
http://blt.sourceforge.net
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/tile-qt/
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/tile-qt/
http://tcltkaqua.sourceforge.net

	Overview
	Getting started
	How styling works
	Widget Elements
	Widget layouts
	Styles and States
	Themes

	Migration Problems
	Additional widgets
	Tile Core Elements

