
243

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 18

TclHttpd Web Server 18

This chapter describes TclHttpd, a Web server built entirely in Tcl. The Web
server can be used as a standalone server, or it can be embedded into
applications to Web-enable them. TclHttpd provides a Tcl+HTML
template facility that is useful for maintaining site-wide look and feel, and
an application-direct URL that invokes a Tcl procedure in an application.

This chapter is from Practical Programming in Tcl and Tk, 3rd Ed.
© 1999, Brent Welch
http://www.beedub.com/book/

TclHttpd started out as about 175 lines of
Tcl that could serve up HTML pages and images. The Tcl socket and I/O com-
mands make this easy. Of course, there are lots of features in Web servers like
Apache or Netscape that were not present in the first prototype. Steve Uhler
took my prototype, refined the HTTP handling, and aimed to keep the basic
server under 250 lines. I went the other direction, setting up a modular architec-
ture, adding in features found in other Web servers, and adding some interesting
ways to connect TclHttpd to Tcl applications.

Today TclHttpd is used both as a general-purpose Web server, and as a
framework for building server applications. It implements www.scriptics.com,
including the Tcl Resource Center and Scriptics’ electronic commerce facilities. It
is also built into several commercial applications such as license servers and
mail spam filters. Instructions for setting up the TclHttpd on your platform are
given toward the end of the chapter, on page 266. It works on Unix, Windows,
and Macintosh. Using TclHttpd, you can have your own Web server up and run-
ning quickly.

This chapter provides an overview of the server and several examples of
how you can use it. The chapter is not an exhaustive reference to every feature.
Instead, it concentrates on a very useful subset of server features that I use the
most. There are references to Tcl files in the server’s implementation, which are
all found in the lib directory of the distribution. You may find it helpful to read
the code to learn more about the implementation. You can find the source on the
CD-ROM.

244 TclHttpd Web Server Chap. 18

Integrating TclHttpd with your Application

The bulk of this chapter describes the various ways you can extend the server
and integrate it into your application. TclHttpd is interesting because, as a Tcl
script, it is easy to add to your application. Suddenly your application has an
interface that is accessible to Web browsers in your company’s intranet or the
global Internet. The Web server provides several ways you can connect it to your
application:

• Static pages — As a "normal" Web server, you can serve static documents
that describe your application.

• Domain handlers — You can arrange for all URL requests in a section of
your Web site to be handled by your application. This is a very general
interface where you interpret what the URL means and what sort of pages
to return to each request. For example, http://www.scriptics.com/
resource is implemented this way. The URL past /resource selects an
index in a simple database, and the server returns a page describing the
pages under that index.

• Application-Direct URLs — This is a domain handler that maps URLs onto
Tcl procedures. The form query data that is part of the HTTP GET or POST
request is automatically mapped onto the parameters of the application-
direct procedure. The procedure simply computes the page as its return
value. This is an elegant and efficient alternative to the CGI interface. For
example, in TclHttpd the URLs under /status report various statistics
about the Web server’s operation.

• Document handlers — You can define a Tcl procedure that handles all files
of a particular type. For example, the server has a handler for CGI scripts,
HTML files, image maps, and HTML+Tcl template files.

• HTML+Tcl Templates — These are Web pages that mix Tcl and HTML
markup. The server replaces the Tcl using the subst command and returns
the result. The server can cache the result in a regular HTML file to avoid
the overhead of template processing on future requests. Templates are a
great way to maintain common look and feel to a family of Web pages, as
well as to implement more advanced dynamic HTML features like self-
checking forms.

TclHttpd Architecture

Figure 18–1 shows the basic components of the server. At the core is the
Httpd module (httpd.tcl), which implements the server side of the HTTP proto-
col. The "d" in Httpd stands for daemon, which is the name given to system serv-
ers on UNIX. This module manages network requests, dispatches them to the Url
module, and provides routines used to return the results to requests.

The Url module (url.tcl) divides the Web site into domains, which are
subtrees of the URL hierarchy provided by the server. The idea is that different
domains may have completely different implementations. For example, the Docu-

Domain Handlers 245
II. A

d
va

nc
e

d
 Tc

l

ment domain (doc.tcl) maps its URLs into files and directories on your hard
disk, while the Application-Direct domain (direct.tcl) maps URLs into Tcl pro-
cedure calls within your application. The CGI domain (cgi.tcl) maps URLs onto
other programs that compute Web pages.

Domain Handlers

You can implement new kinds of domains that provide your own interpretation of
a URL. This is the most flexible interface available to extend the Web server. You
provide a callback that is invoked to handle every request in a domain, or sub-
tree, of the URL hierarchy. The callback interprets the URL, computes the page
content, and returns the data using routines from the Httpd module.

Example 18–1 defines a simple domain that always returns the same page
to every request. The domain is registered with the Url_PrefixInstall com-
mand. The arguments to Url_PrefixInstall are the URL prefix and a callback
that is called to handle all URLs that match that prefix. In the example, all
URLs that have the prefix /simple are dispatched to the SimpleDomain proce-
dure.

Httpd

Url

Application
CGI

File

Your Application

Other
ApplicationsSystem

Direct

Fig. 18–1 The dotted box represents one application that embeds TclHttpd. Document tem-
plates and Application Direct URLs provide direct connections from an HTTP request to your
application.

TclHttpd

Templates

Documents

246 TclHttpd Web Server Chap. 18

Example 18–1 A simple URL domain.

Url_PrefixInstall /simple [list SimpleDomain /simple]

proc SimpleDomain {prefix sock suffix} {
upvar #0 Httpd$sock data

Generate page header

set html "<title>A simple page</title>\n"
append html "<h1>$prefix$suffix</h1>\n"
append html "<h1>Date and Time</h1>\n"
append html [clock format [clock seconds]]
Display query data

if {[info exist data(query)]} {
append html "<h1>Query Data</h1>\n"
append html "<table>\n"
foreach {name value} [Url_DecodeQuery $data(query)] {

append html "<tr><td>$name</td>\n"
append html "<td>$value</td></tr>\n"

}
append html "</table>\n"

}
Httpd_ReturnData $sock text/html $html

}

The SimpleDomain handler illustrates several properties of domain han-
dlers. The sock and suffix arguments to SimpleDomain are appended by
Url_Dispatch when it invokes the domain handler. The suffix parameter is the
part of the URL after the prefix. The prefix is passed in as part of the callback
definition so the domain handler can recreate the complete URL. For example, if
the server receives a request for the URL /simple/page, then the prefix is /sim-
ple, the suffix is /request.

Connection State and Query Data

The sock parameter is a handle on the socket connection to the remote cli-
ent. This variable is also used to name a state variable that the Httpd module
maintains about the connection. The name of the state array is Httpd$sock, and
SimpleDomain uses upvar to get a more convenient name for this array (i.e.,
data):

upvar #0 Httpd$sock data

An important element of the state array is the query data, data(query).
This is the information that comes from HTML forms. The query data arrives in
an encoded format, and the Url_DecodeQuery procedure is used to decode the
data into a list of names and values. Url_DecodeQuery is similar to Cgi_List
from Example 11–5 on page 154 and is a standard function provided by url.tcl.

Application Direct URLs 247
II. A

d
va

nc
e

d
 Tc

l

Returning Results

Finally, once the page has been computed, the Httpd_ReturnData procedure
is used to return the page to the client. This takes care of the HTTP protocol as
well as returning the data. There are three related procedures,
Httpd_ReturnFile, Httpd_Error, and Httpd_Redirect. These are summarized in
Table 18–1 on page 259.

Application Direct URLs

The Application Direct domain implementation provides the simplest way to
extend the Web server. It hides the details associated with query data, decoding
URL paths, and returning results. All you do is define Tcl procedures that corre-
spond to URLs. Their arguments are automatically matched up to the query data
as shown in Example 13–3 on page 179. The Tcl procedures compute a string
that is the result data, which is usually HTML. That’s all there is to it.

The Direct_Url procedure defines a URL prefix and a corresponding Tcl
command prefix. Any URL that begins with the URL prefix will be handled by a
corresponding Tcl procedure that starts with the Tcl command prefix. This is
shown in Example 18–2:

Example 18–2 Application Direct URLs.

Direct_Url /demo Demo

proc Demo {} {
return "<html><head><title>Demo page</title></head>\n\

<body><h1>Demo page</h1>\n\
What time is it?\n\
<form action=/demo/echo>\n\
Data: <input type=text name=data>\n\

\n\
<input type=submit name=echo value=’Echo Data’>\n\
</form>\n\
</body></html>"

}
proc Demo/time {{format "%H:%M:%S"}} {

return [clock format [clock seconds] -format $format]
}
proc Demo/echo {args} {

Compute a page that echoes the query data

set html "<head><title>Echo</title></head>\n"
append html "<body><table>\n"
foreach {name value} $args {

append html "<tr><td>$name</td><td>$value</td></tr>\n"
}
append html "</tr></table>\n"
return $html

}

248 TclHttpd Web Server Chap. 18

Example 18–2 defines /demo as an Application Direct URL domain that is
implemented by procedures that begin with Demo. There are just three URLs
defined:

/demo
/demo/time
/demo/echo

The /demo page displays a hypertext link to the /demo/time page and a sim-
ple form that will be handled by the /demo/echo page. This page is static, and so
there is just one return command in the procedure body. Each line of the string
ends with:

\n\

This is just a formatting trick to let me indent each line in the procedure,
but not have the line indented in the resulting string. Actually, the \-newline
will be replaced by one space, so each line will be indented one space. You can
leave those off and the page will display the same in the browser, but when you
view the page source you’ll see the indenting. Or you could not indent the lines in
the string, but then your code looks somewhat odd.

The /demo/time procedure just returns the result of clock format. It
doesn’t even bother adding <html>, <head>, or <body> tags, which you can get
away with in today’s browsers. A simple result like this is also useful if you are
using programs to fetch information via HTTP requests.

Using Query Data

The /demo/time procedure is defined with an optional format argument. If
a format value is present in the query data, then it overrides the default value
given in the procedure definition.

The /demo/echo procedure creates a table that shows its query data. Its
args parameter gets filled in with a name-value list of all query data. You can
have named parameters, named parameters with default values, and the args
parameter in your application-direct URL procedures. The server automatically
matches up incoming form values with the procedure declaration. For example,
suppose you have an application direct procedure declared like this:

proc Demo/param { a b {c cdef} args} { body }

You could create an HTML form that had elements named a, b, and c, and
specified /demo/param for the ACTION parameter of the FORM tag. Or you could
type the following into your browser to embed the query data right into the URL:

/demo/param?a=5&b=7&c=red&d=%7ewelch&e=two+words

In this case, when your procedure is called, a is 5, b is 7, c is red, and the
args parameter becomes a list of:

d ~welch e {two words}

The %7e and the + are special codes for nonalphanumeric characters in the
query data. Normally, this encoding is taken care of automatically by the Web
browser when it gets data from a form and passes it to the Web server. However,

Document Types 249
II. A

d
va

nc
e

d
 Tc

l

if you type query data directly or format URLs with complex query data in them,
then you need to think about the encoding. Use the Url_Encode procedure to
encode URLs that you put into Web pages.

If parameters are missing from the query data, they either get the default
values from the procedure definition or the empty string. Consider this example:

/demo/param?b=5

In this case a is "", b is 5, c is cdef, and args is an empty list.

Returning Other Content Types

The default content type for application direct URLs is text/html. You can
specify other content types by using a global variable with the same name as
your procedure. (Yes, this is a crude way to craft an interface.) Example 18–3
shows part of the faces.tcl file that implements an interface to a database of
picons — personal icons — that is organized by user and domain names. The
idea is that the database contains images corresponding to your e-mail corre-
spondents. The Faces_ByEmail procedure, which is not shown, looks up an
appropriate image file. The application direct procedure is Faces/byemail, and it
sets the global variable Faces/byemail to the correct value based on the file-
name extension. This value is used for the Content-Type header in the result
part of the HTTP protocol.

Example 18–3 Alternate types for Application Direct URLs.

Direct_Url /faces Faces
proc Faces/byemail {email} {

global Faces/byemail
set filename [Faces_ByEmail $email]
set Faces/byemail [Mtype $filename]
set in [open $filename]
fconfigure $in -translation binary
set X [read $in]
close $in
return $X

}

Document Types

The Document domain (doc.tcl) maps URLs onto files and directories. It pro-
vides more ways to extend the server by registering different document type han-
dlers. This occurs in a two-step process. First, the type of a file is determined by
its suffix. The mime.types file contains a map from suffixes to MIME types such as
text/html or image/gif. This map is controlled by the Mtype module in
mtype.tcl. Second, the server checks for a Tcl procedure with the appropriate
name:

Doc_mimetype

250 TclHttpd Web Server Chap. 18

The matching procedure, if any, is called to handle the URL request. The
procedure should use routines in the Httpd module to return data for the
request. If there is no matching Doc_mimetype procedure, then the default docu-
ment handler uses Httpd_ReturnFile and specifies the Content Type based on
the file extension:

Httpd_ReturnFile $sock [Mtype $path] $path

You can make up new types to support your application. Example 18–4
shows the pieces needed to create a handler for a fictitious document type appli-
cation/myjunk that is invoked to handle files with the .junk suffix. You need to
edit the mime.types file and add a document handler procedure to the server:

Example 18–4 A sample document type handler.

Add this line to mime.types
application/myjunk .junk

Define the document handler procedure
path is the name of the file on disk
suffix is part of the URL after the domain prefix
sock is the handle on the client connection

proc Doc_application/myjunk {path suffix sock} {
upvar #0 Httpd$sock data
data(url) is more useful than the suffix parameter.

Use the contents of file $path to compute a page
set contents [somefunc $path]

Determine your content type
set type text/html

Return the page
Httpd_ReturnData $sock $type $data

}

As another example, the HTML+Tcl templates use the .tml suffix that is
mapped to the application/x-tcl-template type. The TclHttpd distribution
also includes support for files with a .snmp extension that implements a tem-
plate-based Web interface to the Scotty SNMP Tcl extension.

HTML + Tcl Templates

The template system uses HTML pages that embed Tcl commands and Tcl vari-
able references. The server replaces these using the subst command and returns
the results. The server comes with a general template system, but using subst is
so easy you could create your own template system. The general template frame-
work has these components:

HTML + Tcl Templates 251
II. A

d
va

nc
e

d
 Tc

l

• Each .html file has a corresponding .tml template file. This feature is
enabled with the Doc_CheckTemplates command in the server’s configura-
tion file. Normally, the server returns the .html file unless the correspond-
ing .tml file has been modified more recently. In this case, the server
processes the template, caches the result in the .html file, and returns the
result.

• A dynamic template (e.g., a form handler) must be processed each time it is
requested. If you put the Doc_Dynamic command into your page, it turns off
the caching of the result in the .html page. The server responds to a request
for a .html page by processing the .tml page. Or you can just reference the
.tml file directly. If you do this, the server always processes the template.

• The server creates a page global Tcl variable that has context about the
page being processed. Table 18–7 lists the elements of the page array.

• The server initializes the env global Tcl variable with similar information,
but in the standard way for CGI scripts. Table 18–8 lists the elements of the
env array that are set by Cgi_SetEnv in cgi.tcl.

• The server supports per-directory ".tml" files that contain Tcl source code.
These files are designed to contain procedure definitions and variable set-
tings that are shared among pages. The name of the file is simply ".tml",
with nothing before the period. This is a standard way to hide files in
UNIX, but it can be confusing to talk about the per-directory ".tml" files
and the file.tml templates that correspond to file.html pages. The
server will source the ".tml" files in all directories leading down to the
directory containing the template file. The server compares the modify time
of these files against the template file and will process the template if these
".tml" files are newer than the cached .html file. So, by modifying the
".tml" file in the root of your URL hierarchy, you invalidate all the cached
.html files.

• The server supports a script library for the procedures called from tem-
plates. The Doc_TemplateLibrary procedure registers this directory. The
server adds the directory to its auto_path, which assumes you have a
tclIndex or pkgIndex.tcl file in the directory so that the procedures are
loaded when needed.

Where to put your Tcl Code

There are three places you can put the code of your application: directly in
your template pages, in the per-directory ".tml" files, or in the library directory.

The advantage of putting procedure definitions in the library is that they
are defined one time but executed many times. This works well with the Tcl byte-
code compiler. The disadvantage is that if you modify procedures in these files,
you have to explicitly source them into the server for these changes to take effect.
The /debug/source URL described on page 264 is handy for this chore.

The advantage of putting code into the per-directory ".tml" files is that
changes are picked up immediately with no effort on your part. The server auto-

252 TclHttpd Web Server Chap. 18

matically checks if these files are modified and sources them each time it pro-
cesses your templates. However, that code is run only one time, so the byte-code
compiler just adds overhead.

I try to put as little code as possible in my file.tml template files. It is
awkward to put lots of code there, and you cannot share procedures and variable
definitions easily with other pages. Instead, my goal is to have just procedure
calls in the template files, and put the procedure definitions elsewhere. I also
avoid putting if and foreach commands directly into the page.

Templates for Site Structure

The next few examples show a simple template system used to maintain a
common look at feel across the pages of a site. Example 18–5 shows a simple one-
level site definition that is kept in the root .tml file. This structure lists the title
and URL of each page in the site:

Example 18–5 A one-level site structure.

set site(pages) {
Home /index.html
"Ordering Computers"/ordering.html
"New Machine Setup" /setup.html
"Adding a New User" /newuser.html
"Network Addresses" /network.html

}

Each page includes two commands, SitePage and SiteFooter, that gener-
ate HTML for the navigational part of the page. Between these commands is reg-
ular HTML for the page content. Example 18–6 shows a sample template file:

Example 18–6 A HTML + Tcl template file.

[SitePage "New Machine Setup"]
This page describes the steps to take when setting up a new
computer in our environment. See
Ordering Computers
for instructions on ordering machines.

Unpack and setup the machine.
Use the Network control panel to set the IP address
and hostname.
<!-- Several steps omitted -->
Reboot for the last time.

[SiteFooter]

The SitePage procedure takes the page title as an argument. It generates
HTML to implement a standard navigational structure. Example 18–7 has a
simple implementation of SitePage:

HTML + Tcl Templates 253
II. A

d
va

nc
e

d
 Tc

l

Example 18–7 SitePage template procedure.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n"
append html "<body bgcolor=white text=black>\n"
append html "<h1>$title</h1>\n"
set sep ""
foreach {label url} $site(pages) {

append html $sep
if {[string compare $label $title] == 0} {

append html "$label"
} else {

append html "$label"
}
set sep " | "

}
return $html

}

The foreach loop that computes the simple menu of links turns out to be
useful in many places. Example 18–8 splits out the loop and uses it in the Site-
Page and SiteFooter procedures. This version of the templates creates a left col-
umn for the navigation and a right column for the page content:

Example 18–8 SiteMenu and SiteFooter template procedures.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n\

<body bgcolor=$site(bg) text=$site(fg)>\n\
<!-- Two Column Layout -->\n\
<table cellpadding=0>\n\
<tr><td>\n\
<!-- Left Column -->\n\
\n\
\n\
[SiteMenu
 $site(pages)]\n\
\n\
</td><td>\n\
<!-- Right Column -->\n\
<h1>$title</h1>\n\
<p>\n"

return $html
}
proc SiteFooter {} {

global site
set html "<p><hr>\n\

[SiteMenu | $site(pages)]\n\
</td></tr></table>\n"

return $html
}
proc SiteMenu {sep list} {

254 TclHttpd Web Server Chap. 18

global page
set s ""
set html ""
foreach {label url} $list {

if {[string compare $page(url) $url] == 0} {
append html slabel

} else {
append html "slabel"

}
set s $sep

}
return $html

}

Of course, a real site will have more elaborate graphics and probably a two-
level, three-level, or more complex tree structure that describes its structure.You
can also define a family of templates so that each page doesn’t have to fit the
same mold. Once you start using templates, it is fairly easy to change both the
template implementation and to move pages around among different sections of
your Web site.

There are many other applications for "macros" that make repetitive HTML
coding chores easy. Take, for example, the link to /ordering.html in Example
18–6. The proper label for this is already defined in $site(pages), so we could
introduce a SiteLink procedure that uses this:

Example 18–9 The SiteLink procedure.

proc SiteLink {label} {
global site
array set map $site(pages)
if {[info exist map($label)]} {

return "$label"
} else {

return $label
}

}

If your pages embed calls to SiteLink, then you can change the URL associ-
ated with the page name by changing the value of site(pages). If this is stored
in the top-level ".tml" file, the templates will automatically track the changes.

Form Handlers

HTML forms and form-handling programs go together. The form is presented to
the user on the client machine. The form handler runs on the server after the
user fills out the form and presses the submit button. The form presents input
widgets like radiobuttons, checkbuttons, selection lists, and text entry fields.
Each of these widgets is assigned a name, and each widget gets a value based on

Form Handlers 255
II. A

d
va

nc
e

d
 Tc

l

the user’s input. The form handler is a program that looks at the names and val-
ues from the form and computes the next page for the user to read.

CGI is a standard way to hook external programs to Web servers for the
purpose of processing form data. CGI has a special encoding for values so that
they can be transported safely. The encoded data is either read from standard
input or taken from the command line. The CGI program decodes the data, pro-
cesses it, and writes a new HTML page on its standard output. Chapter 3
describes writing CGI scripts in Tcl.

TclHttpd provides alternatives to CGI that are more efficient because they
are built right into the server. This eliminates the overhead that comes from run-
ning an external program to compute the page. Another advantage is that the
Web server can maintain state between client requests in Tcl variables. If you
use CGI, you must use some sort of database or file storage to maintain informa-
tion between requests.

Application Direct Handlers

The server comes with several built-in form handlers that you can use with
little effort. The /mail/forminfo URL will package up the query data and mail it
to you. You use form fields to set various mail headers, and the rest of the data is
packaged up into a Tcl-readable mail message. Example 18–10 shows a form
that uses this handler. Other built-in handlers are described starting at page
263.

Example 18–10 Mail form results with /mail/forminfo.

<form action=/mail/forminfo method=post>
<input type=hidden name=sendto value=mailreader@my.com>
<input type=hidden name=subject value="Name and Address">
<table>

<tr><td>Name</td><td><input name=name></td></tr>
<tr><td>Address</td><td><input name=addr1></td></tr>
<tr><td> </td><td><input name=addr2></td></tr>
<tr><td>City</td><td><input name=city></td></tr>
<tr><td>State</td><td><input name=state></td></tr>
<tr><td>Zip/Postal</td><td><input name=zip></td></tr>
<tr><td>Country</td><td><input name=country></td></tr>

</table>
</form>

The mail message sent by /mail/forminfo is shown in Example 18–11.

Example 18–11 Mail message sent by /mail/forminfo.

To: mailreader@my.com
Subject: Name and Address

data {
name {Joe Visitor}

256 TclHttpd Web Server Chap. 18

addr1 {Acme Company}
addr2 {100 Main Street}
city {Mountain View}
state California
zip 12345
country USA

}

It is easy to write a script that strips the headers, defines a data procedure,
and uses eval to process the message body. Whenever you send data via e-mail, if
you format it with Tcl list structure, you can process it quite easily. The basic
structure of such a mail reader procedure is shown in Example 18–12:

Example 18–12 Processing mail sent by /mail/forminfo.

Assume the mail message is on standard input

set X [read stdin]

Strip off the mail headers, when end with a blank line
if {[regsub {.*?\n\ndata} $X {data} X] != 1} {

error "Malformed mail message"
}
proc data {fields} {

foreach {name value} $fields {
Do something

}
}
Process the message. For added security, you may want
do this part in a safe interpreter.
eval $X

Template Form Handlers

The drawback of using application-direct URL form handlers is that you
must modify their Tcl implementation to change the resulting page. Another
approach is to use templates for the result page that embed a command that
handles the form data. The Mail_FormInfo procedure, for example, mails form
data. It takes no arguments. Instead, it looks in the query data for sendto and
subject values, and if they are present, it sends the rest of the data in an e-mail.
It returns an HTML comment that flags that mail was sent.

When you use templates to process form data, you need to turn off result
caching because the server must process the template each time the form is sub-
mitted. To turn off caching, embed the Doc_Dynamic command into your form
handler pages, or set the page(dynamic) variable to 1. Alternatively, you can
simply post directly to the file.tml page instead of to the file.html page.

Form Handlers 257
II. A

d
va

nc
e

d
 Tc

l

Self Posting Forms

This section illustrates a self-posting form. This is a form on a page that
posts the form data to back to the same page. The page embeds a Tcl command to
check its own form data. Once the data is correct, the page triggers a redirect to
the next page in the flow. This is a powerful technique that I use to create com-
plex page flows using templates. Of course, you need to save the form data at
each step. You can put the data in Tcl variables, use the data to control your
application, or store it into a database. TclHttpd comes with a Session module,
which is one way to manage this information. For details you should scan the
session.tcl file in the distribution.

Example 18–13 shows the Form_Simple procedure that generates a simple
self-checking form. Its arguments are a unique ID for the form, a description of
the form fields, and the URL of the next page in the flow. The field description is
a list with three elements for each field: a required flag, a form element name,
and a label to display with the form element. You can see this structure in the
template shown in Example 18–14 on page 258. The procedure does two things
at once. It computes the HTML form, and it also checks if the required fields are
present. It uses some procedures from the form module to generate form ele-
ments that retain values from the previous page. If all the required fields are
present, it discards the HTML, saves the data, and triggers a redirect by calling
Doc_Redirect.

Example 18–13 A self-checking form procedure.

proc Form_Simple {id fields nextpage} {
global page
if {![form::empty formid]} {

Incoming form values, check them
set check 1

} else {
First time through the page
set check 0

}
set html "<!-- Self-posting. Next page is $nextpage -->\n"
append html "<form action=\"$page(url)\" method=post>\n"
append html "<input type=hidden name=formid value=$id>\n"
append html "<table border=1>\n"
foreach {required key label} $fields {

append html "<tr><td>"
if {$check && $required && [form::empty $key]} {

lappend missing $label
append html "*"

}
append html "</td><td>$label</td>\n"
append html "<td><input [form::value $key]></td>\n"
append html "</tr>\n"

}
append html "</table>\n"
if {$check} {

if {![info exist missing]} {

258 TclHttpd Web Server Chap. 18

No missing fields, so advance to the next page.
In practice, you must save the existing fields
at this point before redirecting to the next page.

Doc_Redirect $nextpage
} else {

set msg "Please fill in "
append msg [join $missing ", "]
append msg ""
set html <p>$msg\n$html

}
}
append html "<input type=submit>\n</form>\n"
return $html

}

Example 18–14 shows a page template that calls Form_Simple with the
required field description.

Example 18–14 A page with a self-checking form.

<html><head>
<title>Name and Address Form</title>

</head>
<body bgcolor=white text=black>

<h1>Name and Address</h1>
Please enter your name and address.
[myform::simple nameaddr {

1 name "Name"
1 addr1 "Address"
0 addr2" "Address"
1 city "City"
0 state "State"
1 zip "Zip Code"
0 country "Country"

} nameok.html]
</body></html>

The form package

TclHttpd comes with a form package (form.tcl) that is designed to support
self-posting forms. The Form_Simple procedure uses form::empty to test if par-
ticular form values are present in the query data. For example, it tests to see
whether the formid field is present so that the procedure knows whether or not
to check for the rest of the fields. The form::value procedure is useful for con-
structing form elements on self-posting form pages. It returns:

name="name" value="value"

The value is the value of form element name based on incoming query data,
or just the empty string if the query value for name is undefined. As a result, the

Programming Reference 259
II. A

d
va

nc
e

d
 Tc

l

form can post to itself and retain values from the previous version of the page. It
is used like this:

<input type=text [form::value name]>

The form::checkvalue and form::radiovalue procedures are similar to
form::value but designed for checkbuttons and radio buttons. The
form::select procedure formats a selection list and highlights the selected val-
ues. The form::data procedure simply returns the value of a given form element.
These are summarized in Table 18–6 on page 261.

Programming Reference

This section summarizes many of the more useful functions defined by the
server. These tables are not complete, however. You are encouraged to read
through the code to learn more about the features offered by the server.

Table 18–1 summarizes the Httpd functions used when returning pages to
the client.

Table 18–2 summarizes a few useful procedures provided by the Url module
(url.tcl). The Url_DecodeQuery is used to decode query data into a Tcl-friendly
list. The Url_Encode procedure is useful when encoding values directly into
URLs. URL encoding is discussed in more detail on page 247.

Table 18–1 Httpd support procedures.

Httpd_Error sock code Returns a simple error page to the client. The code is a
numeric error code like 404 or 500.

Httpd_ReturnData sock
type data

Returns a page with Content-Type type and content
data.

Httpd_ReturnFile sock
type file

Returns a file with Content-Type type.

Httpd_Redirect newurl
sock

Generates a 302 error return with a Location of newurl.

Httpd_SelfUrl url Expands url to include the proper http://
server:port prefix to reference the current server.

Table 18–2 Url support procedures.

Url_DecodeQuery query Decodes a www-url-encoded query string and return
a name, value list.

Url_Encode value Returns value encoded according to the www-url-
encoded standard.

Url_PrefxInstall prefix
callback

Registers callback as the handler for all URLs that
begin with prefix. The callback is invoked with two
additional arguments: sock, the handle to the client, and
suffix, the part of the URL after prefix.

260 TclHttpd Web Server Chap. 18

The Doc module provides procedures for configuration and generating
responses, which are summarized in Tables 18–3 and 18–4, respectively.

The Doc module also provides procedures for cookies and redirects that are
useful in document templates. These are described in Table 18–5.

Table 18–3 Doc procedures for configuration.

Doc_Root ?directory? Sets or queries the directory that corresponds to the
root of the URL hierarchy.

Doc_AddRoot virtual
directory

Maps the file system directory into the URL subtree
starting at virtual.

Doc_ErrorPage file Specifies a file relative to the document root used as a
simple template for error messages. This is processed by
DocSubstSystem file in doc.tcl.

Doc_CheckTemplates how If how is 1, then .html files are compared against corre-
sponding .tml files and regenerated if necessary.

Doc_IndexFile pattern Registers a file name pattern that will be searched for
the default index file in directories.

Doc_NotFoundPage file Specifies a file relative to the document root used as a
simple template for page not found messages. This is pro-
cessed by DocSubstSystem file in doc.tcl.

Doc_PublicHtml dirname Defines the directory used for each users home directory.
When a URL like ~user is specified, the dirname
under their home directory is accessed.

Doc_TemplateLibrary
directory

Adds directory to the auto_path so the source
files in it are available to the server.

Doc_TemplateInterp interp Specifies an alternate interpreter in which to process doc-
ument templates (i.e., .tml files.)

Doc_Webmaster ?email? Sets or queries the email for the Webmaster.

Table 18–4 Doc procedures for generating responses.

Doc_Error sock errorInfo Generates a 500 response on sock based on the template
registered with Doc_ErrorPage. errorInfo is a
copy of the Tcl error trace after the error.

Doc_NotFound sock Generates a 404 response on sock by using the template
registered with Doc_NotFoundPage.

Doc_Subst sock file
?interp?

Performs a subst on the file and return the resulting
page on sock. interp specifies an alternate Tcl inter-
preter.

Programming Reference 261
II. A

d
va

nc
e

d
 Tc

l

Table 18–6 describes the form module that is useful for self-posting forms,
which are discussed on page 257.

Table 18–7 shows the initial elements of the page array that is defined dur-
ing the processing of a template.

Table 18–5 Doc procedures that support template processing.

Doc_Coookie name Returns the cookie name passed to the server for this
request, or the empty string if it is not present.

Doc_Dynamic Turns off caching of the HTML result. Meant to be called
from inside a page template.

Doc_IsLinkToSelf url Returns 1 if the url is a link to the current page.

Doc_Redirect newurl Raises a special error that aborts template processing and
triggers a page redirect to newurl.

Doc_SetCookie -name name
-value value -path path
-domain domain -expires
date

Sets cookie name with the given value that will be
returned to the client as part of the response. The path
and domain restrict the scope of the cooke. The date
sets an expiration date.

Table 18–6 The form package.

form::data name Returns the value of the form value name, or the empty string.

form::empty name Returns 1 if the form value name is missing or zero length.

form::value name Returns name="name" value="value", where value
comes from the query data, if any.

form::checkvalue
name value

Returns name="name" value="value" CHECKED, if
value is present in the query data for name. Otherwise, it just
returns name="name" value="value".

form::radiovalue
name value

Returns name="name" value="value" CHECKED, if the
query data for name is equal to value. Otherwise, it just
returns name="name" value="value".

form::select name
valuelist args

Generates a select form element with name name. The val-
uelist determines the option tags and values, and args are
optional parameters to the main select tag.

Table 18–7 Elements of the page array.

query The decoded query data in a name, value list.

dynamic If 1, the results of processing the template are not cached in the corresponding
.html file.

filename The file system pathname of the requested file (e.g., /usr/local/
htdocs/tclhttpd/index.html).

262 TclHttpd Web Server Chap. 18

Table 18–8 shows the elements of the env array. These are defined during
CGI requests, application-direct URL handlers, and page template processing:

template The file system pathname of the template file (e.g., /usr/local/
htdocs/tclhttpd/index.tml).

url The part of the url after the server name (e.g., /tclhttpd/index.html).

root A relative path from the template file back to the root of the URL tree. This is
useful for creating relative links between pages in different directories.

Table 18–8 Elements of the env array.

AUTH_TYPE Authentication protocol (e.g., Basic).

CONTENT_LENGTH The size of the query data.

CONTENT_TYPE The type of the query data.

DOCUMENT_ROOT File system pathname of the document root.

GATEWAY_INTERFACE Protocol version, which is CGI/1.1.

HTTP_ACCEPT The Accept headers from the request.

HTTP_AUTHORIZATION The Authorization challenge from the request.

HTTP_COOKIE The cookie from the request.

HTTP_FROM The From: header of the request.

HTTP_REFERER The Referer indicates the previous page.

HTTP_USER_AGENT An ID string for the Web browser.

PATH_INFO Extra path information after the template file.

PATH_TRANSLATED The extra path information appended to the document root.

QUERY_STRING The form query data.

REMOTE_ADDR The client’s IP address.

REMOTE_USER The remote user name specified by Basic authentication.

REQUEST_METHOD GET, POST, or HEAD.

REQUEST_URI The complete URL that was requested.

SCRIPT_NAME The name of the current file relative to the document root.

SERVER_NAME The server name, e.g., www.beedub.com.

SERVER_PORT The server’s port, e.g., 80.

SERVER_PROTOCOL The protocol (e.g., http or https).

SERVER_SOFTWARE A software version string for the server.

Table 18–7 Elements of the page array. (Continued)

Standard Application-Direct URLs 263
II. A

d
va

nc
e

d
 Tc

l

Standard Application-Direct URLs

The server has several modules that provide application-direct URLs. These
application-direct URLs lets you control the server or examine its state from any
Web browser. You can look at the implementation of these modules as examples
for your own application.

Status

The /status URL is implemented in the status.tcl file. The status mod-
ule implements the display of hit counts, document hits, and document misses
(i.e., documents not found). The Status_Url command enables the application-
direct URLs and assigns the top-level URL for the status module. The default
configuration file contains this command:

Status_Url /status

Assuming this configuration, the following URLs are implemented:

Debugging

The /debug URL is implemented in the debug.tcl file. The debug module
has several useful URLs that let you examine variable values and other internal
state. It is turned on with this command in the default configuration file:

Debug_Url /debug

Table 18–10 lists the /debug URLs. These URLs often require parameters
that you can specify directly in the URL. For example, the /debug/echo URL
echoes its query parameters:

http://yourserver:port/debug/echo?name=value&name2=val2

Table 18–9 Status application-direct URLs.

/status Main status page showing summary counters and hit count histograms.

/status/doc Shows hit counts for each page. This page lets you sort by name or hit
count, and limit files by patterns.

/status/hello A trivial URL that returns "hello".

/status/notfound Shows miss counts for URLs that users tried to fetch.

/status/size Displays an estimated size of Tcl code and Tcl data used by the TclHt-
tpd program.

/status/text This is a version of the main status page that doesn’t use the graphical
histograms of hit counts.

264 TclHttpd Web Server Chap. 18

The sample URL tree that is included in the distribution includes the file
htdocs/hacks.html. This file has several small forms that use the /debug URLs
to examine variables and source files. Example18–15 shows the implementation
of /debug/source. You can see that it limits the files to the main script library
and to the script library associated with document templates. It may seem dan-
gerous to have these facilities, but I reason that because my source directories
are under my control, it cannot hurt to reload any source files. In general, the
library scripts contain only procedure definitions and no global code that might
reset state inappropriately. In practice, the ability to tune (i.e., fix bugs) in the
running server has proven useful to me on many occasions. It lets you evolve
your application without restarting it!

Example 18–15 The /debug/source application-direct URL implementation.

proc Debug/source {source} {
global Httpd Doc
set source [file tail $source]
set dirlist $Httpd(library)
if {[info exists Doc(templateLibrary)]} {

lappend dirlist $Doc(templateLibrary)
}
foreach dir $dirlist {

set file [file join $dir $source]
if [file exists $file] {

break

Table 18–10 Debug application-direct URLs.

/debug/after Lists the outstanding after events.

/debug/dbg Connects to TclPro Debugger. This takes a host and port
parameter. You need to install prodebug.tcl from TclPro
into the server’s script library directory.

/debug/echo Echoes its query parameters. Accepts a title parameter.

/debug/errorInfo Displays the errorInfo variable along with the server’s ver-
sion number and Webmaster e-mail. Accepts title and
errorInfo arguments.

/debug/parray Displays a global array variable. The name of the variable is
specified with the aname parameter.

/debug/pvalue A more general value display function. The name of the variable
is specified with the aname parameter. This can be a variable
name, an array name, or a pattern that matches several variable
names.

/debug/raise Raises an error (to test error handling). Any parameters become
the error string.

/debug/source Sources a file from either the server’s main library directory or
the Doc_TemplateLibrary directory. The file is specified
with the source parameter.

Standard Application-Direct URLs 265
II. A

d
va

nc
e

d
 Tc

l

}
}
set error [catch {uplevel #0 [list source $file]} result]
set html "<title>Source $source</title>\n"
if {$error} {

global errorInfo
append html "<H1>Error in $source</H1>\n"
append html "<pre>$result<p>$errorInfo</pre>"

} else {
append html "<H1>Reloaded $source</H1>\n"
append html "<pre>$result</pre>"

}
return $html

}

Administration

The /admin URL is implemented in the admin.tcl file. The admin module
lets you load URL redirect tables, and it provides URLs that reset some of the
counters maintained by the server. It is turned on with this command in the
default configuration file:

Admin_Url /admin

Currently, there is only one useful admin URL. The /admin/redirect/
reload URL sources the file named redirect in the document root. This file is
expected to contain a number of Url_Redirect commands that establish URL
redirects. These are useful if you change the names of pages and want the old
names to still work.

The administration module has a limited set of application-direct URLs
because the simple application-direct mechanism doesn’t provide the right hooks
to check authentication credentials. The HTML+Tcl templates work better with
the authentication schemes.

Sending Email

The /mail URL is implemented in the mail.tcl file. The mail module
implements various form handlers that e-mail form data. Currently, it is UNIX-
specific because it uses /usr/lib/sendmail to send the mail. It is turned on with
this command in the default configuration file:

Mail_Url /mail

The application-direct URLs shown in Table 18–11 are useful form han-
dlers. You can specify them as the ACTION parameter in your <FORM> tags. The
mail module provides two Tcl procedures that are generally useful. The MailIn-
ner procedure is the one that sends mail. It is called like this:

MailInner sendto subject from type body

The sendto and from arguments are e-mail addresses. The type is the
Mime type (e.g., text/plain or text/html) and appears in a Content-Type
header. The body contains the mail message without any headers.

266 TclHttpd Web Server Chap. 18

The Mail_FormInfo procedure is designed for use in HTML+Tcl template
files. It takes no arguments but instead looks in current query data for its
parameters. It expects to find the same arguments as the /mail/forminfo direct
URL. Using a template with Mail_FormInfo gives you more control over the
result page than posting directly to /mail/forminfo, and is illustrated in Exam-
ple 18–10 on page 255.

The TclHttpd Distribution

Get the TclHttpd distribution from the CD-ROM, or find it on the Internet at:
ftp://ftp.scriptics.com/pub/tcl/httpd/

http://www.scriptics.com/tclhttpd/

Quick Start

Unpack the tar file or the zip file, and you can run the server from the
httpd.tcl script in the bin directory. On UNIX:

tclsh httpd.tcl -port 80

This command will start the Web server on the standard port (80). By
default it uses port 8015 instead. If you run it with the -help flag, it will tell you
what command line options are available. If you use wish instead of tclsh, then a
simple Tk user interface is displayed that shows how many hits the server is get-
ting.

On Windows you can double-click the httpd.tcl script to start the server. It
will use wish and display the user interface. Again it will start on port 8015. You
will need to create a shortcut that passes the -port argument, or edit the associ-
ated configuration file to change this. Configuring the server is described later.

Once you have the server running, you can connect to it from your Web
browser. Use this URL if you are running on the default (nonstandard) port:

http://hostname:8015/

Table 18–11 Application-direct URLS that e-mail form results.

/mail/bugreport Sends e-mail with the errorInfo from a server error. It takes
an email parameter for the destination address and an error-
Info parameter. Any additional arguments get included into the
message.

/mail/forminfo Sends e-mail containing form results. It requires these parame-
ters: sendto for the destination address, subject for the mail
subject, href and label for a link to display on the results
page. Any additional arguments are formatted with the Tcl list
command for easy processing by programs that read the mail.

/mail/formdata This is an older form of /mail/forminfo that doesn’t format
the data into Tcl lists. It requires only the email and subject
parameters. The rest are formatted into the message body.

Server Configuration 267
II. A

d
va

nc
e

d
 Tc

l

If you are running without a network connection, you may need to specify
127.0.0.1 for the hostname. This is the "localhost" address and will bypass the
network subsystem.

http://127.0.0.1:8015/

Inside the Distribution

The TclHttpd distribution is organized into the following directories:

• bin — This has sample start-up scripts and configuration files. The
httpd.tcl script runs the server. The tclhttpd.rc file is the standard con-
figuration file. The minihttpd.tcl file is the 250-line version. The tor-
ture.tcl file has some scripts that you can use to fetch many URLs at once
from a server.

• lib — This has all the Tcl sources. In general, each file provides a package.
You will see the package require commands partly in bin/httpd.tcl and
partly in bin/tclhttpd.rc. The idea is that only the core packages are
required by httpd.tcl, and different applications can tune what packages
are needed by adjusting the contents of tclhttpd.rc.

• htdocs — This is a sample URL tree that demonstrates the features of the
Web server. There is also some documentation there. One directory to note
is htdocs/libtml, which is the standard place to put site-specific Tcl scripts
used with the Tcl+HTML template facility.

• src — There are a few C source files for a some optional packages. These
have been precompiled for some platforms, and you can find the compiled
libraries back under lib/Binaries in platform-specific subdirectories.

Server Configuration

TclHttpd configures itself with three main steps. The first step is to process the
command line arguments described in Table 18–12. The arguments are copied
into the Config Tcl array. Anything not specified on the command line gets a
default value. The next configuration step is to source the configuration file. The
default configuration file is named tclhttpd.rc in the same directory as the
start-up script (i.e., bin/tclhttpd.rc). This file can override command line argu-
ments by setting the Config array itself. This file also has application-specific
package require commands and other Tcl commands to initialize the applica-
tion. Most of the Tcl commands used during initialization are described in the
rest of this section. The final step is to actually start up the server. This is done
back in the main httpd.tcl script. For example, to start the server for the docu-
ment tree under /usr/local/htdocs and your own e-mail address as Webmaster,
you can execute this command to start the server:

tclsh httpd.tcl -docRoot /usr/local/htdocs -webmaster welch

Alternatively, you can put these settings into a configuration file, and start
the server with that configuration file:

268 TclHttpd Web Server Chap. 18

tclsh httpd.tcl -config mytclhttpd.rc

In this case, the mytclhttpd.rc file could contain these commands to hard-
wire the document root and Webmaster e-mail. In this case, the command line
arguments cannot override these settings:

set Config(docRoot) /usr/local/htdocs

set Config(webmaster) welch

Command Line Arguments

There are several parameters you may need to set for a standard Web
server. These are shown below in Table 18–12. The command line values are
mapped into the Config array by the httpd.tcl start-up script.

Server Name and Port

The name and port parameters define how your server is known to Web
browsers. The URLs that access your server begin with:

http://name:port/

Table 18–12 Basic TclHttpd Parameters.

Parameter Command Option Config Variable

Port number. The default is
8015.

-port number Config(port)

Server name. The default is
[info hostname].

-name name Config(name)

IP address. The default is 0,
for "any address".

-ipaddr address Config(ipaddr)

Directory of the root of the
URL tree. The default is the
htdocs directory.

-docRoot directory Config(docRoot)

User ID of the TclHttpd pro-
cess. The default is 50. (UNIX
only.)

-uid uid Config(uid)

Group ID of the TclHttpd pro-
cess. The default is 100.
(UNIX only.)

-gid gid Config(gid)

Webmaster e-mail. The default
is webmaster.

-webmaster email Config(webmaster)

Configuration file. The default
is tclhttpd.rc.

-config filename Config(file)

Additional directory to add to
the auto_path.

-library directory Config(library)

Server Configuration 269
II. A

d
va

nc
e

d
 Tc

l

If the port number is 80, you can leave out the port specification. The call
that starts the server using these parameters is found in httpd.tcl as:

Httpd_Server $Config(name) $Config(port) $Config(ipaddr)

Specifying the IP address is necessary only if you have several network
interfaces (or several IP addresses assigned to one network interface) and want
the server to listen to requests on a particular network address. Otherwise, by
default, server accepts requests from any network interface.

User and Group ID

The user and group IDs are used on UNIX systems with the setuid and
setgid system calls. This lets you start the server as root, which is necessary to
listen on port 80, and then switch to a less privileged user account. If you use
Tcl+HTML templates that cache the results in HTML files, then you need to pick
an account that can write those files. Otherwise, you may want to pick a very
unprivileged account.

The setuid function is available through the TclX (Extended Tcl) id com-
mand, or through a setuid extension distributed with TclHttpd under the src
directory. If do not have either of these facilities available, then the attempt to
change user ID gracefully fails. See the README file in the src directory for
instructions on compiling and installing the extensions found there.

Webmaster Email

The Webmaster e-mail address is used for automatic error reporting in the
case of server errors. This is defined in the configuration file with the following
command:

Doc_Webmaster $Config(webmaster)

If you call Doc_Webmaster with no arguments, it returns the e-mail address
you previously defined. This is useful when generating pages that contain
mailto: URLs with the Webmaster address.

Document Root

The document root is the directory that contains the static files, templates,
CGI scripts, and so on that make up your Web site. By default the httpd.tcl script
uses the htdocs directory next to the directory containing httpd.tcl. It is worth
noting the trick used to locate this directory:

file join [file dirname [info script]] ../htdocs

The info script command returns the full name of the http.tcl script,
file dirname computes its directory, and file join finds the adjacent directory.
The path ../htdocs works with file join on any platform. The default location
of the configuration file is found in a similar way:

file join [file dirname [info script]] tclhttpd.rc

The configuration file initializes the document root with this call:

270 TclHttpd Web Server Chap. 18

Doc_Root $Config(docRoot)

If you need to find out what the document root is, you can call Doc_Root
with no arguments and it returns the directory of the document root. If you want
to add additional document trees into your Web site, you can do that with a call
like this in your configuration file:

Doc_AddRoot directory urlprefix

Other Document Settings

The Doc_IndexFile command sets a pattern used to find the index file in a
directory. The command used in the default configuration file is:

Doc_IndexFile index.{htm,html,tml,subst}

If you invent other file types with different file suffixes, you can alter this
pattern to include them. This pattern will be used by the Tcl glob command.

The Doc_PublicHtml command is used to define "home directories" on your
HTML site. If the URL begins with ~username, then the Web server will look
under the home directory of username for a particular directory. The command in
the default configuration file is:

Doc_PublicHtml public_html

For example, if my home directory is /home/welch, then the URL ~welch
maps to the directory /home/welch/public_html. If there is no Doc_PublicHtml
command, then this mapping does not occur.

You can register two special pages that are used when the server encoun-
ters an error and when a user specifies an unknown URL. The default configura-
tion file has these commands:

Doc_ErrorPage error.html

Doc_NotFoundPage notfound.html

These files are treated like templates in that they are passed through subst
in order to include the error information or the URL of the missing page. These
are pretty crude templates compared to the templates described earlier. You can
count only on the Doc and Httpd arrays being defined. Look at the
Doc_SubstSystemFile in doc.tcl for the truth about how these files are pro-
cessed.

Document Templates

The template mechanism has two main configuration options. The first
specifies an additional library directory that contains your application-specific
scripts. This lets you keep your application-specific files separate from the TclHt-
tpd implementation. The command in the default configuration file specifies the
libtml directory of the document tree:

Doc_TemplateLibrary [file join $Config(docRoot) libtml]

You can also specify an alternate Tcl interpreter in which to process the
templates. The default is to use the main interpreter, which is named {} accord-

Server Configuration 271
II. A

d
va

nc
e

d
 Tc

l

ing to the conventions described in Chapter 19.
Doc_TemplateInterp {}

Log Files

The server keeps standard format log files. The Log_SetFile command
defines the base name of the log file. The default configuration file uses this com-
mand:

Log_SetFile /tmp/log$Config(port)_

By default the server rotates the log file each night at midnight. Each day’s
log file is suffixed with the current date (e.g., /tmp/logport_990218.) The error
log, however, is not rotated, and all errors are accumulated in /tmp/

logport_error.

The log records are normally flushed every few minutes to eliminate an
extra I/O operation on each HTTP transaction. You can set this period with
Log_FlushMinutes. If minutes is 0, the log is flushed on every HTTP transaction.
The default configuration file contains:

Log_FlushMinutes 1

CGI Directories

You can register a directory that contains CGI programs with the
Cgi_Directory command. This command has the interesting effect of forcing all
files in the directory to be executed as CGI scripts, so you cannot put normal
HTML files there. The default configuration file contains:

Cgi_Directory /cgi-bin

This means that the cgi-bin directory under the document root is a CGI
directory. If you supply another argument to Cgi_Directory, then this is a file
system directory that gets mapped into the URL defined by the first argument.
You can also put CGI scripts into other directories and use the .cgi suffix to indi-
cate that they should be executed as CGI scripts.

The cgi.tcl file has some additional parameters that you can tune only by
setting some elements of the Cgi Tcl array. See the comments in the beginning of
that file for details.

Blank page 272

