
The Tix Programming Guide

Tix Group,
http://tix.sourceforge.net

November 29, 2001.

1

http://tix.sourceforge.net

CONTENTS i

Contents

1 Introduction 2
1.1 What is Tix . 2
1.2 Getting Started: the TixControl Widget. 4
1.3 Accessing The Components Inside Mega Widgets. 7
1.4 Another Tix Widget: TixComboBox. 13
1.5 The TixSelect Widget. 16

2 Container Widgets 21
2.1 TixNoteBook . 21
2.2 PanedWindow. 25
2.3 The Family of Scrolled Widgets. 28

3 Tabular Listbox and Display Items 31
3.1 tixTList – The Tix Tabular Listbox Widget. 31
3.2 Display Items. 32
3.3 Creating Display Items in the TixTList Widget. 35

4 Hierarchical Listbox 40
4.1 TixHList – The Tix Hierarchical Listbox Widget. 40
4.2 Creating Collapsible Tree Structures with TixTree. 44

5 Selecting Files and Directories 47
5.1 File Selection Dialog Widgets. 47
5.2 Selecting Directories with the TixDirTree and TixDirList Widgets52

6 Tix Object Oriented Programming 54
6.1 Introduction to Tix Object Oriented Programming. 54
6.2 Widget Class Declaration. 57
6.3 Writing Methods . 59
6.4 Standard Initialization Methods. 60
6.5 Declaring and Using Variables. 64
6.6 Summary of Widget Instance Initialization. 69
6.7 Loading the New Classes. 70

CONTENTS 1

Preface

About This Manual

This manual is the programmer’s guide to the Tix library. It takes you though a
step-by-step tutorial about the different widgets and functions available in the Tix
library. It also covers how to write new widgets using the Tix Intrinsics objecr-
oriented programming interface. The accompanyingTix Reference Manualis a
collection of the Tix manual pages. It describes all the options and other details
of the Tix widgets and functions.

About This Document

This HTML document is converted from LaTeX source files to HTML by a mod-
ified version of latex2html.

This document is also available both pdf and HTML format fromhttp://tix.sourceforge.net.

Organization of This Manual

Chapter 1,Introductiongets you started with the Tix widgets by describing their
basic options and operations. Chapter 2,Container Widgets, describes the Tix
widgets that can be used to contain other widgets and maintain their geometry.
Chapter 3,TList Widget and Display Items, describes the tabular listbox widget
and the Tix display items, which are used by many Tix widgets. Chapter 4,Hi-
erarchical Listbox, describes how to create a hierarchical list structure using the
TixHList widget. Chapter 5,Selection Files and Directories, describes how to
use the file and directory selection widgets in the Tix library. Finally, Chapter 6,
Tix Object Oriented Programming, describes how to use the Tix object oriented
programming library to create new classes of Tix widgets.

http://tix.sourceforge.net

1 INTRODUCTION 2

1 Introduction

1.1 What is Tix

1.1.1 Tix for Application Programmers

The acronym Tix stands for Tk Interface Extension. Tix is different things for
different people.

If you are a GUI application programmer, that is, if you earn a living by build-
ing graphical applications, you will appreciate Tix as a library ofmega-widgets:
widgets made out of other widgets. To use a crude analogy, if the widgets in the
standard TK library are bricks and mortars for a builder, the mega-widgets in the
Tix library are walls, windows or even pre-build kitchens. Of course, these “big-
ger components” are themselves made of bricks and mortars, but it will take much
less effort to put them together than planting bricks on top of each other.

The Tix widgets not only help you speed up the development of your applica-
tions, they also help you in the design process. Since the standard Tk widgets are
too primitive, they force you to think of your house as, by using the same analogy,
millions of bricks. With the help of the Tix mega-widgets, you can design your
application is a more structural and coherent manner.

Moreover, the Tix library provides a rich set of widgets. Figure 1-1 shows
all Tix widgets – there are more than 40 of them! Although the standard Tk
library has many useful widgets, they are far from complete. The Tix library
provides most of the commonly needed widgets that are missing from standard Tk:
FileSelectBox, ComboBox, Control (a.k.a. SpinBox) and an assortment of scroll-
able widgets. Tix also includes many more widgets that are generally useful in
a wide range of applications: NoteBook, FileEntry, PanedWindow, MDIWindow,
etc.

With all these new widgets, you can introduce new interaction techniques into
applications, creating more useful and more intuitive user interfaces. You can
design your application by choosing the most appropriate widgets to match the
special needs of your application and users.

1.1.2 Tix for Widget Developers

On the other hand, if you are a widget developer, Tix provides an object oriented
programming environment, the Tix Intrinsics, that is carefully designed for the

1 INTRODUCTION 3

(Figure 1-1) The Class Hierarchy of Tix Widgets

1 INTRODUCTION 4

development of mega-widgets. If you have developed widgets in C, you will know
how slow and painful such a process would be. In recognition of the difficulties
in widget development, the Tix Intrinsics includes many tools that dramatically
cuts down the efforts required to develop new widgets. With the Tix Intrinsics,
the rapid prototyping/development of widgets is finally feasible: you can write a
new widgets in the matter of hours or even minutes.

With the Tix Intrinsics, you widget code can readily become reusable. Tix also
provides a set of rules and mechanisms that allow you to develop widgets that are
inter-operable with other widgets.

In Part I of this manual, we will talk about using the Tix widgets. The discus-
sion of writing new Tix widgets will be carried out in Part II.

1.2 Getting Started: the TixControl Widget

Pre-requisites: you should be familiar with Tk widgets and programming, or read
the Tk book along with this book

Before delving into the deep philosophy of the Tix widgets, let us first have a
quick example to demonstrate the usefulness and convenience of an Tix widget:
the TixControl is basically an entry widget that displays a value. Next to the
entry, there are two up and down arrow buttons for you to adjust the value inside
the entry widget.

1.2.1 Creating a TixControl Widget

The following code demonstrates how to create a TixControl widget and specify
its options:

tixControl .lawyers -label Lawyers: -max 10 -min 0
.lawyers config -integer true -step 2

This example creates a TixControl widget that let us to select the numbers of
lawyers we wish to be allowed in this country. (Figure 1-2)

Let us examine the options: the-label option specifies a caption for this
widget. The-max option specifies the maximum number of lawyers we can
choose. The-min option specifies the minimum number of lawyers we can
choose: although we would love to enter a negative number, reality dictate that
the lower limit must be zero. The-integer option indicates that the number
of lawyers must be an integer; that is, we respect the lawyers’ rights not to be
chopped up into decimal points. Finally, since lawyers seem to go in pairs, we set

1 INTRODUCTION 5

the -step option to2, which indicates that when we press the up/down arrow
buttons, we want the number of lawyers to go up and down by two each time.

(Figure 1-2) The TixControl Widget

As shown in the example, you can create and manipulate a Tix widget in the
same manner as the standard Tk widgets. The options of the widget can be spec-
ified during the creation of the widget. Alternatively, they can be changed by the
configure widget command. In addition, options can also be specified in the
option database or as X resources. Here is an example that produces the same
result as the previous code fragment:

option add *lawyers.max 10
option add *lawyers.min 0
tixControl .lawyers -label Lawyers: -integer true
.lawyers config -step 2

In figure 1-3, you can see the composition of TixControl: it is made out of a
label widget, an entry widget and two button widgets. Widgets that are composed
of other widgets, like TixControl, are calledmega-widgets. Most widgets in the
Tix library are mega-widgets (xx: and as you know this book is about them!).

(Figure 1-3) The Composition of TixControl

1 INTRODUCTION 6

1.2.2 Accessing The Value of a TixControl Widget

The TixControl widget allows the user to input a value. There are several ways to
read this value in your program. First of all, TixControl stores the current value
in the -value option. You can use query the-value option by calling the
command

.c cget -value this command will return the current value of the
tixContro widget.c . The following command sets the value of the widget to a
new number (100):

.c config -value 100
The second way to access the value of TixControl is to use the-variable

option. This options instructs the TixControl widget to store the its value into a
global variable so that you can read it at any time. Also, by assigning a new value
to this global variable, you can change the value of the TixControl widget. Here
is an example:

.c config -variable myvar
set myvar 100

In some situations, you may want to be informed immediately when the value
of the TixControl widget changes. To accomplish this, you can use the-command
option. The following line causes the TCL procedurevalueChanged to be
called whenever the value of.c changes:

tixControl .c -command valueChanged

Disabling Callbacks Temporarily

Now, if you want to change a value from within the program, you have to disable
the callback. The reason is that the callback runs whenever you (as well as the
user) makes a change. In particular, if you make a change within the callback pro-
cedure and forget to disable the callback, it will recursively call itself and enter an
infinite loop. To avoid this problem, you should use the-disablecallback
option. Here is an example:

tixControl .c -command addOne

proc addOne {value} {
.c config -disablecallback true
.c config -value [incr value]
.c config -disablecallback false

}

1 INTRODUCTION 7

The procedureaddOne adjusts the value of.c by one whenever the user en-
ters a new value into.c . Notice that it is necessary to set-disablecallback
here or otherwiseaddOne will be infinitely recursed! That is becauseaddOne
is calledevery timethe value changes, either by the user or by the program.

1.2.3 Validating User Inputs

Sometimes it may be necessary to check the user input against certain criteria. For
example, you may want to allow only even numbers in a TixControl widget. To
do this, you can use the-validatecmd option, which specifies a Tcl command
to call whenever the user enters a new value. Here is an example:

tixControl .c -value 0 -step 2 -validatecmd evenOnly

proc evenOnly {value} {
return [expr $value - ($value %2)]

}
The value parameter toevenOnly is the new value entered by the user. The

evenOnly procedure makes sure that the new value is even by returning a mod-
ified, even number. The Tcl command specified by the-validatecmd must
return a value which it deems valid and this value will be stored in the-value
option of the TixControl widget.

1.3 Accessing The Components Inside Mega Widgets

1.3.1 Subwidgets

As we have seen in section 1.2.1, the TixControl widget is composed of several
widgets: one label widget, one entry widget and two button widgets. These “wid-
gets inside mega-widgets” are calledsubwidgetsin the Tix terminology. We will
often have the need to access these subwidgets. For example, sometimes we need
to change the configuration options of the subwidgets. In other cases, we may
need to interact with the subwidgets directly.

1.3.2 Subwidget Names

Each subwidget inside a mega is identified by asubwidget name. Naturally, the la-
bel and entry subwidgets inside a TixSelect widget are calledlabel andentry ,
respectively. The two button widgets are calledincr anddecr because they are

1 INTRODUCTION 8

used toincr ement anddecr ement the value inside the TixControl widget (see
figure 1-4).

(Figure 1-4) Subwidgets inside TixControl Widget

1.3.3 Thesubwidget Method

All Tix mega-widgets support thesubwidget method. This method takes at
least one argument, the name of a subwidget. When you pass only one argument
to this method, it returns the pathname of the subwidget which is identified by that
name. For example, if .c is the pathname of a TixControl widget, the command:

.c subwidget entry

returns the pathname of theentry subwidget, which is.c.frame.entry
in this case.

If you call thesubwidget method with additional arguments, the widget
command of the specified subwidget will be called with these arguments. For
example, if.c is, again, the pathname of a TixControl widget, the command:

.c subwidget entry configure -bg gray

will cause the widget command of theentry subwidget of.c to be called
with the argumentsconfigure -bg gray . So actually this command will be
translated into the following call:

.c.frame.entry configure -bg gray

1 INTRODUCTION 9

which calls theconfigure method of theentry subwidget with the argu-
ments-bg gray and changes its background color togray .

We can call thesubwidget method with other types of arguments to access
different methods of the specified subwidget. For example, the following call:

.c subwidget entry icursor end

calls theicursor method of theentry subwidget with the argumentend
and sets the insert cursor of theentry subwidget to the end of its input string.

1.3.4 Chaining thesubwidget Method

Some Tix mega-widgets may have subwidgets that in turn contain subwidgets.
For example, the TixExFileSelectDialog (section 5.1.3) widget contains a TixEx-
FileSelectBox subwidget calledfsbox , which in turn contains a TixComboBox
(section 1.4) subwidget calleddir . If we want to access thedir subwidget, we
can just “chain” thesubwidget method. For example, if we have a TixExFile-
SelectDialog called.file , the following command will return the pathname of
thedir subwidget of thefsbox subwidget of.file :

.file subwidget fsbox subwidget dir

Moreover, the following command configures thedir subwidget to have a
border of the groove type with a border width of 2 pixels:

.file subwidget fsbox subwidget dir configure
-bd 2 -relief groove

The chaining of the subwidget command can be applied for arbitrarily many
levels, depending whether your widget has a subwidget that has a subwidget that
has a subwidget that has a subwidget ... and so on.

1.3.5 Configuring Subwidget Options Using the-options Switch

As we have seen above, we can use commands like “subwidget namecon-
figure ... ” to set the configuration options of subwidgets. However, this can
get quite tedious if we want to configure many options of many subwidgets.

There is a more convenient and terse way to configure the subwidget options
without using thesubwidget method: the-options switch. All Tix mega-
widgets support the-option switch, which can be used during the creation of
the mega-widget.

1 INTRODUCTION 10

tixControl .income -label "Income: " -
variable income -options {

label.width 8
label.anchor e
entry.width 10
entry.borderWidth 3

}
tixControl .age -label "Age: " -variable
age -options {

label.width 8
label.anchor e
entry.width 10
entry.borderWidth 3

}
pack .income .age -side top

(Figure 1-5) Using the-options switch

Unaligned Labels Aligned Labels

(Figure 1-6) Using the-options Switch to Align the Labels

The use of the-options switch is illustrated in program 1-5, which creates
two TixControl widgets for the user to enter his income and age. Because of the
different sizes of the labels of these two widgets, if we create them haphazardly,
the output may look like fig 1-6.

To avoid this problem, we set the width of thelabel subwidgets of the
.income and.age widgets to be the same (8 characters wide) and set their-
anchor option toe (flushed to right), so that the labels appear to be well-aligned.
Program 1-5 also does other things such as setting theentry subwidgets to have

1 INTRODUCTION 11

a width of 10 characters and a border-width of 3 pixels so that they appear wider
and “deeper”. A better result is shown in figure 1-6.

As we can see from program 1-5, the value for the-options switch is a list
of one or more pairs of

subwidget-option-spec value..

subwidget-option-specis in the formsubwidget-name. option-name. For ex-
ample,label.anchor identifies theanchor option of thelabel subwidget,
entry.width identifies thewidth option of the entry subwidget, and so on.

Notice we must use thenameof the option, not thecommand-line switchof
the option. For example, the option that specifies the border-width of theentry
subwidget has the command-line switch-borderwidth but its name isbor-
derWidth (notice the capitalization on the name but not on the command-line
switch). Therefore, we have used the capitalized version of “entry.borderWidth
3” in program 1-5 and not “entry.borderwidth 3 ”. To find out the names
of the options of the respective subwidgets, please refer to their manual pages.

1.3.6 Configuring Subwidget Options Using the Tk Option Database

The -options switch is good if you want to specify subwidget options for one
or a few mega-widgets. If you want to specify the subwidget for many mega-
widgets, it is easier to use the Tk Option Database.

Options in the Tk Option Database can be specified using theoption com-
mand and the pathname of the widget. For all the Tix mega-widgets, it is guaran-
teed that the pathname of their subwidgets ends with thenameof the subwidgets.
For example, if we have a mega widget called.a.b.megaw and it has a subwid-
get whose name issubw, then we can be sure that the pathname of the subwidget
will be something like

.a.b.megaw.foo.bar.subw

Therefore, if we want to specify options for it in the Option Database, we can
issue commands like:

option add *a.b.megaw*subw.option1 value1
option add *a.b.megaw*subw.option2 value2

Notice that it will be wrong to issue the commands as:

1 INTRODUCTION 12

option add *TixControl*label.width 8
option add *TixControl*label.anchor e
option add *TixControl*entry.width 10
option add *TixControl*entry.borderWidth 3

tixControl .income -label "Income: " -variable
income
tixControl .age -label "Age: " -variable
age

pack .income .age -side top

(Figure 1-7) Using the Tk Option Database in Place of the-options switch

option add *a.b.megaw.subw.option1 value1
option add *a.b.megaw.subw.option2 value2

because in general we will not know whether the subwidget is an immedi-
ate child window of.a.b.megaw (such a decision is left to the mega-widget
implementor and may vary in different versions of the same mega-widget).

Program 1-7 demonstrates how the Tk Option Database can be used to achieve
the same effect as program 1-5.

1.3.7 Caution: Restricted Access

In the current implementation of Tix, there is no limits on how you can ac-
cess the options of the subwidgets. However, many options of the subwidgets
may be already used by the mega-widget in special ways. For example, the-
textvariable option of theentry subwidget of TixControl may be used to
store some private information for the mega widget. Therefore, you should ac-
cess the options of the subwidgets with great care. In general you should only
access those options that affect the appearance of the subwidgets (such as-font
or -foreground) and leave everything else intact. () { In future versions of
Tix, there will be explicit restrictions on which subwidget options you can access.
Errors will be generated if you try to access restricted subwidget options}

1 INTRODUCTION 13

1.4 Another Tix Widget: TixComboBox

TheTixComboBoxwidget is very similar to the ComboBox widgets available in
MS Windows and Motif 2.0. A TixComboBox consists of an entry widget and a
listbox widget. Usually, the ComboBox contains a list of possible values for the
user to select. The user may also choose an alternative value by typing it in the
entry widget. Figure 1-8 shows two ComboBoxes for the user to choose fonts and
character sizes. You can see fro the figure that a listbox is popped down from the
ComboBox for fonts for the user to choose among a list of possible fonts.

(Figure 1-8) The TixComboBox Widget

1.4.1 Creating a TixComboBox Widget

In program 1-9, we set up a ComboBox.c for the user to select an animal to
play with. If the user is just a dull person like you and me, he would just press
the arrow button and select a pre-designated animal such as “dog”. However, if
he wants to try something new, he could type “micky” or “sloth” into the entry
widget and he will get to play with his favorite animal.

Of course, sometimes we don’t want too many sloths around us and we want
to limit the range of the user’s selections. In this case we can do one of two things.
First, we can set the-editable option tofalse so that the user cannot type
in the entry widget at all. Alternatively, we can use the-validatecmd option
(see section 1.4.3) to check input the input.

tixComboBox .c -label "Animal:" -editable
true
.c insert end cat
.c insert end dog
.c insert end pig

(Figure 1-9) Creating a ComboBox

1 INTRODUCTION 14

1.4.2 Controlling the Style of the TixComboBox

The TixComboBox widget can appear in many different styles. If we set the-
dropdown option to true (which is the default), the listbox will only appear
when the user presses the arrow button. When-dropdown is set tofalse ,
the listbox is always shown and the arrow button will disappear because it is not
needed anymore.

There is also an option called-fancy . It is set tofalse by default. When
set totrue , a tick button and a cross button will appear next to the entry wid-
get. The tick button allows you to select again the value that’s already in the
ComboBox. If you press the cross button, the entry widget will be cleared.

1.4.3 Static Options

The -dropdown and-fancy options are so-called “static options”. They can
only be set during the creation of the ComboBox. Hence this code is valid:

tixComboBox .c -dropdown true
But the following code will generate an error because it attempts to set the

-dropdown optionafter the ComboBox has already been created.
TixComboBox .c

.c config -dropdown true
The restrictions of the static options, although annoying, nevertheless make

sense because we don’t want our interface to suddenly change its style. If some-
times a button is there and sometimes it disappear all by itself, that will certainly
create a lot of confusion and makes the user wonder why he should buy our soft-
ware. Also, as you will see in chapter 6, having some static options will make the
life of widget writers a lot easier.

Accessing the value of the ComboBox is very similar to accessing the value
of the TixControl widget. The ComboBox has these four options, which we dis-
cussed in section 1.2.2:-value , -variable , -command and-validatecmd .
You can use these four options to access the user input and respond to user actions
in exactly the same way as discussed in section 1.2.2.

1.4.4 Monitoring the User’s Browsing Actions

When the user drags the mouse pointer over the listbox, the listbox item under
the pointer will be highlighted and a “browse event” will be generated. If you
want to keep track of what items the user has browses through, you can use the
-browsecmd option. Here is an example:

1 INTRODUCTION 15

tixComboBox .c -browsecmd mybrowse
....

proc mybrowse {item} {
puts "user has browsed $item"

}
When the Tcl command specified by the-browsecmd option is called, it

will be called with one parameter: the current item that the user has highlighted.
The -browsecmd is useful because it gives the user the possibility of tem-

porarily seeing the results of several choices before committing to a final choice.
For example, we can list a set of image files in a ComboBox. When the user

single-clicks on an item on the ComboBox, we want to show a simplified view
of that image. After the user has browsed through several images, he can finally
decide on which image he wants by double-clicking on that item in the listbox.

The following is some pseudo Tcl code that does this. Please notice that the
-browsecmd procedure is called every time the user single-clicks on an item or
drags the mouse pointer in the listbox. The-command procedure is only called
when the user double-clicks on an item.

tixComboBox .c -dropdown false -browsecmd show_simple -
command load_fullsize
.c insert end "/pkg/images/flowers.gif"
.c insert end "/pkg/images/jimmy.gif"
.c insert end "/pkg/images/ncsa.gif"

proc show_simple {filename} {
Load in a simplified version of $filename

}

proc load_fullsize {filename} {
Load in the full size image in $filename

}
As we shall see, all Tix widgets that let us do some sort of selections have the

-browsecmd option. The-browsecmd option allows us to respond to user
events in a simple, straight-forward manner. Of course, you can do the same thing
with the Tk bind command, but you don’t want to do that unless you are very
fond of things like<Control-Shift-ButtonRelease-1 > and"%x %X
$w %W %w".

1 INTRODUCTION 16

1.5 The TixSelect Widget

The TixSelect widget figure 1-10 provides you the same kind of facility that is
available with the Tkradiobutton and checkbutton widgets. That is,
TixSelect allows the user to select one or a few values out of many choices. How-
ever, TixSelect is superior because it allows you to layout the choices in much
less space than what is required by the Tkradiobutton widgets. Also, TixS-
elect supports complicated selection rules. Because of these reasons, TixSelect is
a primary choice for implementing toolbar buttons, which often have strict space
requirements and complicated selection rules.

(Figure 1-10) The TixSelect Widget

1.5.1 Creating A TixSelect Widget

Program 1-11 shows how to create a TixSelect widget. At line 1 of program 1-11,
we create a TixSelect using the thetixSelect command.

Label and Orientation

As shown in program 1-11, with the-label option, we can put a label next to
the button subwidgets as the caption of the TixSelect widget. We can also control

tixSelect .fruits -label "Fruits: " -orientation
horizontal

.fruits add apple -text Apple -width 6

.fruits add orange -text Orange -width 6

.fruits add banana -text Banana -width 6
pack .fruits

(Figure 1-11) Creating a TixSelect Widget

1 INTRODUCTION 17

the layout of the button subwidgets using the-orientation option. The-
orientation option can have two values:horizontal (the default value)
or vertical , and the buttons are lied up accordingly. Figure 1-12 shows the
output of a TixSelect widget whose-orientation is set tovertical .

Creating the Button Subwidgets and Configuring Their Appearance

After we have created the TixSelect widget, we can create the button subwidgets
inside the TixSelect widget by theadd widget command (lines 2-4 of program
1-11).

The first argument to theadd command is the name of the button subwid-
get. Additional arguments can be given inoption-valuepairs to configure the
appearance of the button subwidget. Theseoption-valuepairs can be any of those
accepted by a normal TK button widget. As shown in program 1-11, we use the
-text option to put appropriate text strings over the three button subwidgets.

Notice that we also set the-width option of all the button subwidgets to 6
characters. This way, the three buttons will have the same width. If we didn’t
set the-width option for the button widgets, they will have different widths,
depending on their text string, and the result would look less esthetically pleasing
than buttons with same widths.

The output of program 1-11 is shown in figure 1-12

Horizontal Orientation Vertical Orientation

(Figure 1-12) The TixSelect Widget

Accessing the Button Subwidgets

We have already seen the concept of subwidgets and how they can be accessed
in section 1.3.1 — when we create a Tix mega-widget, some subwidgets are cre-
ated for us automatically. For example, the label and entry subwidgets inside a

1 INTRODUCTION 18

TixControl widget. We can access these subwidgets in a multitude of ways, in-
cluding using the subwidget method.

One thing about the subwidgets we saw in section 1.3.1 is that they are “static”,
meaning they are created when the mega-widget is created and they remain there
for the whole lifetime of the mega-widget.

The TixSelect widget takes us to a new concept:dynamic subwidgetsare sub-
widgets that can be created on-the-fly. After we add a new button into the TixS-
elect widget, we get a new subwidget. The name of this new subwidget is given
by the first parameter passed to theadd method. As the following code demon-
strates, we can access this new subwidget using thesubwidget method:

tixSelect .s
.s add apple -text Apple
.s add orange -text Orange
Mmmm..., let’s make the widget look more ed-
ucated
by using French words
.s subwidget apple config -text Pomme
.s subwidget orange config -text Orange

1.5.2 Specifying Selection Rules

For simple selection rules, you can use the-allowzero and-radio options.
The-allowzero option specifies whether the user can select none of the choices
inside the TixSelect widget. The-radio option controls how many buttons can
be selected at once: when set to true, the user can select only one button at a time;
when set to false, the user can select as many buttons as he desires.

With these two options, we can write a program using two TixSelect widgets
for little Jimmy to fill up his lunch box. On the Sandwich side, we set-radio
to true and-allowzero false . That means Jimmy can select one and only
one sandwich among beef, cheese or ham sandwiches. On the Veggie side, we
want to encourage Jimmy to consume as much veggie as possible, so we set the-
allowzero option tofalse . We also set the-allowzero option tofalse
so that Jimmy cannot get away with eating none of the vegetables (see program
1-13).

1 INTRODUCTION 19

tixSelect .sandwich -allowzero false -radio
true -label "Sandwich :"
.sandwich add beef -text Beef
.sandwich add cheese -text Cheese
.sandwich add ham -text Ham

tixSelect .vege -allowzero false -radio false
-label "Vegetable :"
.vege add bean -text Bean
.vege add carrot -text Carrot
.vege add lettuce -text Lettuce

(Figure 1-13) Specifying Simple Selection Rules

1.5.3 Accessing the Value of a TixSelect Widget

Thevalueof a TixSelect widget is a list of the names of the button subwidgets that
are currently selected. For example, in program 1-11, if the user has selected the
apple button, then the value of the TixSelect widget will beapple . If the user
has selected both the apple and the orange buttons, then the value will be the list
"apple orange" .

The TixSelect widget supports same set of options as the TixControl widget
for you to access its value: the-value option stores the current value, which
can be queried and modified using the cget and configure methods. You can also
use the-variable option to specify a global variable to store the value of the
TixSelect widget. The-command option specifies a TCL command to be called
whenever the user changes the selection inside a TixSelect widget. This command
is called with one argument: the new value of the TixSelect widget. There is
also the-disablecallback option which you can use to control whether the
command specified by the-command option should be called when the value of
the TixSelect changes.

1.5.4 Specifying Complex Selection Rules

If you want to have more complex selection rules for the TixSelect widget, you can
use the-validatecmd option. This option works the same as the-validatecmd
option of the TixControl widget which we discusses in section 1.2: it specifies a

1 INTRODUCTION 20

tixSelect .fruits -label "Fruits: " -radio false -

validatecmd TwoMax

.fruits add apple -text Apple -width 6

.fruits add orange -text Orange -width 6

.fruits add banana -text Banana -width 6

pack .fruits

proc TwoMax {value} {

if {[llength $value] > 2} {

return [lrange $value 0 1]

} else {

return $value

}

}

(Figure 1-14) Specifying More Complex Selection Rules

command to be called every time the user attempts to change the selection inside
a TixSelect widget.

In the example program 1-14, the procedureTwoMaxwill be called every time
the user tries to change the selection of the.fruits widget.TwoMaxlimits the
maximum number of fruits that the user to choose to be 2 by always truncating
the value of the TixSelect widget to have no more than two items. If you run this
program, you will find out that you can never select a third fruit after you have
select two fruits.

2 CONTAINER WIDGETS 21

2 Container Widgets

In addition to providing some nice-looking interface elements, Tix offers some
useful ways to organize the elements that you create. It does this by providing
container widgets, which are widgets designed to contain whatever you want to
put into them.

Different container widgets have different policies as to how they arrange the
widgets inside them. In this chapter, we’ll talk about TixNoteBook, which ar-
ranges its subwidgets using a notebook metaphor, TixPanedWindow, which ar-
ranges its subwidgets in non-overlapping horizontal or vertical panes, and a family
of “Scrolled Widgets”, which attach scrollbars to their subwidgets.

2.1 TixNoteBook

When your need to put a lot of information into your interface, you may find out
that your window has to grow intolerably big in order to hold all the information.
Having a window that’s 10000 pixels wide and 5000 pixels high doesn’t seem to
be the perfect solution. Of course, you can “chop up” your big window into a set
of smaller dialog boxes, but the user will most likely find it impossible to manage
20 different dialog boxes on their desktop.

The TixNoteBook (fig 2-1) widget comes into rescue. It allows you to pack a
large interface into manageable “pages” using a notebook metaphor: it contains
multiple pages with anything you want on them, displays one at a time, and at-
taches a tab to each page so the user can bring it forward with a single click on the
tab.

2.1.1 Adding Pages to a TixNoteBook

The example program in figure 2-2 creates the TixNoteBook widget shown in fig-
ure 2-1. In the first three lines, we create the notebook widget and two pages inside
it. While we create the pages, we also set the labels on the tabs associated with
each page and use the-underline option to indicate the keyboard accelerator
for each page.

Each time we create a page in the notebook using theadd method, a frame
subwidget is created for us automatically. This frame subwidget has the same
name as the page (the first parameter passed to theadd method). We can use

2 CONTAINER WIDGETS 22

(Figure 2-1) The TixNoteBook Widget

tixNoteBook .n

.n add hd -label "Hard Disk" -underline 0

.n add net -label "Network" -underline 0

set frame [.n subwidget hd]

tixControl $frame.access -label "Access Time:"

tixControl $frame.write -label "Write Through-

put:"

tixControl $frame.read -label "Read Throug-

put:"

tixControl $frame.capacity -label "Capacity:"

pack $frame.access $frame.write $frame.read

$frame.capacity

-side top -fill x

(Figure 2-2) Using The TixNoteBook Widget

the subwidget method to find out the pathname of this frame subwidget and
pack everything we want to display on the page into this frame widget. Lines 4-
10 of program 2-2 shows how to create the widgets inside the “Hard Disk” page.
Creating the widgets inside the “Network” page will be similar.

2 CONTAINER WIDGETS 23

2.1.2 Keyboard Accelerators

Note that in line 2-3 of program 2-2, we have indicated the keyboard accelerators
for the two pages using the-underline option. The value of this option is the
position of the character to be underlined in the string, where zero represents the
first character. When the user presses<Alt-N > or <Meta-N > the “Network”
page will be activated; on the other hand, if he presses<Alt-H > or <Meta-H >
the “Hard Disk” page will be activated. The TixNoteBook widget will automat-
ically create the keyboard bindings for these accelerators for us, in a way similar
to what the menu widget does, so there is no need to set the keyboard bindings
ourself.

2.1.3 Delaying the Creation of New Pages

If your notebook contains many complicated pages, it may take quite a while to
create all widgets inside these pages and your program will probably freezes for
a few seconds when it pops up the notebook for the first time. To avoid embar-
rassing moments like this, we can use the “delayed page creation” feature of the
TixNoteBook widget.

When we create a page using theadd method, we can specify the optional
parameter-createcmd so that we only need to create the page when the user
wants to see it. This is illustrated in program 2-3:

In line 2 of program 2-3, we use the-createcmd option to specify that the
procedureCreateHd should be called when the “Hard Disk” page needs to be
created.CreateHd takes one argument, the frame subwidget of the page. As we
can see, program program 2-3 is not very different than program 2-2, except now
we can issue less commands during the set-up of the NoteBook widget and the
interface can be started up more quickly.

2.1.4 Changing Page Tabs and Deleting Pages

To change the information in the tabs of the pages, we can use thepagecon-
figure method. For example, the following command:

.nb pageconfigure hd -label "Fixed Disk"

changes the label from “Hard Disk” to “Fixed Disk”. To delete a page, we can
use thedelete method.

2 CONTAINER WIDGETS 24

tixNoteBook .n
.n add hd -label "Hard Disk" -underline 0 -
createcmd CreateHd
.n add net -label "Network" -underline 0 -
createCmd CreateNet

proc CreateHd {frame} {
tixControl $frame.access -label "Access

Time:"
tixControl $frame.write -label "Write

Throughput:"
tixControl $frame.read -label "Read

Througput:"
tixControl $frame.capacity -label "Capac-

ity:"
pack $frame.access $frame.write

$frame.read $frame.capacity
-side top -fill x
}

proc CreateNet {frame} {
...

}

(Figure 2-3) Delayed Page Creation

2 CONTAINER WIDGETS 25

You should avoid using thepageconfigure anddelete . Your users will
just feel annoyed if the interface changes all the time and notebook pages appear
and disappear every now and then.

2.2 PanedWindow

TheTixPanedWindowwidget arranges arranges its subwidgets in non-overlapping
panes. As we can see in figure 2-4, the PanedWindow widget puts a resize handle
between the panes for the user to manipulate the sizes of the panes interactively.
The panes can be arranged either vertically (figure 2-4) or horizontally (2-4).

Each individual pane may have upper and lower limits of its size. The user
changes the sizes of the panes by dragging the resize handle between two panes.

Vertical Panes Horizontal Panes

(Figure 2-4) The TixPane Widget

2.2.1 Adding Panes Inside a TixPanedWindow Widget

You can create a TixPanedWindow widget using thetixPanedWindow com-
mand. After that, you can add panes into this widget using theadd method (see
program 2-5).

2 CONTAINER WIDGETS 26

tixPanedWindow .p
.p add pane1 -size 100
.p add pane2 -max 300

set p1 [.p subwidget pane1]
button $p1.b1 -text Button1
button $p1.b2 -text Button2
pack $p1.b1 $p1.b2 -side left -expand yes

set p2 [.p subwidget pane2]
button $p2.b -text "Another Button"
pack $p2.b -side left -expand yes -fill both

pack .p -expand yes -fill both

(Figure 2-5) Adding Panes into a TixPanedWindow Widget

When you use theadd method, there are several optional parameters which
you can use to control the size of each of the pane. The-min parameter controls
the minimum size of the pane and the-max parameter controls its maximum size.
These two parameters controls how much the user can expand or shrink a pane. If
neither is specified, then the pane can be expanded or shrunk without restrictions.

In addition, the -size parameter specifies the initial size of the pane. If it is not
specified, then the initial size of the pane will be its natural size.

In program 2-5, we set the initial size ofpane1 to 100 pixels using the -size
parameter. We don’t set the-size parameter forpane2 so it will appear in its
natural size. However, we use the-max option for pane2 so that the user can
never expand the size ofpane2 to more than 300 pixels.

2.2.2 Putting Widgets Inside the Panes

Each pane we have created using theadd method is essentially a frame widget.
After we have created the panes, we can put widgets inside them. As shown inside
program 2-5, we can use thesubwidget method to find out the name of the pane
subwidgets. Then we can just create new widgets as their children and pack these
new widgets inside the panes. The output of program 2-5 is shown in figure 2-6

2 CONTAINER WIDGETS 27

(Figure 2-6) Output of Program 2-5

2.2.3 Setting the Order of the Panes

Usually, when you create a new pane, it is always added to the bottom or right of
the list of panes. If you want to control the order in which the panes appear inside
the TixPanedWindow widget, you can use the two optional parameters,-before
and-after , for theadd method. For example, the call:

.p add pane2 -after pane1

will place the new pane immediately afterpane1 . The call:

.p add pane2 -before pane1

will place the new pane immediately in front ofpane1 .

2.2.4 Changing the Sizes of the Panes

If you want to change the sizes of the existing panes or change their maximum/minimum
size constraints, you can use thepaneconfigure method. For example, the
following code changes the size ofpane2 to 100 pixels and adjusts its minimum
size constraint to no less than 10 pixels:

.p paneconfigure pane2 -size 100 -min 10

2 CONTAINER WIDGETS 28

Notice that after you call thepaneconfigure method, the PanedWindow
may jitter and that may annoy the user. Therefore, use this method only when it is
necessary.

2.3 The Family of Scrolled Widgets

With plain Tcl/Tk, the widgets do not automatically come with scrollbars. If you
want to use scrollbars with the text, canvas or listbox widgets, you will need to
create scrollbars separately and attach them to the widgets. This can be a lot
of hassle because you would almost always need scrollbars for these widgets.
Sometimes you will wonder why you need to write the same boring code again
and again just to get the scrollbars to working.

The Tix scrolled widgets are here to make your life easier. With a single
command such astixScrolledListBox or tixScrolledText , you can
create a listbox or text widget that comes automatically with scrollbars attached.

Another advantage of the Tix scrolled widgets is that you can specify their
scrolling policy so that the scrollbars appear only when they are needed. This
feature is especially useful if you are displaying a lot of widgets and running out
of screen real estate.

2.3.1 The Scrolled Listbox Widget

You can create a scrolled listbox widget using thetixScrolledListBox
command. Notice that the widget created by thetixScrolledListBox com-
mand is not itself a listbox widget. Rather, it is a frame widget which contains two
scrollbar subwidgets: one is calledhsb (the horizontal scrollbar) and the other is
calledvsb (the vertical scrollbar). Similarly, the listbox being scrolled is also a
subwidget which is appropriately calledlistbox . Therefore, if we need to put
things into the listbox (as we always do!), we can use thesubwidget method.
As shown in program 2-7, we first find the pathname of thelistbox subwidget
by calling “.sl subwidget listbox ”. Then, we insert some items into the
listbox subwidget.

Also, as seen in the first line of program 2-7, we use the-scrollbar option
to control the scrolling policy of the TixScrolledListBox widget. Usually, we’ll set
it to “auto ”: the scrollbars are displayed only if they are needed. Other possible

2 CONTAINER WIDGETS 29

tixScrolledListBox .sl -scrollbar auto
set listbox [.sl subwidget listbox]

for {set x 0} {$x < 6} {incr x} {
$listbox insert end "This is item $x"

}

pack .sl -side left -expand yes -fill both

(Figure 2-7) Scrolled Listbox Widget

Scrollbars not displayed Scrollbars displayed only when needed

(Figure 2-8) Scrolled ListBox with Automatic Scrollbars

values are “both ”: the two scrollbars are always displayed; “x ”: the horizontal
scrollbar is always displayed, while the vertical scrollbar is always hidden; “y ”:
the opposite of “x ”; “ none ”: the two scrollbars are always hidden. The result of
program 2-7 is shown in figure 2-8.

2.3.2 Other Scrolled Widgets

The TixScrolledText widget is very similar to the TixScrolledListBox widget,
except it scrolls a text subwidget, which is calledtext . One problem with the
TixScrolledText widget, though, is its-scrollbar option doesn’t work in the
auto mode. This is due to a bug in Tk which doesn’t report the width of thetext
subwidget correctly. Until this bug is fixed in TK, theauto mode will behave the
same way as the both mode for the TixScrolledText widget.

2 CONTAINER WIDGETS 30

tixScrolledWindow .sw -scrollbar auto
set f [.sw subwidget window]

for {set x 0} {$x < 10} {incr x} {
frame $f.f$x
pack $f.f$x -side top -expand yes -fill

both
for {set y 0} {$y < 10} {incr y} {

entry $f.f$x.e$y -width 10
pack $f.f$x.e$y -side left -fill x

}
}

pack .sw -side left -expand yes -fill both

(Figure 2-9) Cheap Spreadsheet Application with TixScrolledWindow

Another scrolled-widget isTixScrolledWindow. Sometimes you have a large
number of widgets that can’t possibly be shown in the screen all at once and
your application doesn’t allow you to divide the widgets into several pages of a
TixNoteBook. In this case you can use TixScrolledWindow. It contains a frame
subwidget calledwindow . You can just create as many widgets as you need
as children of thewindow subwidget. An example is shown in program 2-9,
which uses the TixScrolledWindow widget to implement a “cheap” spreadsheet
application. The boxes of the spreadsheet are just entry widgets and they are
packed inside thewindow subwidget. The user will be able to scroll to different
parts of the spreadsheet if it is too large to fit in one screen.

There are two more scrolled-widgets in the Tix library:TixScrolledTList
scrolls a TixTList widget andTixScrolledHList scrolls a TixHList widget. The
subwidgets that they scroll are calledtlist andhlist , respectively. The use
of the TList and HList widgets will be described in the next chapters.

3 TABULAR LISTBOX AND DISPLAY ITEMS 31

3 Tabular Listbox and Display Items

3.1 tixTList – The Tix Tabular Listbox Widget

TixTList is the Tabular Listbox Widget. It displays a list of items in a tabular
format. For example the TixTList widget in figure 3-1 displays files in a directory
in rows and columns.

(Figure 3-1) Files Displayed in a TixTList Widget in a Tabular Format

(Figure 3-2) Employee Names Displayed in a TixTList Widget

3 TABULAR LISTBOX AND DISPLAY ITEMS 32

TixTList does all what the standard Tk listbox widget can do, i.e, it displays a
list of items. However, TixTList is superior to the listbox widget is many respects.
First, TixTList allows you to display the items in a two dimensional format. This
way, you can display more items at a time. Usually, the user can locate the desired
items much faster in a two dimensional list than the one dimensional list displayed
by the Tk listbox widget.

In addition, while the Tk listbox widget can only display text items, the TixTList
widget can display a multitude of types of items: text, images and widgets. Also,
while you can use only one font and one color in a listbox widget, you can use
many different fonts and colors in a TixTList widget. In figure 3-1, we use graph-
ical images inside a tixTList widget to represent file objects. In figure 3-2 , we
display the names of all employees of a hypothetical company. Notice the use of
a bold font to highlight all employees whose first name is Joe.

3.2 Display Items

Before we rush to discuss how to create the items inside a TixTList widget, let’s
first spend some time on a very important topic about the Tix library: the repa-
tionship between the display items and their host widgets.

We can better define the terms by taking a quick preview of the TixHList
widget, which will be covered in details in the next chapter. Let’s compare the
items displayed on the two widgets in figure 3-3. If we take a close look at the
item that shows theusr directory in the TixTList widget on the left versus the
TixHList widget on the right, we can see that this item appears exactly the same
on both widgets.

If fact, all the items in these two widgets are of thesametype: they all display
an image next to a textual name. The only difference between these two widgets is
how these items are arranged. The TixTList widget arranges the items in rows and
columns, while the TixHList widget arranges the items in a hierachical format.

With this observation in mind, we can see a separation of tasks berween the
widgets and the items they display. We call the TixHList and TixTList widgets
in figure 3-3host widgets: their task is to arrange the items according to their
particular rules. However, they don’t really care what these items display; they
just treat the items as rectangle boxes. In contrast, these items, which are called
display itemsin Tix terminology, controls the visual information they display,
such as the images, text strings, colors, fonts, etc. However, they don’t really care
where on the host widget they will appear.

3 TABULAR LISTBOX AND DISPLAY ITEMS 33

(Figure 3-3) The Same Type of Items Displayed in a TixTList (left) and a TixHList(right)

3.2.1 Advantages of Display Items

It is easy to see the advantages of seperating the display items from their host
widgets. First, the display items are easy to learn. Since they are the same across
different types of widgets. Once you learn about a type of display items, you will
know how to use them in all Tix widgets that support display items (currently these
include TixHList, TixTList and the spreadsheet widget TixGrid, but the number
is growing). In contrast, if you want to create a text item for the Tk widgets, you
will find out that the listbox, text, canvas and entry widget each have a different
method of creating and manipulating text items, and it is quite annoying to learn
each of them individually.

Second, the hosts widgets that use display items are extensible. Because of the
separation of task, the host widgets are not involved in the implementation details
of the display items. Therefore, if you add a new type of display items, such as
a animation type that displays live video, the host widgets will gladly take
them in and display them. You don’t need to modify the existing host widgets at
all. In contrast, if you want to display graphical images in the existing Tk listbox
widgets, you’d better set aside 100 hours to rewrite it completely!

Third, display items are good for writers of host widgets. Because now they
just need to implement the arrangement policy of the host widgets. They don’t
need to worry about drawing at all because it is all handled by the display items.
This is a significant saving in code because a widget that does not use display
items has to spend 30% of its C code to do the drawing.

3 TABULAR LISTBOX AND DISPLAY ITEMS 34

3.2.2 Display Items and Display Styles

The appearance of a display item is controlled by a set of attributes. For example,
the text attribute controls the text string displayed on the item and thefont
attribute specifies what font should be used.

Usually, each of the attributes falls into one of two categroies: “individual” or
“collective”. For example, each of the items inside a TixTList widget may display
a different text string; therefore we call the text string anindividual attribute.
However, in most cases, the items share the same color, font and spacing and we
call thesecollective attributes.

One question concerns where we keep the collective attribute for the display
items. Certainly, we can keep afont attribute for each item, but this is not really
an efficient solution. In fact, if all the items have the same font, we would be
keeping a duplicated copy of the same font for each of the items we create. Since
a host widget may have many thousands of items, keeping thousands of dupilcated
copys of the same font, or any other collective attributes, would be very wasteful.

(Figure 3-4) Relationship Between Display Items and Display Styles

3 TABULAR LISTBOX AND DISPLAY ITEMS 35

To avoid the unnecessary duplication of resources, Tix stores the collective
attributes in special objects calleddisplay styles. The relationship between display
items and their styles is depicted in figure 3-4. Each item holds its own copy of the
individual attributes, such astext . However, the collective attributes are stored
in the style objects. Each item has a specialstyle attribute that tells it which
style it should use. In figure 3-4 , since itemsa andb are assigned the same style,
therefore, they share the same font and color. Itemc is assigned a different style,
thus, it uses a different font thana andb.

3.3 Creating Display Items in the TixTList Widget

3.3.1 Creating Display Items

Now it’s time to put our knowledge about host widgets, display items and display
styles into practice. The following example code creates two items in a TixTList
widget using theinsert method:

tixTList .t
pack .t

.t insert end -itemtype text -text "First Item"
-underline 0
.t insert end -itemtype text -text "Second Item"
-underline 0

set picture [image create bitmap -file picture.xbm]
.t insert end -itemtype image -image $picture

As we can see, theinsert method of TixTList is very similar to theinsert
method of the standard Tk listbox widget: it inserts a new item into the TixTList
widget. The first argument it takes is the location of the new item. For example
0 indicates the first location in the list,1 indicates the second location, and so on.
Also the special keywordend indicates the end of the list.

Then, we can use the-itemtype switch to specify the type of display item
we want to create. There are currently four types of items to choose from:text ,
image , imagetext andwindow . In the above example, we create two items
of the typetext and one item of the typeimage . The subsequent arguments to
the insert method set the configuration options of the individual attributes of
the new item.

3 TABULAR LISTBOX AND DISPLAY ITEMS 36

3.3.2 Setting the Styles of the Display Items

Note that in the above example, if we want to control the foreground color of the
text items, we cannot issue commands such as:

.t insert end -itemtype text -text "First Item"
-foreground black

because-foreground is not an individual attribute of the text item. Instead,
it is a collective attribute and must be accessed using a display style object. To do
that we can use the commandtixItemStyle to create display styles, as shown
in the following example:

set style1 [tixDisplayStyle text -font 8x13]
set style2 [tixDisplayStyle text -font 8x13bold]

tixTList .t; pack .t

.t insert end -itemtype text -text "First Item"
-underline 0
-style $style1
.t insert end -itemtype text -text "Second Item"
-underline 0
-style $style2
.t insert end -itemtype text -text "Third Item"
-underline 0
-style $style1

The first argument oftixDisplayStyle specify the type of style we want
to create. Each type of display item needs its own type of display styles. There-
fore, for example, we cannot create a style of typetext and assign it to an item
of type image . The subsequent arguments totixDisplayStyle set the con-
figuration options of the collective attributes defined by this style. A complete
list of the configuration options of each type of the display style is in figures ???
through ???.

The tixDisplayStyle command returns the names of the newly created
styles to us and we use the variablesstyle1 andstyle2 to store these names.
We can then assign the styles to the display items by using the names of the styles.
As shown in figure 3-5, by assing these two styles to the-style option of the

3 TABULAR LISTBOX AND DISPLAY ITEMS 37

display items, we assigned a medium-weight font to the first and third item and a
bold font to the second item.

Threetext items in a TixTList Thetext items with fonts switched

(Figure 3-5) Two Display Styles With Different Fonts

The name of the style returned bytixDisplayStyle is also the name of
a command which we can use to control the style. For example, we can use the
following commands to switch the fonts in the two styles we created in the above
example:

$style1 configure -font 8x13bold
$style2 configure -font 8x13

After the execution of the above command, the font in the second item in the
TixTList widget becomes medium-weight and the font in the first and third items
becomes bold, as shown in figure 3-5.

3.3.3 Configuring and Deleting the Items

You can configure the individual attributes of the items using theentrycon-
figure method. There is also the entrycget method for querying the attributes
of the items. Todelete the items, you can use the delete method. In the fol-
lowing example, we use these two methods to change the first and third items to
display the text stringsOne andTwo and change the third item to use the style
$style2 . Then we delete the second item using thedelete command.

.t entryconfigure 0 -text One
.t entryconfigure 2 -text Two
.t delete 1

3 TABULAR LISTBOX AND DISPLAY ITEMS 38

3.3.4 Choosing the Orientation and Number of Rows or Columns

There are three options that controls the layout of the items in the TixTList widget.
The -orientation option can be set to either vertical or horizontal. When
-orientation is set tovertical , the items are laid out vertically from top
down and wrapped to the next column when the bottom is reached (see figure 3-6).
The opposite layout policy is chosen if-orientation is set tohorizontal
(see figure 3-6).

When the-orientation option is set tovertical , normally the number
of columns displayed depends on the number of items in the TixTList widget: the
more items there are, the more columns will there be. However, we can use the
-columns option to control the number of columns: the items will be wrapped
in a way so that the number of columns produced will be exactly as dicated by the
-columns option.

One use of the-columns option is to specify the same layout policy as that
of the standard Tk listbox widget. We can do this by setting-orientation to
vertical and-columns to 1. This way we can get a replacement listbox widget
that can display multiple fonts and colors and graphics!

The counterpart of the-columns option is the-rows option, which is used
for the same purpose when the-orientation option is set tohorizontal .

3.3.5 Event Handling

You can handle the events in a TList widget using the-browsecmd and -
commandoptions. The meanings of these two options are silimar to their mean-
ings in other Tix widgets such as the ComboBox. Usually, the command specified
by -browsecmd is called when the user clicks or drags the mouse over the items
or presses the arrow keys. The command specified by-command is called when
the user double-clicks or presses the Return key. These commands are called with
one extra argument — the index of the currently “active” item, which is usually
the item under the mouse cursor.

3.3.6 Selection

The -selectmode option controls how many items the user can select at one
time. In thesingle andbrowse mode, the user can select only one item at a
time. In themultiple andextended mode, the user can select multiple items;

3 TABULAR LISTBOX AND DISPLAY ITEMS 39

Vertical Orientation Horizontal Orientation

(Figure 3-6) The-orientation option of the TixSelect Widget

theextended mode allows disjoint selections while themultiple mode does
not.

Normally, the user selects the items using the mouse or the keyboard. You
can find out which items the user has selected with theinfo selection
method, which returns a list of the currently selected items. You can also set
the selection using theselection set method. For example, the command
.tlist selection set 3 selects the item whose index is3. The command
.tlist selection set 2 10 selects all the items at index2 through10 .
The methodselection clear empties the selection.

4 HIERARCHICAL LISTBOX 40

4 Hierarchical Listbox

4.1 TixHList – The Tix Hierarchical Listbox Widget

TixHList is the Tix Hierarchical Listbox Widget. You can use it to display any
data that have a hierarchical structure. For example, the HList widget in figure 4-
1 displays a Unix file system directory tree; the HList widget in figure 4-1 displays
the corporate hierarchy of a hypothetical company. As shown in these two figures,
the entries inside the TixHList widget are indented can be optionally connected
by branch lines according to their positions in the hierarchy.

Directory Tree Display A Corporate Hierarchy

(Figure 4-1) Examples of the TixHList Widget

4.1.1 Creating a Hierarchical List

A TixHList widget can be created by the commandtixHList . However, most
likely, you would want to create a TixHList with scrollbars attached. Therefore,
usually you will use thetixScrolledHList command to create a scrolled
hierarchical listbox (line 1 in program 4-2). ThetixScrolledHList com-
mand is very similar to theTixScrolledListBox command we saw in sec-
tion 2.3.1. It creates a TixHList subwidget of the namehlist and attaches two
scrollbars to it.

4 HIERARCHICAL LISTBOX 41

tixScrolledHList .sh -options {
hlist.itemType text
hlist.drawBranch false
hlist.indent 8

}
pack .sh -expand yes -fill both
set hlist [.sh subwidget hlist]

$hlist add foo -text "foo"
$hlist add foo.bar -text "foo’s 1st son"
$hlist add foo.bor -text "foo’s 2nd son"
$hlist add foo.bar.bao -text "foo’s 1st son’s
1st son"
$hlist add foo.bar.kao -text "foo’s 1st son’s
2nd son"
$hlist add dor -text "dor, who has no
son"

(Figure 4-2) Creating Entries in a HList Widget

As shown in the first five lines in program 4-2, we create a scrolled TixHList
widget, using the-options switch (see section 1.3.5) to set several options
for thehlist subwidget (we’ll talk about these options shortly). Then, we can
access the HList subwidget widget using thesubwidget hlist method (line
7 in program 4-2).

4.1.2 Creating Entries in a HList Widget

Each entry in an HList widget has a unique name, called itsentry-path, which de-
termines each entry’s position in the HList widget. The entry-paths of the HList
entries are very similar to the pathnames of Unix files. Each entry-path is a list of
string names separated by aseparator character. By default, the separator char-
acter is the period character (.), but it can be configured using the-separator
option of the HList widget.

4 HIERARCHICAL LISTBOX 42

(Figure 4-3) Output of Program 4-2

In program 4-3, we add several new entriesfoo , foo.bar , foo.bor , foo.bar.bao ,
.. etc, into the HList widget using theadd method. The relationship between
the entries is signified by their names, in a way similar to how Unix denotes di-
rectories and subdirectories. For example,foo is theparentof foo.bar and
foo.bor ; foo.bar is the parent offoo.bar.bao , and so on. As far as the
terminology goes, we also say thatfoo.bar a child of foo ; foo is anancestor
of foo.bar.bao andfoo.bar.bao is adescendantof foo .

The output of program 4-2 is shown in figure 4-3. As we can see, the entries
are displayed under their parents with the amount of indentation control by the
-indent option of the HList widget:foo.bar.bao andfoo.bar.kao are
display underfoo.bar , which is in turn displayed underfoo .

Entries with no parents, for example,foo anddor in program 4-2, are called
top-level entries. Top-level entries are usually entries with no immediate superiors
in a hierarchical. For example, the owner of a company, the principle of a school
or the root directory of a Unix file system. Toplevel entries are displayed with no
indentation.

As evident from program 4-2, all entries who entry-path does not contain a
separator character are top-level entries. The only exception is the separator char-
acter itself is also a toplevel entry. This makes it easy to display Unix file and
directory names inside the HList widget, as shown in program 4-4.

4 HIERARCHICAL LISTBOX 43

set folder [tix getimage folder]
tixScrolledHList .sh -options {

hlist.separator /
hlist.itemType imagetext
hlist.drawBranch true
hlist.indent 14
hlist.wideSelection false

}
pack .sh -expand yes -fill both
set hlist [.sh subwidget hlist]

foreach directory {/ /usr /usr/bin /usr/local
/etc /etc/rc.d} {

$hlist add $directory -image $folder -text
$directory
}

(Figure 4-4) Displaying Directories in a HList Widget

(Figure 4-5) Output of Program 4-4

4 HIERARCHICAL LISTBOX 44

Each entry is associated with a display item (see section 3.2 about display
items). We can use the-itemtype option of the HList widget to specify the
default type of display item to be created by the theadd method, as shown in
program 4-2 and 4-4. Alternatively, we can also specify the type of display item
using the-itemtype option for theadd method.

4.1.3 Controlling the Layout of the Entries

There are two options to control the layout of the entries: the-showbranch
option specifies whether branch lines should be drawn between parent entries and
their children. The-indent option controls the amount of relative indentation
between parent and child entries. Notice the-drawbranch option is turned
on in figure 4-5 but turned off in figure 4-3. Usually, you need to set a bigger
indentation when the branches are shown — we used an indentation of 14 pixels
in 4-5 compared to 8 pixels in 4-3 .

4.1.4 Handling the Selection and User Event

The handling of the selection and user events for the HList widget is very similar
to the TList widget (see section 3.3.5), except that for the HList widget all the
operations are based on entry-paths, not list indices. The methodsinfo se-
lection , selection set andselection clear can be used to query,
set or clear the selection; the option-selectmode controls how many entries
can be selected at a time; the options-browsecmd and-command can be used
to specify a command to be called to handle user events.

There is one more option worth mentioning: the-wideselection op-
tion. When set totrue , the selection highlight will be drawn across the whole
HList widget (see figure 4-3). When set to false, selection highlight will be
drawn as wide as the selected entry (see figure 4-5). Normally, you would set
-wideselection to false when you useimagetext items inside (as we
did in program 4-4).

4.2 Creating Collapsible Tree Structures with TixTree

The TixTree widget is based on the TixScrolledHList widget; you can use it to
create a collapsible hierarchical structure so that the user can conveniently navi-
gate through a large number of list entries. As shown in figure 4-7, the TixTree
puts the little “+” and “- ” icons next to the branches of an HList entry that has

4 HIERARCHICAL LISTBOX 45

set folder [tix getimage folder]
tixTree .tree -command Command -options {

hlist.separator /
hlist.itemType imagetext
hlist.drawBranch true
hlist.indent 18

}
pack .tree -expand yes -fill both
set hlist [.tree subwidget hlist]

foreach directory {/ /usr /usr/bin /usr/local
/etc /etc/rc.d} {

$hlist add $directory -image $folder -text
$directory
}
.tree autosetmode

proc Command {entry} {
puts "you have selected $entry"

}

(Figure 4-6) Creating a Collapsible Hierarchy

descendants. These two icons are knows as the open and close icons, respectively.
When the user presses the open icon next to an entry, its immediate children of
an entry will be displayed. Conversely, when the user presses the close icon, the
entry’s children will become hidden.

Program 4-6 shows how to create a collapsible tree. We first create a TixTree
widget. Then we add the entries in your hierarchical structure into itshlist
subwidget using the add method of this subwidget. When we are finished with
adding the entries, we just call theautosetmode method of the TixTree widget,
which will automatically adds the open and close icons next to the entries who
have children.

4 HIERARCHICAL LISTBOX 46

(Figure 4-7) Output of Program 4-6

Note that in program 4-6 we use the-command option of the TixTree widget,
not the-command option of itshlist subwidget. This is because the TixTree
actually used the-command option of its hlist subwidget to process some
low-level events. In general, if both a mega-widget and its subwidget have the
options of the same name, you would always use the option that belongs to the
mega-widget.

5 SELECTING FILES AND DIRECTORIES 47

5 Selecting Files and Directories

One task that an application has to perform frequently is to ask the user to select
files or directories. To select files, you can use the TixFile Selection Widgets:
TixFileSelectDialog and TixExFileSelectDialog. To select directories, you can
use the TixDirectory Selection Widgets: TixDirList and TixDirTree.

5.1 File Selection Dialog Widgets

There are two file dialog widgets inside Tix: the TixFileSelectDialog (figure 5-
2) is similar to the FileSelectionDialog widget in Motif; TixExFileSelectDialog
(figure 5-3) looks like its conunterpart in MS Windows. Both widgets let the user
navigate through the file system directories and select a file.

One advanced feature of both types of file selection boxes is they use Com-
boBoxes to store the files, directories and patterns the user has selected in the
past. If the user wants to select the same files again, he can simply open the
ComboBoxes and click on his past inputs. This saves a lot of keystrokes and is
especially useful when the user needs to switch among several files or directories.

5.1.1 Using the TixFileSelectDialog Widget

An example of using the TixFileSelectDialog widget is in figure 5-1 . At line 1,
we create a TixFileSelectDialog widget and set the title of the dialog to “Select
A File” using the-title option. We also use the-command option to specify
that the procedureselectCmd should be called when the user has selected a
file. selectCmd will be called with one parameter, the filename selected by the
user. When the TixFileSelectDialog widget is created, it is initially not shown on
the screen. Therefore, at line 3, we call itspopup widget command to place the
widget on the screen.

5.1.2 The Subwidget in the TixFileSelectDialog

We may also want to set other options for the file dialog such as its file filter and
working directory. To do this, we must know the composition of the TixFileS-
electDialog widget. As shown in figure 5-2, the TixFileSelectDialog contains a
subwidgetfsbox of the type TixFileSelectBox and a subwidgetbbox of the type
TixStdButtonBox.

5 SELECTING FILES AND DIRECTORIES 48

tixFileSelectDialog .file -title "Select A File" -
command selectCmd
.file subwidget fsbox config -pattern "*.txt" -
directory /usr/info
.file popup

proc selectCmd {filename} {
puts "You have selected $filename"

}

(Figure 5-1) Using the TixFileSelectDialog

(Figure 5-2) The Composition of a TixFileSelectDialog Widget

5 SELECTING FILES AND DIRECTORIES 49

The fsbox subwidget supports the-pattern and-directory options.
At line 2 of figure 5-1, we use the-directory option to tell thefsbox sub-
widget to display files in the directory/usr/info ; we also use the-pattern
option to specify we only want the filenames that has thetxt extension.

The fsbox subwidget also supports the-selection option, which stores
the filename currently selected by the user. We can query this value by thecget
widget command of thefsbox subwidget.

Remember that the-pattern , -directory and -selection options
do not belong to the TixFileSelectDialog widget. A common mistake that people
make is to try to configure the non-existent-pattern option of the TixFileS-
electDialog, which causes much despair, long error messages and great loss of
self-confidence.Always remember:, when you want to configure an option, find
out whether it belongs to the widget or its subwidgets.

5.1.3 The TixExFileSelectDialog Widget

(Figure 5-3) The ExFileSelectDialog Widget

5 SELECTING FILES AND DIRECTORIES 50

The TixExFileSelectDialog widget is very similar to the TixFileSelectDialog
widget. It supports all the options and widget commands of the latter, so essen-
tially we can just take the program 5-1 and replace the commandtixFileSe-
lectDialog in the first line totixExFileSelectDialog .

The composition of the TixExFileSelectDialog widget is a bit different: it
contains one contains one subwidget, which is also calledfsbox , of the type
TixExFileSelectBox widget (figure 5-3). Again thisfsbox widgets supports all
widget options and commands of thefsbox subwidget in TixFileSelectDialog,
so the line 2 of program 5-1 can work for TixExFileSelectDialog widgets without
any change.

5.1.4 Specifying File Types for TixExFileSelectDialog

The TixExFileSelectBox widget has a ComboBox subwidget marked as “Select
Files of Type:” (see figure 5-3). This widget contains some pre-set types of files
for the user to choose from. For example, a word processor program can include
choices such as “Microsoft Word Documents” and “WordPerfect Documents”.

The TixExFileSelectBox widget has a-filetypes option for this purpose.
As shown in line 3 through 7 in program 5-4, the value for the-filetypes
option is a list. Each item in the list should contain two parts. The first part is a
list of file patterns and the second part is the textual name for this type of files.

5.1.5 Thetix filedialog Command

TixExFileSelectDialog and TixFileSelectDialog are very similar to each other. So
which one should we use? That is just a matter of taste. However, since we know
that programmers usually have bad taste, clever programmers would rather step
aside and let the users exercise their own taste. To do this, we can use thetix
filedialog command.

For any programs based on Tix, the user can choose his preferred type of file
dialog by setting the X resourceFileDialog to eithertixFileSelectDi-
alog or tixExFileSelectDialog . This can usually be done by inserting a
line similar to the following into the user’s.Xdefaults file:

*myapp*FileDialog: tixExFileSelectDialog

When we call the commandtix filedialog , it will return a file dialog
widget of the user’s preferred type.

5 SELECTING FILES AND DIRECTORIES 51

set dialog [tix filedialog]
$dialog -title "Select A File" -command se-
lectCmd
$dialog subwidget fsbox config -pattern
"*.txt" -directory /usr/info
if {[winfo class $dialog] == "TixExFileSelect-
Dialog"} {

$dialog subwidget fsbox config -filetypes
{

{{*} {* - All files}}
{{*.txt} {*.txt - Text files}}
{{*.c} {*.c - C source

files}}
}

}
$dialog popup

proc selectCmd {filename} {
puts "You have selected $filename"

}

(Figure 5-4) Using thetix dialog command

The advantage of usingtix filedialog is it makes coding flexible. If the
management suddenly mandates that we dump the Motif look-and-feel in favor of
the MS Windows look-and-feel, we don’t need to dig up every line oftixFile-
SelectDialog calls and replace it withtixExFileSelectDialog . Also,
tix filedialog creates only one copy of the file dialog, which can be shared
by different parts of the program. Therefore, we can avoid creating a separate file
dialog widget for each of the “Open”, “Save” and “Save As” commands in our
application. This way, we can save resource since a file dialog is a large widget
and it takes up quite a bit of space.

The use of thetix filedialog command is shown in program 5-4 . This
program is very similar to what we saw in program 5-1 , except now we aren’t
really sure which type of file dialog the user have chosen. Therefore, if we want
to do something allowed for only one type of file dialogs, we have to be careful. At

5 SELECTING FILES AND DIRECTORIES 52

tixDirList .d -value /home/ioi/dev
-command "selectDir" -browsecmd "selectDir"
pack .d

proc selectDir {dir} {
puts "now you select $dir"

}

(Figure 5-5) Using the TixDirList widget

line 4 of program 5-4, we use thewinfo command to see whether the type of the
file dialog is TixExFileSelectDialog. If so, we set the value for the-filetypes
option of itsfsbox subwidget.

5.2 Selecting Directories with the TixDirTree and TixDirList
Widgets

There are two Tix widgets for selecting a directory: TixDirList (figure 5-6) and
TixDirTree (figure 5-6). Both of them display the directories in a hierarchical
format. The display in the TixDirList widget is more compact: it shows only the
parent- and child-directories of a particular directory. The TixDirTree widget, on
the other hand, can display the whole tree structure of the file system.

The programming interface of these two widgets are the same and you can
choose the which one to use depending on your application. As shown in the
following example, you can use the-directory option of the TixDirList wid-
get to specify a directory to display. In the example, we set-directory to
be /home/ioi/dev . As a result, the TixDirList widget displays all the subdi-
rectories and all the ancestor directories of/home/ioi/dev . You can use the
-command and-browsecmd options to handle the user events: a double click
or Return key-stroke will trigger the-command option and a single click or space
bar key stroke will trigger the-browsecmd option. Normally, you would handle
both type of events in the same manner, as we have done in program 5-5

5 SELECTING FILES AND DIRECTORIES 53

DirTree DirList

(Figure 5-6) The DirTree and DirList Widgets

6 TIX OBJECT ORIENTED PROGRAMMING 54

6 Tix Object Oriented Programming

This chapter is intended for experienced programmers who want to create new Tix
widgets. If you just want use the Tix widgets in your applications, you can skip
this chapter.

6.1 Introduction to Tix Object Oriented Programming

Tix comes with a simple object oriented programming (OOP) framework, theTix
Intrinsics, for writing mega-widgets. The Tix Intrinsics is not a general purpose
OOP system and it does not support some features found in general purpose OOP
systems such as[incr Tcl] . However, the Tix Intrinsics is specially designed
for writing mega-widgets. It provides a simple and efficient interface for creating
mega-widgets so that you can avoid the complexity and overheads of the general
purpose OOP extensions to Tcl.

The hard thing about programming with mega-widgets is to make sure that
each instance you create can handle its own activities. Events must be directed
to the right widget, procedures must act on data that is internal to that widget,
and users should be able to change the options associated with the widget. For
instance, we’ll show an arrow widget that needs to know what direction it’s point-
ing; this requires each instance of the widget to have its own variable.

Furthermore, each widget should respond properly to changes requested by
the application programmer during the program’s run. The whole reason people
use Tcl/Tk is because they can alter things on the fly.

The advantage of an object-oriented programming system is that you can eas-
ily associate a widget with its own data and procedures (methods). This chapter
shows how to do that, and how to configure data both at the time the widget is
initialized and later during the program.

6.1.1 Widget Classes and Widget Instances

All the mega-widget classes in Tix, such as TixComboBox and TixControl, are
implemented in the Tix Intrinsics framework. Also, you can write newwidget
classeswith the Tix Intrinsics. In the next section, I’ll go through all the steps
of creating a new widget class in Tix. I’ll illustrate the idea using a new class
“TixArrowButton” as an example. TixArrowButton is essentially a button that
can display an arrow in one of the for directions (see figure 6-1).

6 TIX OBJECT ORIENTED PROGRAMMING 55

(Figure 6-1) Arrow Buttons

Once you have defined your classes, you can createwidget instancesof these
classes. For example, the following code will create four instances of your new
TixArrowButton class:

tixArrowButton .up -direction n
tixArrowButton .left -direction e
tixArrowButton .right -direction w
tixArrowButton .down -direction s

6.1.2 What is in a Widget Instance

Each widget instance is composed of three integral parts: variables, methods and
component widgets

Variables

Each widget instance is associated with a set of variables. In the example of an
instance of the TixArrowButton class, we may use a variable to store the direction
to which the arrow is pointing to. We may also use a variable to count how many
times the user has pressed the button.

Each variable can be public or private. Public variables may be accessed by
the application programmer (usually viaconfigure or cgetmethods) and
their names usually start with a dash (-). They usually are used to represent some
user-configurable options of the widget instance. Private variables, on the other
hand, cannot be accessed by the application programmer. They are usually used to
store information about the widget instance that are of interests only to the widget
writer.

All the variables of an instance are stored in a global array that has the same
name as the instance. For example, the variables of the instance.up are stored

6 TIX OBJECT ORIENTED PROGRAMMING 56

in the global array.up: . The public variable-direction , which records the
direction to which the arrow is pointing to, is stored in.up(-direction) .
The private variablecount , which counts how many times the user has pressed
the button, is stored in.up(count) . In comparison, the same variables of the
.down instance are stored in.down(-direction) and.down(count) .

Methods

To carry out operations on the widget, you define a set of procedures calledmeth-
ods(to use common object-oriented terminology). Each method can be declared
as public or private.Public methodscan be called by the application programmer.
For example, if the TixArrowButton class supports the public methodsinvoke
and invert , the application programmer can issue the commands to call these
method for the widget instance.up .

.up invert
.up invoke

In contrast,Private methodsare of interests only to widget writers and cannot
be called by application programmers.

Component Widgets

A Tix mega-widget is composed of one or more component widgets. The main
part of a mega-widget is called theroot widget, which is usually a frame widget
that encompasses all other component widgets. The other component widgets are
calledsubwidgets.

The root widget has the same name as the the mega-widget itself. In the above
example, we have a mega-widget called.up . It has a root widget which is a
frame widget and is also called.up . Inside .up we have a button subwidget
called.up.button .

Similar to variables and methods, component widgets are also classified into
public and private component widgets. Only public widgets may be accessed by
the application programmer, via thesubwidget method (see section 1.3.1) of
each widget instance.

6 TIX OBJECT ORIENTED PROGRAMMING 57

6.2 Widget Class Declaration

The first step of writing a new widget class is to decide the base class from which
the new class. Usually, if the new class does not share any common features with
other classes, it should be derived from the TixPrimitive class. If it does share
common features with other classes, then it should be derived from the appro-
priate base class. For example, if the new class support scrollbars, it should be
derived from TixScrolledWidget; if it displays a label next to its “main area”, then
it should be derived from TixLabelWidget.

In the case of our new TixArrowButton class, it doesn’t really share any com-
mon features with other classes, so we decide to use the base class TixPrimitive
as its superclass.

6.2.1 Using the tixWidgetClass Command

We can use thetixWidgetClass command to declare a new class. The syntax
is:

tixWidgetClass classCommandName {
-switch value
-switch value
....

}

For example, the following is the declaration section of TixArrowButton:
We’ll look at what each option means as I describe the command in the fol-

lowing sections.
The first argument fortixWidgetClass is thecommand namefor the wid-

get class (tixArrowButton). Command names are used to create widgets of
this class. For example, the code

tixArrowButton .arrow

creates a widget instance.arrow of the class TixArrowButton. Also, the com-
mand name is used as a prefix of all the methods of this class. For example, the
Foo andBar methods of the class TixArrowButton will be written astixAr-
rowButton:Foo andtixArrowButton:Bar .

Theclass nameof the class (TixArrowButton)is specified by the-classname
switch inside the main body of the declaration. The class name is used only to

6 TIX OBJECT ORIENTED PROGRAMMING 58

tixWidgetClass tixArrowButton {
-classname TixArrowButton
-superclass tixPrimitive
-method {

flash invoke invert
}
-flag {

-direction -state
}
-configspec {

{-direction direction Direction e}
{-state state State normal}

}
-alias {

{-dir -direction}
}
-default {

{*Button.anchor c}
{*Button.padX 5}

}
}

(Figure 6-2) declaration of the TixArrowButton Class

specify options in the TK option database. For example, the following commands
specifies the TixArrowButton widget instances should have the default valueup
for their -direction option and the default valuenormal for their -state
option.

option add *TixArrowButton.direction up
option add *TixArrowButton.state normal

Notice the difference in the capitalization of the class name and the command
name of the TixArrowButton class: both of them has the individual words capital-
ized, but the command name (tixArrowButton)starts with a lower case letter
while the class name (TixArrowButton) starts with an upper case letter. When
you create your own classes, you should follow this naming convention.

6 TIX OBJECT ORIENTED PROGRAMMING 59

The -superclass switch specifies the superclass of the new widget. In
our example, we have set it totixPrimitive . Again, pay attention to the
capitalization: we should use the command name of the superclass, not its class
name.

6.3 Writing Methods

After we have declared the new widget class, we can write methods for this class
to define its behavior. Methods are just a special type of TCL procedures and they
are created by theproc command. There are, however, three requirements for
methods. First, their names must be prefixed by the command name of their class.
Second, they must accept at least one argument and the first argument that they
accept must be calledw. Third, the first command executed inside each method
must be:

upvar #0 $w data

For example, the following is an implementation of the invert method for the
class TixArrowButton:

proc tixArrowButton:invert {w} {
upvar #0 $w data

set curDirection $data(-direction)
case $curDirection {

n {
set newDirection s

}
s {

set newDirection n
}
....

}
}

Notice that the name of the method is prefixed by the command name of the
class (tixArrowButton). Also, the first and only argument that it accepts isw
and the first line it executes is “upvar #0 $w data ”.

The argumentwspecifies which widget instance this method should act upon.
For example, if the user has issued the command

6 TIX OBJECT ORIENTED PROGRAMMING 60

.up invert

on an instance.up of the class tixArrowButton, the methodtixArrowBut-
ton:invert will be called and the argumentwwill have the value.up .

The invert method is used to invert the direction of the arrow. Therefore,
it should examine the variable.up(-direction) , which stores the current
direction of the instance.up , and modify it appropriately. It turns out that in
TCL, the only clean way to access an array whose name is stored in a variable is
the “upvar #0 $w data ” technique: essentially it tells the intepreter that the
array data should be an alias for the global array whose name is stored in$w. We
will soon see how the widget’s methods use the data array.

Once the mysterious “upvar #0 $w data ” line is explained, it becomes
clear what the rest of thetixArrowButton:invert method does: it exam-
ines the current direction of the arrow, which is stored in$data(-direction)
and inverts it.

6.3.1 Declaring Public Methods

All the methods of a class are by default private methods and cannot be accessed
by the application programmer. If you want to make a method public, you can
include its name in the-method section of the class declaration. In our TixAr-
rowButton example, we have declared that the methodsflash , invert and
invoke are public methods and they can be accessed by the application pro-
grammer. All other methods of the TixArrowButton class will be private. Usu-
ally, the names of private methods start with a capital letter with individual words
capitalized. The names of public methods start with a lowercase letter.

6.4 Standard Initialization Methods

Each new mega-widget class must supply three standard initialization methods.
When an instance of a Tix widget is created, three three methods will be called to
initialize this instance. The methods areInitWidgetRec , ConstructWid-
get andSetBindings and they will be called in that order. The following
sections show how these methods can be implemented.

6.4.1 The InitWidgetRec Method

The purpose of theInitWidgetRec method is to initialize the variables of the
widget instance. For example, the following implementation oftixArrowBut-

6 TIX OBJECT ORIENTED PROGRAMMING 61

ton:InitWidgetRec sets thecount variable of each newly created instance
to zero.

proc tixArrowButton:InitWidgetRec {w} {
upvar #0 $w data

set data(count) 0
}

Earlier, we showed how each widget you create is associated with an array of
the same name. Within the methods, you always refer to this array through the
namedata –the method then works properly in each instance of the widget.

Chaining Methods

The above implementation is not sufficient because our TixArrowButton class is
derived from TixPrimitive. The class derivation in Tix is basically anis-a relation-
ship: TixArrowButtonis a TixPrimitive. TixPrimitive defines the methodtix-
Primitive:InitWidgetRec which sets up the instance variables of every
instance of TixPrimitive. Since an instance of TixArrowButton is also an instance
of TixPrimitive, we need to make sure that the instance variables defined by Tix-
Primitive are also properly initialized. The technique of calling a method defined
in a superclass is called thechainingof a method. The following implementation
does this correctly:

proc tixArrowButton:InitWidgetRec {w} {
upvar #0 $w data

tixPrimitive:InitWidgetRec $w
set data(count) 0

}

Notice thattixPrimitive:InitWidgetRec is called before anything
else is done. This way, we can define new classes by means of successive refine-
ment: we can first ask the superclass to set up the instance variables, then we can
modify some of those variables when necessary and also define new variables.

6 TIX OBJECT ORIENTED PROGRAMMING 62

The tixChainMethod call

The above implementation oftixArrowButton:InitWidgetRec is correct
but it may be cumbersome if we want to switch superclasses. For example, sup-
pose we want to create a new base class TixArrowWidget, which presumably
defines common attributes of any class that have arrows in them. Then, instead of
deriving TixArrowButton directly from TixPrimitive, we decide to derive TixAr-
rowButton from TixArrowWidget, which is in turn derived from TixPrimitive:

tixWidgetClass tixArrowWidget {
-superclass tixPrimitive
...

}
tixWidgetClass tixArrowButton {

-superclass tixArrowWidget
...

}

Now we would need to change all the method chaining calls in TixArrowBut-
ton from:

tixPrimitive:SomeMethod

to:

tixArrowWidget:SomeMethod

This may be a lot of work because you may have chained methods in many
places in the original implementation of TixArrowButton.

The tixChainMethod command solves this problem. It will automati-
cally find a superclass that defines the method we want to chain and calls this
method for us. For example, the following is a better implementation oftixAr-
rowButton:InitWidgetRec that usestixChainMethod to avoid calling
tixPrimitive:InitWidgetRec directly:

proc tixArrowButton:InitWidgetRec {w} {
upvar #0 $w data

tixChainMethod $w InitWidgetRec
set data(count) 0

}

6 TIX OBJECT ORIENTED PROGRAMMING 63

Notice the order of the arguments for tixChainMethod: the name of the in-
stance,$w, is passed before the method we want to chain,InitWidgetRec . In
general, if the method we want to chain has $1+n$ arguments:

proc tixPrimitive:MethodToChain {w arg1 arg2 ...
argn} {

...
}

We call it with the arguments in the following order

tixChainMethod $w MethodToChain $arg1 $arg2 ...
$argn

We’ll come back to more detailed discussion oftixChainMethod shortly.
For the time being, let’s take it for granted thattixChainMethod must be used
in the three standard initialization methods:InitWidgetRec , ConstructWid-
get andSetBindings

6.4.2 The ConstructWidget Method

TheConstructWidget method is used to creates the components of a widget
instance. In the case of TixArrowButton, we want to create a new button sub-
widget, whose name isbutton , and use a bitmap to display an arrow on this
button. Assuming the bitmap files are stored in the filesup.xbm , down.xbm ,
left.xbm andright.xbm , the string substitution@$data(-direction).xbm
will give us the appropriate bitmap depending on the current direction option of
the widget instance.

proc tixArrowButton:ConstructWidget {w} {
upvar #0 $w data

tixChainMethod $w ConstructWidget

set data(w:button) [button $w.button -bitmap
@$data(-direction).xbm]

pack $data(w:button) -expand yes -fill both
}

6 TIX OBJECT ORIENTED PROGRAMMING 64

The tixArrowButton:ConstructWidget method shown above sets
the variabledata(w:button) to be the pathname of thebutton subwidget.
As a convention of the Tix Intrinsics, we must declare a public subwidgetswidby
storing its pathname in the variabledata(w: swid) .

6.4.3 The SetBindings Method

In your interface, you want to handle a lot of events in the subwidgets that make up
your mega-widget. For instance, when somebody presses the button in a TixAr-
rowButton widget, you want the button to handle the event. TheSetBindings
method is used to creates event bindings for the components inside the mega-
widget. In our TixArrowButton example, we use the bind command to specify
that the methodtixArrowButton:IncrCount should be called each time
when the user presses the first mouse button. As a result, we can count the num-
ber of times the user has pressed on the button (obviously for no better reasons
than using it as a dumb example).

proc tixArrowButton:SetBindings {w} {
upvar #0 $w data

tixChainMethod $w SetBindings

bind $data(w:button) <1> "tixArrowButton:IncrCount
$w"
}

proc tixArrowButton:IncrCount {w} {
upvar #0 $w data

incr data(count)
}

6.5 Declaring and Using Variables

The private variables of a widget class do not need to be declared. In fact they
can be initialized and used anywhere by any method. Usually, however, general
purpose private variables are initialized by theInitWidgetRec method and
subwidget variables are initialized in theConstructWidget method.

6 TIX OBJECT ORIENTED PROGRAMMING 65

We have seen in thetixArrowButton:InitWidgetRec example that
the private variabledata(count) was initialized there. Also, the private vari-
abledata(w:button) was initialized intixArrowButton:ConstructWidget
and subsequently used intixArrowButton:SetBindings .

In contrast, public variables must be declared inside the class declaration. The
following arguments are used to declare the public variables and specify various
options for them:

• -flag : As shown in the class declaration in figure 6-2, the
-flag argument declares all the public variables of the TixAr-
rowButton class,-direction and-state

• -configspec : We can use the-configspec argument to
specify the details of each public variable. For example, the
following declaration

-configspec {
{-direction direction Direction e}
{-state state State normal}

}

specifies that the-direction variable has the resource name
direction and resource classDirection ; its default value
is e. The application programmer can assign value to this vari-
able by using the-direction option in the command line or
by specifying resources in the Tk option database with its re-
source name or class. The declaration of-state installs simi-
lar definitions for that variable.

• -alias : The -alias argument is used to specify alternative
names for public variables. In our example, the setting

-alias {
{-dir -direction}

}

specifies that-dir is the same variable as-direction . There-
fore, when the application issue the command

.up config -dir w

it is the same as issuing

6 TIX OBJECT ORIENTED PROGRAMMING 66

.up config -direction w

The -alias option provides only an alternative name for the
application programmer. Inside the widget’s implementation
code, the variable is still accessed asdata(-direction) ,
notdata(-dir) .

6.5.1 Initialization of Public Variables

When a widget instance is created, all of its public variables are initialized by
the Tix Intrinsics before theInitWidgetRec method is called. Therefore,
InitWidgetRec and any other method of this widgte instance are free to as-
sume that all the public variables have been properly initialized and use them as
such.

The public variables are initialized by the following criteria.

• Step 1: If the value of the variable is specified by the creation
command, this value is used. For example, if the application
programmer has created an instance in the following way:

tixArrowButton .arr -direction n

The valuen will be used for the -direction variable.

• Step 2: if step 1 fails but the value of the variable is specified in
the options database, that value is used. For example, if the user
has created an instance in the following way:

option add *TixArrowButton.direction w
tixArrowButton .arr

The valuewwill be used for the-direction variable.

• Step3: if step 2 also fails, the default value specified in the-
configspec secton of the class declaration will be used.

Type Checker

You can use atype ckecker procedureto check whether the user has supplied a
value of the correct type for a public variable. The type checker is specified in
the -configspec section of the class declaration after the default value. The

6 TIX OBJECT ORIENTED PROGRAMMING 67

following code specifies the type checker procedureCheckDirection for the
-direction variable:

-configspec {
{-direction direction Direction e Check-

Direction}
{-state state State normal}

}
...

}

proc CheckDirection {dir} {
if {[lsearch {n s w e} $dir] != -1} {

return $dir
} else {

error "wrong direction value \"$dir \""
}

Notice that no type checker has been specified for the-state variable and
thus its value will not be checked.

If a type checker procedure is specified for a public variable, this procedure
will be called once the value of a public variable is determined by the three steps
mentioned above.

6.5.2 Public Variable Configuration Methods

After a widget instance is created, the user can assign new values to the public
variables using the configure method. For example, the following code changes
the-direction variable of the.arr instance ton.

.arr configure -direction n

In order for configuration to work, you have to define a configuration method
that does what the programmer expects. The configuration method of a public
variable is invoked whenever the user calls the configure method to change the
value of this variable. The name of a configuration method must be the name of
the public variable prefixed by the creation command of the class and:config .

6 TIX OBJECT ORIENTED PROGRAMMING 68

For example, the name configuration method for the-direction variable of
the TixArrowButton class istixArrowButton:config-direction . The
following code implements this method:

proc tixArrowButton:config-direction {w value}
{

upvar #0 $w data

$data(w:button) config -bitmap @$value.xbm
}

Notice that whentixArrowButton:config-direction is called, the
value parameter contains the new value of the-direction variable butdata(-
direction) contains theold value. This is useful when the configuration
method needs to check the previous value of the variable before taking in the new
value.

If a type checker is defined for a variable, it will be called before the configu-
ration method is called. Therefore, the configuration method can assume that the
type of thevalue parameter is got is always correct.

Sometimes it is necessary to override the value supplied by the user. The
following code illustrates this idea:

proc tixArrowButton:config-direction {w value}
{

upvar #0 $w data

if {$value == "n"} {
set value s
set data(-direction) $value

}

$data(w:button) config -bitmap @$value.xbm
return $data(-direction)

}

Notice the above code always overrides values ofn to s . If you need to over-
ride the value, you must do the following two things:

• Explicitly set the instance variable inside the configuration method
(theset data(-direction) $value line).

6 TIX OBJECT ORIENTED PROGRAMMING 69

• Return the modified value from the configuration method.

If you do not need to override the value, you don’t need to return anything
from the configuration method. In this case, the Tix Intrinsics will assign the new
value to the instance variable for you.

Configuration Methods and Public Variable Initialization

For efficiency reasons, the configuration methods are not called during the intial-
ization of the public variables. If you want to force the configuration method to be
called for a particular public variable, you can specify it in the-forcecall sec-
tion of the class declaration. In the following example, we force the configuration
method of the-direction variable to be called during intialization:

-forcecall {
-direction

}

6.6 Summary of Widget Instance Initialization

The creation of a widget instance is a complex process. You must understand how
it works in order to write your widget classes. The following is the steps taken by
the Tix Intrinsics when a widget instance is created:

• When the user creates an instance, the public variables are in-
tilized as discussed in section 6.5.1. Type checkers are always
called if they are specified. Configuration methods are called
only if they are specified in the-forcecall section.

• The InitWidgetRec method is called. It should initialize
private variable, possibly according to the values the public vari-
ables.

• The ConstructWidget method is called. It should create
the component widgets. It should also store the names of public
subwidgets into the subwidget variables.

• TheSetBinding method is called. It should create bindings
for the component widgets.

After the above steps, the creation of the instance is complete and the user can
iterate with it using its widget command.

6 TIX OBJECT ORIENTED PROGRAMMING 70

6.7 Loading the New Classes

Usually, you can use a separate script file to store the implementaion of each new
widget class. If you have several of those files, it will be a good idea to group the
files into a single directory and create atclIndex file for them so that the new
classes can be auto-loaded.

Suppose you have put the class files into the directory/usr/my/tix/classes .
You can create thetclIndex file using thetools/tixindex program that
comes with Tix:

cd /usr/my/tix/classes
/usr/my/Tix8.1/tools/tixindex *.tcl

ThetclIndex file must be created by thetixindex program. You cannot use
the standardauto_mkindex command that comes with Tcl.

Once you have created thetclIndex file, you can use your new widget
classes by auto-loading. Here is a small demo program that uses the new TixAr-
rowButton class:

#!/usr/local/bin/tixwish
lappend auto_path /usr/my/tix/classes

Now I can use my TixArrowButton class!
#
tixArrowButton .arr -direction n
pack .arr

	Introduction
	What is Tix
	Getting Started: the TixControl Widget
	Accessing The Components Inside Mega Widgets
	Another Tix Widget: TixComboBox
	The TixSelect Widget

	Container Widgets
	TixNoteBook
	PanedWindow
	The Family of Scrolled Widgets

	Tabular Listbox and Display Items
	tixTList -- The Tix Tabular Listbox Widget
	Display Items
	Creating Display Items in the TixTList Widget

	Hierarchical Listbox
	TixHList -- The Tix Hierarchical Listbox Widget
	Creating Collapsible Tree Structures with TixTree

	Selecting Files and Directories
	File Selection Dialog Widgets
	Selecting Directories with the TixDirTree and TixDirList Widgets

	Tix Object Oriented Programming
	Introduction to Tix Object Oriented Programming
	Widget Class Declaration
	Writing Methods
	Standard Initialization Methods
	Declaring and Using Variables
	Summary of Widget Instance Initialization
	Loading the New Classes

